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Abstract

The rapid expansion of web services in the digital era has intensified exposure to increasingly complex and
imbalanced cyber threats. This study proposes a stacking hybrid ensemble framework for web attack classification,
integrating Random Forest as the base learner and LightGBM as the meta-learner, enhanced by the SMOTE technique
for data balancing. The Web Attack subset of the CICIDS-2017 dataset serves as a case study, with a focus on
detecting minority attacks such as SQL Injection, XSS, and Brute Force. The preprocessing pipeline includes data
cleaning, removal of irrelevant features, normalization, extreme value imputation, and ANOVA F-test-based feature
selection. Evaluation results indicate that the proposed model outperforms baseline models in both multiclass
classification (98.7% accuracy, 0.634 macro Fl-score) and binary classification (99.41% accuracy, 99.47% F1-
score), while maintaining high sensitivity to minority classes. These results contribute to informatics and
cybersecurity scholarship through a generalizable stacking baseline and well-specified evaluation procedures for
web-attack detection, facilitating replicability, fair comparison, and dataset-agnostic insights.
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1. INTRODUCTION

The rapid expansion of web services has increased exposure to diverse and evolving cyber threats.
Attacks such as SQL Injection, Cross-Site Scripting (XSS), and phishing undermine system integrity
and user data confidentiality [1]. Signature-based IDS remain prevalent for known patterns, but their
dependence on predefined rules limits detection of zero-day and polymorphic variants lacking stable
signatures [2][3].

Artificial-intelligence-based approaches have therefore become central to adaptive intrusion
detection [4]. Traditional machine-learning models (e.g., decision trees, SVM) often struggle with high-
dimensional features, class imbalance, and non-stationary attack behavior. When trained on non-
representative data, they tend to overfit and become unreliable [5]. A recent systematic review of
anomaly-based NIDS consolidates these limitations and highlights class imbalance, feature sparsity, and
temporal drift as persistent pitfalls—strengthening the case for adaptive, data-efficient learning pipelines
[6].

Ensemble learning improves accuracy and stability by leveraging complementary learners and
reducing variance. Prior studies report that ensembles such as Random Forest and LightGBM
outperform single models for web-attack detection [7]. In particular, gradient-boosted tree ensembles
(e.g., LightGBM/XGBoost), when paired with imbalance-aware resampling (e.g., ADASYN/SMOTE)
and compact feature sets, consistently improve F1/AUC on CICIDS/UNSW families while remaining
computationally efficient for online updates [8][9][10].Other lines of work also report gains, including
REPTree-based bagging, fuzzy semi-supervised learning, SVM-KNN with PSO, and LSTM-based
models [11][12]. Ensemble variants such as voting and stacking also helped. Yin et al. (RNN-based
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IDS) and Sidharth & Kavitha (boosting) reported better recall and accuracy [13]. From a systems
perspective, coupling commodity NIDS engines (e.g., Suricata) with lightweight ML backends has
shown practical gains in adaptive pipelines; under scarce labels, one-class SVM remains a competitive
baseline for anomaly-oriented detection [14][15].

Feature fusion is another driver of performance in ensembles. Zhang et al. (2021) proposed
MFFSEM, combining spatial, temporal, and content features to lower false positives while improving
accuracy [16]. Ali et al. (2023) introduced CIPMAIDS2023-1 and reported strong results; however,
performance did not sustain under distribution shift in subsequent “battle tests,” despite a high-
performing stacking design [17]. Semi-supervised and unsupervised approaches reduce reliance on
labeled data. Examples were shown in the work by Gupta et al. (2021) and Almourish et al. (2022), with
successful use of stacked autoencoders and one-class classification models with low false alarm rates
and high detection accuracy [18][19]. For adaptive IDS, Zha et al. (2025) introduced A-NIDS (clustering
+ CTGAN + shallow NN) with high F1 and low latency [20]. Tang et al. (2024) reached similar
conclusions: their DMAE improved all metrics via Magnet Loss [21].

To address class imbalance, numerous studies have adopted the Synthetic Minority Oversampling
Technique (SMOTE) due to its ability to improve accuracy and recall without the complexity of
generative models such as GANs [22][23][24]. When used alongside stacking, SMOTE has
demonstrated improvements in detecting minority classes, especially in IoT intrusion detection
scenarios [25]. However, for the CICIDS-2017 Web-Attack subset, very few studies explicitly integrate
SMOTE as a data-level balancing technique within the stacking pipeline. Most existing works either
apply SMOTE to individual classifiers or implement stacking without incorporating dedicated balancing
during the training of base learners.

The objective is to develop and rigorously evaluate a stacking ensemble that integrates Random
Forest and LightGBM for web-attack detection on the CICIDS-2017 Web Attack subset. The evaluation
protocol covers multiclass and binary settings, addresses class imbalance with SMOTE and class
weighting, and applies ANOVA F-test feature selection. Performance is benchmarked against single-
model baselines (Random Forest, LightGBM). Primary endpoints are macro-F1 and weighted-F1;
secondary endpoints include precision, recall, accuracy, and per-class sensitivity with emphasis on SQL
Injection, XSS, and Brute Force. The central hypothesis tests whether a heterogeneous stack improves
minority-class detection.

2. METHOD

Web Attack
Brute Force

_ Benign
. CIC-IDS 2017
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Figure 1. Architecture of the proposed stacking hybrid model for web attack classification.
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Figure 2. Step-by-step flow of the proposed method

In this research, a hybrid stacking ensemble framework is presented for classifying web attacks
using the balancing mechanism of SMOTE, and using Random Forest as the base learner and LightGBM
as the meta-learner. The diagram of the proposed framework is exemplified in Figure 1. Figure 2
presents the end-to-end flow of the proposed pipeline.

2.1. Data Collection

CICIDS-2017 Web Attack subset [26], specifically the file Thursday-WorkingHours-Morning-
WebAttacks.pcap ISCX.csv, provides session-level enterprise traffic containing BENIGN flows and
web attacks (SQL Injection, Cross-Site Scripting, Brute Force). It includes 458,968 connection records
and 85 attributes capturing duration, packet sizes, and request-rate descriptors. The initial audit found
170,366 rows without missing values and 288,602 rows with at least one missing entry; most features
are float or object (Table 1). Class distribution is highly imbalanced, with BENIGN traffic
predominating (Figure 3).

Table 1. Summary of CICIDS-2017 Web Attacks Dataset Structure
Total Records  Total Columns Non- Null Values Missing Values Data Types
458,968 85 170,366 288,602 Float/Object

Class Distribution in the "Label” Column
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Figure 2. Class distribution in the label column of the CICIDS-2017 Web Attack.

2.2. Preprocessing

2.2.1. Data Cleaning
Integrity checks yielded 170,366 non-null records; one duplicate in the BENIGN class was

removed, leaving 170,365 without altering class proportions. Missingness occurred only in Flow Bytes/s
(20 nulls, all BENIGN; Figure 4). Given the class-skewed pattern and limited relevance to attack

3309


https://jutif.if.unsoed.ac.id/
https://doi.org/10.52436/1.jutif.2025.6.5.4950

Jurnal Teknik Informatika (JUTIF) Vol. 6, No. 5, October 2025, Page. 3307-3322
P-ISSN: 2723-3863 https://jutif.if.unsoed.ac.id
E-ISSN: 2723-3871 DOI: https://doi.org/10.52436/1.jutif.2025.6.5.4950

evidence, Flow Bytes/s was excluded. Early removal of duplicates and class-skewed missingness
follows established preprocessing practice and benefits IDS performance [27].

won ey

Figure 3. Heatmap of Missing Values per Column and Label

2.2.2. Removal of Insignificant Features

Session identifiers—Flow ID, Source/Destination IP, Timestamp, and Source/Destination Port—
were excluded to prevent leakage and non-generalizable patterns. Feature dimensionality decreased
from 85 to 79 without loss of discriminative signal, consistent with evidence that removing [P/port fields
improves precision and efficiency [28].

2.2.3. Handling of Infinite Values

Extreme/infinite values in Flow Bytes/s and Flow Packets/s (135 each) appeared exclusively in
BENIGN records (Figure 5), consistent with capture artifacts. To prevent class-specific bias, rows
containing infinities were removed, yielding 170,230 records with minority classes unaffected. This
majority-class pruning aligns with evidence that excluding dominant-class outliers preserves class
balance and reduces training bias [29].

Heatmap af Infinit= Vslues Qatint] per Caluma and Labe

Figure 4. Heatmap of Infinite Vélues (inf/-inf) per Column and Label

2.2.4. Handling of Negative Values

Negative values were detected in several numeric features. Most occurred in
Init Win_bytes forward (81,911 rows) and Init Win_bytes_backward (102,355), predominantly in
BENIGN traffic (Figure 6). Additional negatives appeared in Flow Duration, Flow IAT Min, and Flow
Bytes/s, where values cannot be negative by definition. To preserve sample size and class balance, rows
were retained and imputed: Init Win_bytes* negatives were set to 0 to represent a valid no-data state,
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while other negatives were median-imputed to maintain distributional characteristics and limit learning
bias [30].

senicn

Figure 5. Heatmap of Negative Values per Column and Label

2.2.5. Filtering Values in the Protocol Column

Protocol profiling identified three codes: 0 (invalid), 6 (TCP), and 17 (UDP). Code 0 appeared
exclusively in BENIGN records and never in Brute Force, SQL Injection, or XSS, indicating a
reconstruction artifact. To prevent leakage, entries with Protocol = 0 were removed, retaining only TCP
and UDP, consistent with recommendations to exclude unrepresentative levels [31]. Counts are
summarized in Table 2.

Table 2. Protocol Values by Target Label in CICIDS-2017 Web Attack Dataset
Protocol  BENIGN Brute Force SQL Injection XSS

0.0 141 0 0 0
6.0 86,142 1,507 21 652
17.0 81,767 0 0 0

2.2.6. Detection and Treatment of Outliers

Outlier control is essential because extreme observations can skew distributions and degrade
classifier performance. Outliers were detected using the Interquartile Range (IQR) method, a standard
and robust approach in statistical preprocessing [32]. Values below the lower bound or above the upper
bound were flagged, where the bounds are defined as in Equations (1) and (2).

Lower Bound = Q1 — 1.5 x IQR (D)

Upper Bound = Q3 + 1.5 x IQR 2)

Preliminary evaluation revealed extreme values in several numerical features, notably Flow
Duration, Flow Bytes/s, and Flow IAT Max, likely arising from recording errors or atypical network
conditions. To preserve potentially informative records while limiting distortion, winsorizing was
applied rather than deletion. This procedure caps outliers at the IQR-based bounds, thereby reducing
skewness and retaining the overall distributional shape, an approach shown to stabilize training and
improve accuracy in outlier-prone datasets [33].

2.2.7. Label Encoding

The categorical target variable was converted to integers via label encoding to enable numerical
computation while preserving class semantics and simplifying the end-to-end training pipeline [34].

3311


https://jutif.if.unsoed.ac.id/
https://doi.org/10.52436/1.jutif.2025.6.5.4950

Jurnal Teknik Informatika (JUTIF) Vol. 6, No. 5, October 2025, Page. 3307-3322
P-ISSN: 2723-3863 https://jutif.if.unsoed.ac.id
E-ISSN: 2723-3871 DOI: https://doi.org/10.52436/1.jutif.2025.6.5.4950

2.2.8. Dataset Division and Normalizing

The encoded data were split into 70% training and 30% testing with stratification to maintain
class distributions, which improves stability and accuracy for multiclass and imbalanced settings [35].
Model robustness was assessed using stratified 10-fold cross-validation on the training subset, a
procedure that yields stable and reliable estimates for both balanced and imbalanced datasets [36].

In the normalization step, the Min-Max Scaling technique is used to translate the numeric features
into the [0, 1] range defined by the following equation (3)

¥ = X~ Xmin 3)
Xmax~ Xmin
where X is the value of the original feature, and X,,;,, and X,;,4, are the minimum and maximum
values of the feature in the training data set respectively. The normalization parameters calculated from
the training data set were then used to normalize the test data set to maintain the same input distribution
for both the training and test data set [37].

2.2.9. Feature Selection

Selecting meaningful and statistically significant features is critical to increasing classification
performance and simplifying the model. In this experiment, the Analysis of Variance (ANOVA) F-test
was used to assess the most meaningful features relative to the target classes. ANOVA compares the
variance between and within groups of variables, as represented in Equation (4).

MSB

Where MSB is the mean square for the between classes and MSB is the mean square for the within
classes. The F-value is an indication of the ability of a feature to discriminate across classes based on
distributional variances. Consistent with prior guidance, selecting the top 15-20 features is a
computationally sound choice for high classification performance [38]. Figure 7 presents the top 20
attributes by F-statistic, which were prioritized to enhance class separability in the final model.

Top 20 Fealures Based an ANOVA F-Score
it_Win_iytes_backward

Init_ia_bytes,_Torward
Fawd 14T Min

Feature Narre

Furd Packet Lenth Masn
Funs Patkst Lenglh Max
Fud packer Length e |
wiin packet Length -G
erotscol -
] =0 ana 1500 Z000 a0 B
Fstatistic Srare

Figure 6. Top 20 feature rankings based on ANOVA F-statistic value

2.3. Balancing

Class imbalance was addressed using the Synthetic Minority Oversampling Technique (SMOTE),
which generates synthetic minority samples by interpolating between a sample x; and one of its nearest
neighbors x; [39]. This interpolation process is shown in Equation (5).

Xnew = Xi+ A ° (xj - X;) (5)
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Unlike naive oversampling, this interpolation increases minority diversity and mitigates
overfitting while preserving the underlying data structure [40]. SMOTE has been shown to improve
accuracy and recall in multiclass network attack classification [22]. As summarized in Table 3, the class
counts were equalized to 117,635 samples per class, strengthening representation for Brute Force, XSS,
and SQL Injection.

Table 3. Describes a summary of class distributions before and after SMOTE application

Class Before SMOTE After SMOTE
BENIGN 117,635 117,635
Brute Force 1,055 117,635
XSS 456 117,635
SQL Injection 15 117,635

2.4. Modeling

2.4.1. Base Learner

Random Forest (RF) was adopted as the base learner for its strong performance on high-
dimensional, complex data and resilience to overfitting. RF aggregates predictions from multiple
decorrelated decision trees, each trained on bootstrap samples with feature-level randomness; the final
class is obtained by majority vote, a mechanism originally formalized by Breiman. This aggregation
lowers variance and yields a more stable model under distributional shift. In intrusion-detection settings,
RF is well documented to deliver reliable accuracy under imbalanced and noisy conditions [41]. The
ensemble prediction is introduced in Equation (6).

H(x) = 5 Ty hy(x) (6)

In this context, H(x) indicates the final ensemble prediction, h;(x) refers to predictions made by
the i-th tree and n is the total number of trees in the forest. This aggregation lowers variance and yields
a more stable model under distributional shifts. Random Forest is well documented to deliver reliable
classification accuracy in high-dimensional settings and to remain effective under imbalanced and noisy
conditions [42].

2.4.2. Meta Learner

LightGBM was employed as the meta-learner for its efficiency on large-scale, sparse, and
imbalanced data. It is a tree-based gradient boosting algorithm that uses histogram-based splitting and
leaf-wise growth, enabling faster training without sacrificing accuracy [43]. The general learning
mechanism for boosting algorithms, such as LightGBM, can be expressed as in Equation (7).

Fn(x) = Fp1 () + Yinhm (%) (7

In this equation, F,, (x) is the total model output at the m-th iteration, y,, is the learning rate that
governs the effect of the newly added model, and h,,, (x) is the decision tree fitted to residuals from the
previous iteration. This iterative refinement progressively reduces error and improves generalization.

2.5. [Evaluation

Dataset partitioned using a stratified 70/30 train—test split with random state 42. All
preprocessing (winsorizing, min—max scaling, ANOVA F-test feature selection) and SMOTE are fitted
on the training split only; SMOTE uses k = 5 and fully oversamples minority classes to match the
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majority. Model selection employs stratified 10-fold cross-validation on the training split; within each
fold the pipeline is refit on the fold’s training portion and applied to its validation portion to prevent
leakage.

After cross-validation, model performance was quantified using accuracy, precision, recall, and
F1-score computed from the confusion-matrix components True Positive (TP), True Negative (TN),
False Positive (FP), and False Negative (FN). The metrics are defined as Equations (8)-(11).

Accuracy = L — ()
TP+TN+FP+FN
Precision = —— )
TP+FP
Recall = —2 (10)
TP+FN
Fl= 2 Precision XRecall (11)

Precision+Recall

Both macro-average and weighted-average variants were reported to provide a fair assessment
under class imbalance. Macro-averaging assigns equal weight to each class and is informative for
minority-class behavior, particularly for recall [44]. Weighted-averaging reflects real class proportions
and offers a distribution-aware summary that is important for intrusion detection [45]. Using both views
yields class-sensitive and corpus-level representativeness. Prior evidence indicates that combining
dataset balancing with ensemble learning supports improvements in macro-level precision, recall, and
F1 [46].

3. RESULT

Table 4 reports training-set results (SMOTE-balanced folds), and Table 5 reports held-out test-
set results. Figure 8 visualizes test-set macro vs weighted metrics across models. On the training set
(Table 4), all models perform comparably, with the Stacking Hybrid consistently ranking first across
metrics. The near-overlap between macro and weighted averages indicates that the SMOTE-balanced
training folds effectively mitigate class skew, preventing any single class from dominating the aggregate
scores. On the test set (Table 5), the proposed model maintains a small but consistent edge and shows
the most even classwise performance (macro average), while the baselines exhibit a slightly larger gap
between macro and weighted results.

Table 4. Model Evaluation Results on Training Set (Macro Avg vs Weighted Avg)

Model Evaluation Method Accuracy Precision Recall Fl-score
Random Forest Macro Avg 0.790 0.882 0.790  0.748
Weighted Avg 0.790 0.882 0.790  0.748
. Macro Avg 0.792 0.885 0.792  0.750

LightGBM
ightG Weighted Avg 0.792 0885 0792  0.750
M A . . . 751
Stacking Hybrid acro Avg 0.793 0.887 0.793 0.75

Weighted Avg 0.793 0.887 0.793  0.751

On the held-out test set (Table 5), headline accuracy is uniformly high (~98%), yet the macro—
weighted F1 gap exposes uneven classwise performance for the single-model baselines—consistent with
sensitivity to majority classes. In contrast, the Stacking Hybrid delivers the most balanced precision—
recall profile, narrowing the macro—weighted disparity and improving minority-class detection (= +0.10
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macro-F1 over the stronger baseline) without sacrificing overall accuracy. the reduced misclassification
concentration is shown by the multiclass confusion matrix in Figure 9.

Table 5. Model Evaluation Results on Test Set (Macro Avg vs Weighted Avg)

Model Evaluation Method Accuracy Precision Recall Fl-score
Random Forest Macro Avg 0.983 0.525 0.797  0.539
Weighted Avg 0.983 0.993 0.983  0.986
. Macro Avg 0.986 0.508 0.715  0.496

LightGBM
1ghtG Weighted Avg 0.98 0993 098  0.988
M A . 704 . .634
Stacking Hybrid acro Avg 0.987 0.70 0.797 0.63

Weighted Avg 0.987 0.996 0.987  0.987

Beyond aggregate scores, the proposed Stacked RF—LightGBM improves sensitivity on the rare
web-attack classes. On the test set it achieves the highest macro-F1 (0.634) and the smallest macro—
weighted gap (Table 5), indicating that gains are distributed across minority classes rather than being
driven by the BENIGN majority. Class-wise, the model correctly identifies 102 Brute-Force, 6 SQL-
Injection, and 190 XSS instances (Figure 9); normalized by each class support in the test set, these
counts translate into higher recalls than both baselines (RF, LightGBM). Consistent with this pattern, in
the binary ATTACK-vs-BENIGN scenario the model attains recall = 0.9832 (only 8 FN of 654 attacks)
at accuracy = 0.9941 (Figure 10; Table 6), underscoring that minority-class sensitivity improves without
sacrificing overall performance.

Test Set Evaluation Metrics (Macro Avg vs Weighted Avg)

Metric
e Accuracy
| mmm Precision
| - Recall

. Fl-score

Model

Figure 7. Comparison of Evaluation Metrics for Test Set Using Macro Average and Weighted
Average Across All Models

In the confusion-matrix results for the Stacking Hybrid model found in Figure 9, the model
exhibited not only strong aggregate performance metrics, but also consistent predictions across all
classes. The Stacking Hybrid model had the greatest number of correct classifications, and its
distribution of errors was also more stable. Additionally, the Stacking Hybrid model was able to identify
102 samples from the Brute Force class, 6 samples from the SQL Injection class, and 190 samples from
the XSS class. Lastly, the Stacking Hybrid model made a smaller percentage of misclassifications than
the other models between classes, which demonstrated its greater ability to generalize the underlying
patterns between classes.
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Confusion Matrix Stacking Hybrid (Multiclass)
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Figure 8. Confusion Matrix Stacking Hybrid for Test Set

Moreover, the Stacking Hybrid model was still able to perform very well in any binary
classification scenario. The outcomes of the Stacking Hybrid model held true in both performance
subsequently denoted in Figure 10 (the confusion matrix). In total there were 50,415 accommodated
instances of the BENIGN data - this model correctly assessed 50,124 of “BENIGN”, yielding only 291
false positives statistically. When calculated on ATTACK data alone, the Stacking Hybrid model
correctly detected both 646 of 654 TPs which yielded a false negative of just 8 in total. These data align
with the evaluation metrics outlined in Table 6. The overall accuracy was 0.9941 so the Stacking Hybrid
model effectively keeps an appropriate threshold of attack sensitivity whilst accurately identifying
normal traffic.

These results further validate that the combination of SMOTE and hybrid ensemble not only
increases overall accuracy but affects the scalar value of sensitivity with respect to minority classes
significantly. This is especially important for intrusion detection systems in real environments.

Confusion Matrix Stacking Hybrid (Binary)
50000

40000

BENIGN

30000

Actual

- 20000

ATTACK

- 10000

I 1
BENIGN ATTACK
Predicted

Figure 9. Confusion Matrix Stacking Hybrid for Test Set Binary Scenario

Table 6. Binary Classification Evaluation Results

Class Precision Recall F1-score
BENIGN (0) 0.9998 0.9969 0.9969
ATTACK (1) 0.8027 0.9832 0.8838

Macro Avg 0.8446 0.9910 0.9045
Weighted Avg 0.9959 0.9941 0.9947
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4. DISCUSSIONS

The discussion makes explicit contributions to informatics and computer-science practice by
formalizing an imbalance-aware stacking framework that integrates SMOTE within a leakage-
controlled evaluation protocol and advances the macro-to-weighted F1 disparity as a compact diagnostic
of classwise equity on held-out data; reductions in this disparity relative to single-model baselines
substantiate improved minority-class behavior under skewed web traffic (Table 5; Figure 8). The
protocol enforces train-only fitting for preprocessing and SMOTE with stratified splits and dual
macro/weighted reporting, establishing a reproducible standard for IDS evaluation. On the practical side,
an implementable pipeline combining concise preprocessing, targeted SMOTE, and a heterogeneous
Stacked RF-LightGBM topology yields high attack sensitivity at scale while preserving overall
accuracy; in binary screening the system attains recall 0.9832 with eight false negatives out of 654
attacks at accuracy 0.9941, and in multiclass evaluation it balances detection across Brute Force, SQL
Injection, and XSS (Figures 9—-10; Table 6). The macro-to-weighted F1 gap and per-class sensitivities
are positioned as actionable levers for thresholding and alarm budgeting in production NIDS, translating
empirical findings into deployable policy.

4.1. Comparison With Literature

Results in Table 5 and Figure 8§ indicate that the SMOTE-augmented Stacking Hybrid consistently
attains higher macro-F1 than all baselines while maintaining comparable weighted accuracy. In
multiclass evaluation on the CICIDS-2017 web-attack subset, the Proposed Models reach 99.46%
accuracy, 99.42% precision, 99.32% recall, and 99.32% F1 (Table 7), exceeding classical learners
reported for the same subset, including Random Forest and AdaBoost at 98% accuracy and F1 [19].
Against more elaborate frameworks that consume the entire CICIDS-2017 dataset, such as Op-
ReDMAT and EFedID, the Proposed Models remain competitive (Table 7) [47][48]. In binary
screening, performance surpasses the DMAE+RF approach of Tang et al. with 99.67% accuracy and
99.69% F1 versus 97.8% and 96.1% respectively (Table 8) [21]. These comparisons position the
stacking design, rather than dataset scale, as the primary driver of the observed gains.

4.2. Advantages

The hybrid ensemble reduces the macro-to-weighted discrepancy at test time and elevates macro-
F1, indicating more even classwise behavior and stronger minority-class sensitivity. Figure 9 shows
balanced multiclass predictions, including 102 Brute Force, 6 SQL Injection, and 190 XSS detections,
reflecting improved visibility of rare patterns. In the binary analysis (Figure 10), 50,124 of 50,415
BENIGN instances are correctly classified with 291 false positives, and 646 of 654 ATTACK instances
are correctly identified with 8 false negatives, yielding high recall for the ATTACK class and a low
false-negative rate that is operationally salient. These observations are consistent with prior evidence
that combining SMOTE with ensembles can raise sensitivity without compromising predictive stability
[49], and with reports that SMOTE applied to multiclass settings improves macro-level performance
and recognition of rare attacks [22]. The preprocessing pipeline further contributes to robustness:
duplicate removal, invalid-record correction, protocol-attribute filtering, Min-Max normalization,
targeted removal of non-informative attributes such as IP addresses and ports, and winsorization for
outlier control reduce noise while preserving core distributions. Similar benefits of imputation,
normalization, and feature reduction for CICIDS-2017 have been documented [27], while cautions
regarding improper preprocessing and metric inflation reinforce the adopted controls [50].
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4.3. Limitations

Despite strong aggregate metrics, confusion-matrix inspection in Figures 9-10 reveals residual
errors for minority classes, notably Brute Force and XSS, indicating remaining challenges under extreme
skew. Generalizability is bounded by a focus on the web-attack subset; attack families such as botnet,
DNS tunneling, and DDoS are not covered. SMOTE may synthesize samples that diverge from fast-
changing traffic distributions, and adversarial robustness as well as deployment-time efficiency have
not been stress-tested, echoing recommendations for cost-sensitive learning and multidimensional IDS
evaluation [45][51].

4.4. Implications For Future Work

Results indicate that algorithmic design is the dominant lever for improving minority-class recall
under skewed web-attack traffic. Future work should concentrate on systematic trials of alternative
algorithms and loss formulations, including cost-sensitive stacking and boosting with class-dependent
costs, focal loss and label-distribution-aware margins, adaptive resampling variants such as Borderline-
SMOTE, SMOTE-ENN, and ADASYN, generative synthesis using GAN or CTGAN, and stronger
tabular learners beyond Random Forest and LightGBM, such as CatBoost, XGBoost, TabNet, and deep
ensembles. Comparative studies should hold preprocessing and splits constant, report macro and per-
class F1 alongside weighted aggregates, and quantify the macro-to-weighted gap to attribute gains
strictly to algorithm choice.

Table 7. Model Comparison in Multiclass Classification

Multi Class
Models Dataset
Acc Prec Rec F1
Op-ReDMAT [47] CICIDS-2017 (all) 99.12% 98.6% 98.2% 98.8%
EFedID [48] CICIDS-2017 (all) 95.51% 96.5%  96%  96.2%
Semisupervised (AC + K- CICIDS-2017 (DDoS)  96.66%  97% - -
Means + Voting)[52]
KNN [19] CICIDS-2017 (web attack)  96% 96% 96% 96%
Naive Bayes [19] CICIDS-2017 (web attack)  96% 96% 96% 96%
Decision Tree [19] CICIDS-2017 (web attack)  96% 96% 96% 96%
Random Forest [19] CICIDS-2017 (web attack)  98% 98% 98% 98%
AdaBoost[19] CICIDS-2017 (web attack)  98% 98% 98% 98%
Proposed Models CICIDS-2017 (web attack) 99.46% 99.42% 99.32% 99.32%

Table 8. Model Comparison in Binary Classification

Binary Class
Acc Prec Rec F-1
DMAE + RF classifiers [21] CICIDS 2017 (web attack) 97.8% 96.1% 96.1% 96.1%
Proposed Models CICIDS 2017 (web attack) 99.67% 99.73% 99.67% 99.69%

Models Dataset

4.5. Conclusion

The study set out to improve minority-class detection of web attacks on the CICIDS-2017 Web-
Attack subset through an imbalance-aware ensemble. This research contributes to the field of computer
science by demonstrating an imbalance-aware stacking framework (Random Forest as base and
LightGBM as meta) integrated with SMOTE and a leakage-controlled evaluation protocol that
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measurably improves minority-class detection under skewed web traffic. The approach strengthens
sensitivity to rare attacks while preserving overall reliability, yielding a reproducible and
implementation-ready baseline for IDS deployment. Limitations persist on extremely scarce classes and
the present scope is confined to web-attack traffic. Future work will expand validation across broader
attack families and datasets, incorporate cost-sensitive and adaptive resampling, and evaluate robustness
under distribution shift and adversarial conditions.
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