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Abstract 

The rapid expansion of web services in the digital era has intensified exposure to increasingly complex and 

imbalanced cyber threats. This study proposes a stacking hybrid ensemble framework for web attack classification, 

integrating Random Forest as the base learner and LightGBM as the meta-learner, enhanced by the SMOTE technique 

for data balancing. The Web Attack subset of the CICIDS-2017 dataset serves as a case study, with a focus on 

detecting minority attacks such as SQL Injection, XSS, and Brute Force. The preprocessing pipeline includes data 

cleaning, removal of irrelevant features, normalization, extreme value imputation, and ANOVA F-test-based feature 

selection. Evaluation results indicate that the proposed model outperforms baseline models in both multiclass 

classification (98.7% accuracy, 0.634 macro F1-score) and binary classification (99.41% accuracy, 99.47% F1-

score), while maintaining high sensitivity to minority classes. These results contribute to informatics and 

cybersecurity scholarship through a generalizable stacking baseline and well-specified evaluation procedures for 

web-attack detection, facilitating replicability, fair comparison, and dataset-agnostic insights. 
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1. INTRODUCTION 

The rapid expansion of web services has increased exposure to diverse and evolving cyber threats. 

Attacks such as SQL Injection, Cross-Site Scripting (XSS), and phishing undermine system integrity 

and user data confidentiality [1]. Signature-based IDS remain prevalent for known patterns, but their 

dependence on predefined rules limits detection of zero-day and polymorphic variants lacking stable 

signatures [2][3]. 

Artificial-intelligence-based approaches have therefore become central to adaptive intrusion 

detection [4]. Traditional machine-learning models (e.g., decision trees, SVM) often struggle with high-

dimensional features, class imbalance, and non-stationary attack behavior. When trained on non-

representative data, they tend to overfit and become unreliable [5]. A recent systematic review of 

anomaly-based NIDS consolidates these limitations and highlights class imbalance, feature sparsity, and 

temporal drift as persistent pitfalls—strengthening the case for adaptive, data-efficient learning pipelines 

[6]. 

Ensemble learning improves accuracy and stability by leveraging complementary learners and 

reducing variance. Prior studies report that ensembles such as Random Forest and LightGBM 

outperform single models for web-attack detection [7]. In particular, gradient-boosted tree ensembles 

(e.g., LightGBM/XGBoost), when paired with imbalance-aware resampling (e.g., ADASYN/SMOTE) 

and compact feature sets, consistently improve F1/AUC on CICIDS/UNSW families while remaining 

computationally efficient for online updates [8][9][10].Other lines of work also report gains, including 

REPTree-based bagging, fuzzy semi-supervised learning, SVM-kNN with PSO, and LSTM-based 

models [11][12]. Ensemble variants such as voting and stacking also helped. Yin et al. (RNN-based 
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IDS) and Sidharth & Kavitha (boosting) reported better recall and accuracy [13]. From a systems 

perspective, coupling commodity NIDS engines (e.g., Suricata) with lightweight ML backends has 

shown practical gains in adaptive pipelines; under scarce labels, one-class SVM remains a competitive 

baseline for anomaly-oriented detection [14][15]. 

Feature fusion is another driver of performance in ensembles. Zhang et al. (2021) proposed 

MFFSEM, combining spatial, temporal, and content features to lower false positives while improving 

accuracy [16]. Ali et al. (2023) introduced CIPMAIDS2023-1 and reported strong results; however, 

performance did not sustain under distribution shift in subsequent “battle tests,” despite a high-

performing stacking design [17]. Semi-supervised and unsupervised approaches reduce reliance on 

labeled data. Examples were shown in the work by Gupta et al. (2021) and Almourish et al. (2022), with 

successful use of stacked autoencoders and one-class classification models with low false alarm rates 

and high detection accuracy [18][19]. For adaptive IDS, Zha et al. (2025) introduced A-NIDS (clustering 

+ CTGAN + shallow NN) with high F1 and low latency [20]. Tang et al. (2024) reached similar 

conclusions: their DMAE improved all metrics via Magnet Loss [21]. 

To address class imbalance, numerous studies have adopted the Synthetic Minority Oversampling 

Technique (SMOTE) due to its ability to improve accuracy and recall without the complexity of 

generative models such as GANs [22][23][24]. When used alongside stacking, SMOTE has 

demonstrated improvements in detecting minority classes, especially in IoT intrusion detection 

scenarios [25]. However, for the CICIDS-2017 Web-Attack subset, very few studies explicitly integrate 

SMOTE as a data-level balancing technique within the stacking pipeline. Most existing works either 

apply SMOTE to individual classifiers or implement stacking without incorporating dedicated balancing 

during the training of base learners.  

The objective is to develop and rigorously evaluate a stacking ensemble that integrates Random 

Forest and LightGBM for web-attack detection on the CICIDS-2017 Web Attack subset. The evaluation 

protocol covers multiclass and binary settings, addresses class imbalance with SMOTE and class 

weighting, and applies ANOVA F-test feature selection. Performance is benchmarked against single-

model baselines (Random Forest, LightGBM). Primary endpoints are macro-F1 and weighted-F1; 

secondary endpoints include precision, recall, accuracy, and per-class sensitivity with emphasis on SQL 

Injection, XSS, and Brute Force. The central hypothesis tests whether a heterogeneous stack improves 

minority-class detection. 

2. METHOD 

 

 
Figure 1. Architecture of the proposed stacking hybrid model for web attack classification. 
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Figure 2. Step-by-step flow of the proposed method 

 

 

In this research, a hybrid stacking ensemble framework is presented for classifying web attacks 

using the balancing mechanism of SMOTE, and using Random Forest as the base learner and LightGBM 

as the meta-learner. The diagram of the proposed framework is exemplified in Figure 1. Figure 2 

presents the end-to-end flow of the proposed pipeline. 

2.1. Data Collection 

CICIDS-2017 Web Attack subset [26], specifically the file Thursday-WorkingHours-Morning-

WebAttacks.pcap_ISCX.csv, provides session-level enterprise traffic containing BENIGN flows and 

web attacks (SQL Injection, Cross-Site Scripting, Brute Force). It includes 458,968 connection records 

and 85 attributes capturing duration, packet sizes, and request-rate descriptors. The initial audit found 

170,366 rows without missing values and 288,602 rows with at least one missing entry; most features 

are float or object (Table 1). Class distribution is highly imbalanced, with BENIGN traffic 

predominating (Figure 3). 

 

Table 1. Summary of CICIDS-2017 Web Attacks Dataset Structure 

Total Records Total Columns Non- Null Values Missing Values Data Types 

458,968 85 170,366 288,602 Float/Object 

 

 

 
Figure 2. Class distribution in the label column of the CICIDS-2017 Web Attack. 

 

2.2. Preprocessing 

2.2.1. Data Cleaning 

Integrity checks yielded 170,366 non-null records; one duplicate in the BENIGN class was 

removed, leaving 170,365 without altering class proportions. Missingness occurred only in Flow Bytes/s 

(20 nulls, all BENIGN; Figure 4). Given the class-skewed pattern and limited relevance to attack 

Data 

Collection 
Preprocessing Balancing Modeling Evaluation 
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evidence, Flow Bytes/s was excluded. Early removal of duplicates and class-skewed missingness 

follows established preprocessing practice and benefits IDS performance [27]. 

 

 
Figure 3. Heatmap of Missing Values per Column and Label 

 

2.2.2. Removal of Insignificant Features 

Session identifiers—Flow ID, Source/Destination IP, Timestamp, and Source/Destination Port—

were excluded to prevent leakage and non-generalizable patterns. Feature dimensionality decreased 

from 85 to 79 without loss of discriminative signal, consistent with evidence that removing IP/port fields 

improves precision and efficiency [28]. 

2.2.3. Handling of Infinite Values 

Extreme/infinite values in Flow Bytes/s and Flow Packets/s (135 each) appeared exclusively in 

BENIGN records (Figure 5), consistent with capture artifacts. To prevent class-specific bias, rows 

containing infinities were removed, yielding 170,230 records with minority classes unaffected. This 

majority-class pruning aligns with evidence that excluding dominant-class outliers preserves class 

balance and reduces training bias [29]. 

 

 
Figure 4. Heatmap of Infinite Values (inf/-inf) per Column and Label 

 

2.2.4. Handling of Negative Values 

Negative values were detected in several numeric features. Most occurred in 

Init_Win_bytes_forward (81,911 rows) and Init_Win_bytes_backward (102,355), predominantly in 

BENIGN traffic (Figure 6). Additional negatives appeared in Flow Duration, Flow IAT Min, and Flow 

Bytes/s, where values cannot be negative by definition. To preserve sample size and class balance, rows 

were retained and imputed: Init_Win_bytes* negatives were set to 0 to represent a valid no-data state, 
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while other negatives were median-imputed to maintain distributional characteristics and limit learning 

bias [30]. 

 

 
Figure 5. Heatmap of Negative Values per Column and Label 

 

2.2.5. Filtering Values in the Protocol Column 

Protocol profiling identified three codes: 0 (invalid), 6 (TCP), and 17 (UDP). Code 0 appeared 

exclusively in BENIGN records and never in Brute Force, SQL Injection, or XSS, indicating a 

reconstruction artifact. To prevent leakage, entries with Protocol = 0 were removed, retaining only TCP 

and UDP, consistent with recommendations to exclude unrepresentative levels [31]. Counts are 

summarized in Table 2. 

 

Table 2. Protocol Values by Target Label in CICIDS-2017 Web Attack Dataset 

Protocol BENIGN Brute Force SQL Injection XSS 

0.0 141 0 0 0 

6.0 86,142 1,507 21 652 

17.0 81,767 0 0 0 

2.2.6. Detection and Treatment of Outliers 

Outlier control is essential because extreme observations can skew distributions and degrade 

classifier performance. Outliers were detected using the Interquartile Range (IQR) method, a standard 

and robust approach in statistical preprocessing [32]. Values below the lower bound or above the upper 

bound were flagged, where the bounds are defined as in Equations (1) and (2). 

𝐿𝑜𝑤𝑒𝑟 𝐵𝑜𝑢𝑛𝑑 = 𝑄1 − 1.5 × 𝐼𝑄𝑅 (1) 

𝑈𝑝𝑝𝑒𝑟 𝐵𝑜𝑢𝑛𝑑 = 𝑄3 + 1.5 × 𝐼𝑄𝑅 (2) 

Preliminary evaluation revealed extreme values in several numerical features, notably Flow 

Duration, Flow Bytes/s, and Flow IAT Max, likely arising from recording errors or atypical network 

conditions. To preserve potentially informative records while limiting distortion, winsorizing was 

applied rather than deletion. This procedure caps outliers at the IQR-based bounds, thereby reducing 

skewness and retaining the overall distributional shape, an approach shown to stabilize training and 

improve accuracy in outlier-prone datasets [33]. 

2.2.7. Label Encoding 

The categorical target variable was converted to integers via label encoding to enable numerical 

computation while preserving class semantics and simplifying the end-to-end training pipeline [34]. 
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2.2.8. Dataset Division and Normalizing 

The encoded data were split into 70% training and 30% testing with stratification to maintain 

class distributions, which improves stability and accuracy for multiclass and imbalanced settings [35]. 

Model robustness was assessed using stratified 10-fold cross-validation on the training subset, a 

procedure that yields stable and reliable estimates for both balanced and imbalanced datasets [36]. 

In the normalization step, the Min-Max Scaling technique is used to translate the numeric features 

into the [0, 1] range defined by the following equation (3) 

𝑋′ =  
𝑋− 𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥− 𝑋𝑚𝑖𝑛
 (3) 

where 𝑋 is the value of the original feature, and 𝑋𝑚𝑖𝑛 and 𝑋𝑚𝑎𝑥 are the minimum and maximum 

values of the feature in the training data set respectively. The normalization parameters calculated from 

the training data set were then used to normalize the test data set to maintain the same input distribution 

for both the training and test data set [37]. 

2.2.9. Feature Selection 

Selecting meaningful and statistically significant features is critical to increasing classification 

performance and simplifying the model. In this experiment, the Analysis of Variance (ANOVA) F-test 

was used to assess the most meaningful features relative to the target classes. ANOVA compares the 

variance between and within groups of variables, as represented in Equation (4). 

𝐹 =  
𝑀𝑆𝐵

𝑀𝑆𝑊
 (4) 

Where 𝑀𝑆𝐵 is the mean square for the between classes and 𝑀𝑆𝐵 is the mean square for the within 

classes. The F-value is an indication of the ability of a feature to discriminate across classes based on 

distributional variances. Consistent with prior guidance, selecting the top 15–20 features is a 

computationally sound choice for high classification performance [38]. Figure 7 presents the top 20 

attributes by F-statistic, which were prioritized to enhance class separability in the final model. 

 

 
Figure 6. Top 20 feature rankings based on ANOVA F-statistic value 

 

2.3. Balancing 

Class imbalance was addressed using the Synthetic Minority Oversampling Technique (SMOTE), 

which generates synthetic minority samples by interpolating between a sample 𝑥𝑖 and one of its nearest 

neighbors 𝑥𝑗 [39]. This interpolation process is shown in Equation (5). 

𝑥𝑛𝑒𝑤 =  𝑥𝑖 +  𝜆 ∙ (𝑥𝑗 − 𝑥𝑖) (5) 

https://jutif.if.unsoed.ac.id/
https://doi.org/10.52436/1.jutif.2025.6.5.4950


Jurnal Teknik Informatika (JUTIF)  Vol. 6, No. 5, October 2025, Page. 3307-3322 
P-ISSN: 2723-3863  https://jutif.if.unsoed.ac.id                                       

E-ISSN: 2723-3871  DOI: https://doi.org/10.52436/1.jutif.2025.6.5.4950 

 

 

3313 

Unlike naive oversampling, this interpolation increases minority diversity and mitigates 

overfitting while preserving the underlying data structure [40]. SMOTE has been shown to improve 

accuracy and recall in multiclass network attack classification [22]. As summarized in Table 3, the class 

counts were equalized to 117,635 samples per class, strengthening representation for Brute Force, XSS, 

and SQL Injection. 

 

Table 3. Describes a summary of class distributions before and after SMOTE application 

Class Before SMOTE After SMOTE 

BENIGN 117,635 117,635 

Brute Force 1,055 117,635 

XSS 456 117,635 

SQL Injection 15 117,635 

2.4. Modeling 

2.4.1. Base Learner 

Random Forest (RF) was adopted as the base learner for its strong performance on high-

dimensional, complex data and resilience to overfitting. RF aggregates predictions from multiple 

decorrelated decision trees, each trained on bootstrap samples with feature-level randomness; the final 

class is obtained by majority vote, a mechanism originally formalized by Breiman. This aggregation 

lowers variance and yields a more stable model under distributional shift. In intrusion-detection settings, 

RF is well documented to deliver reliable accuracy under imbalanced and noisy conditions [41]. The 

ensemble prediction is introduced in Equation (6). 

𝐻(𝑥) =  
1

2
 ∑ ℎ𝑖(𝑥)𝑛

𝑖=1    (6) 

In this context, 𝐻(𝑥) indicates the final ensemble prediction, ℎ𝑖(𝑥) refers to predictions made by 

the i-th tree and n is the total number of trees in the forest. This aggregation lowers variance and yields 

a more stable model under distributional shifts. Random Forest is well documented to deliver reliable 

classification accuracy in high-dimensional settings and to remain effective under imbalanced and noisy 

conditions [42]. 

2.4.2. Meta Learner 

LightGBM was employed as the meta-learner for its efficiency on large-scale, sparse, and 

imbalanced data. It is a tree-based gradient boosting algorithm that uses histogram-based splitting and 

leaf-wise growth, enabling faster training without sacrificing accuracy [43]. The general learning 

mechanism for boosting algorithms, such as LightGBM, can be expressed as in Equation (7). 

𝐹𝑚(𝑥) = 𝐹𝑚−1(𝑥) + 𝛾𝑚ℎ𝑚(𝑥)   (7) 

In this equation, 𝐹𝑚(𝑥) is the total model output at the 𝑚-th iteration, 𝛾𝑚 is the learning rate that 

governs the effect of the newly added model, and ℎ𝑚(𝑥) is the decision tree fitted to residuals from the 

previous iteration. This iterative refinement progressively reduces error and improves generalization. 

2.5. Evaluation 

Dataset partitioned using a stratified 70/30 train–test split with random_state 42. All 

preprocessing (winsorizing, min–max scaling, ANOVA F-test feature selection) and SMOTE are fitted 

on the training split only; SMOTE uses k = 5 and fully oversamples minority classes to match the 
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majority. Model selection employs stratified 10-fold cross-validation on the training split; within each 

fold the pipeline is refit on the fold’s training portion and applied to its validation portion to prevent 

leakage. 

After cross-validation, model performance was quantified using accuracy, precision, recall, and 

F1-score computed from the confusion-matrix components True Positive (TP), True Negative (TN), 

False Positive (FP), and False Negative (FN). The metrics are defined as Equations (8)-(11). 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 (8) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (9) 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
  (10) 

𝐹1 =  2 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
 (11) 

Both macro-average and weighted-average variants were reported to provide a fair assessment 

under class imbalance. Macro-averaging assigns equal weight to each class and is informative for 

minority-class behavior, particularly for recall [44]. Weighted-averaging reflects real class proportions 

and offers a distribution-aware summary that is important for intrusion detection [45]. Using both views 

yields class-sensitive and corpus-level representativeness. Prior evidence indicates that combining 

dataset balancing with ensemble learning supports improvements in macro-level precision, recall, and 

F1 [46]. 

3. RESULT 

Table 4 reports training-set results (SMOTE-balanced folds), and Table 5 reports held-out test-

set results. Figure 8 visualizes test-set macro vs weighted metrics across models. On the training set 

(Table 4), all models perform comparably, with the Stacking Hybrid consistently ranking first across 

metrics. The near-overlap between macro and weighted averages indicates that the SMOTE-balanced 

training folds effectively mitigate class skew, preventing any single class from dominating the aggregate 

scores. On the test set (Table 5), the proposed model maintains a small but consistent edge and shows 

the most even classwise performance (macro average), while the baselines exhibit a slightly larger gap 

between macro and weighted results. 

 

Table 4. Model Evaluation Results on Training Set (Macro Avg vs Weighted Avg) 

Model Evaluation Method Accuracy Precision Recall F1-score 

Random Forest 
Macro Avg 0.790 0.882 0.790 0.748 

Weighted Avg 0.790 0.882 0.790 0.748 

LightGBM 
Macro Avg 0.792 0.885 0.792 0.750 

Weighted Avg 0.792 0.885 0.792 0.750 

Stacking Hybrid 
Macro Avg 0.793 0.887 0.793 0.751 

Weighted Avg 0.793 0.887 0.793 0.751 

 

On the held-out test set (Table 5), headline accuracy is uniformly high (~98%), yet the macro–

weighted F1 gap exposes uneven classwise performance for the single-model baselines—consistent with 

sensitivity to majority classes. In contrast, the Stacking Hybrid delivers the most balanced precision–

recall profile, narrowing the macro–weighted disparity and improving minority-class detection (≈ +0.10 
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macro-F1 over the stronger baseline) without sacrificing overall accuracy. the reduced misclassification 

concentration is shown by the multiclass confusion matrix in Figure 9. 

 

Table 5. Model Evaluation Results on Test Set (Macro Avg vs Weighted Avg) 

Model Evaluation Method Accuracy Precision Recall F1-score 

Random Forest 
Macro Avg 0.983 0.525 0.797 0.539 

Weighted Avg 0.983 0.993 0.983 0.986 

LightGBM 
Macro Avg 0.986 0.508 0.715 0.496 

Weighted Avg 0.986 0.993 0.986 0.988 

Stacking Hybrid 
Macro Avg 0.987 0.704 0.797 0.634 

Weighted Avg 0.987 0.996 0.987 0.987 

 

Beyond aggregate scores, the proposed Stacked RF–LightGBM improves sensitivity on the rare 

web-attack classes. On the test set it achieves the highest macro-F1 (0.634) and the smallest macro–

weighted gap (Table 5), indicating that gains are distributed across minority classes rather than being 

driven by the BENIGN majority. Class-wise, the model correctly identifies 102 Brute-Force, 6 SQL-

Injection, and 190 XSS instances (Figure 9); normalized by each class support in the test set, these 

counts translate into higher recalls than both baselines (RF, LightGBM). Consistent with this pattern, in 

the binary ATTACK-vs-BENIGN scenario the model attains recall = 0.9832 (only 8 FN of 654 attacks) 

at accuracy = 0.9941 (Figure 10; Table 6), underscoring that minority-class sensitivity improves without 

sacrificing overall performance. 

 

 
Figure 7. Comparison of Evaluation Metrics for Test Set Using Macro Average and Weighted 

Average Across All Models 

 

 

In the confusion-matrix results for the Stacking Hybrid model found in Figure 9, the model 

exhibited not only strong aggregate performance metrics, but also consistent predictions across all 

classes. The Stacking Hybrid model had the greatest number of correct classifications, and its 

distribution of errors was also more stable. Additionally, the Stacking Hybrid model was able to identify 

102 samples from the Brute Force class, 6 samples from the SQL Injection class, and 190 samples from 

the XSS class. Lastly, the Stacking Hybrid model made a smaller percentage of misclassifications than 

the other models between classes, which demonstrated its greater ability to generalize the underlying 

patterns between classes. 
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Figure 8. Confusion Matrix Stacking Hybrid for Test Set 

 

 

Moreover, the Stacking Hybrid model was still able to perform very well in any binary 

classification scenario. The outcomes of the Stacking Hybrid model held true in both performance 

subsequently denoted in Figure 10 (the confusion matrix). In total there were 50,415 accommodated 

instances of the BENIGN data - this model correctly assessed 50,124 of “BENIGN”, yielding only 291 

false positives statistically. When calculated on ATTACK data alone, the Stacking Hybrid model 

correctly detected both 646 of 654 TPs which yielded a false negative of just 8 in total. These data align 

with the evaluation metrics outlined in Table 6. The overall accuracy was 0.9941 so the Stacking Hybrid 

model effectively keeps an appropriate threshold of attack sensitivity whilst accurately identifying 

normal traffic. 

These results further validate that the combination of SMOTE and hybrid ensemble not only 

increases overall accuracy but affects the scalar value of sensitivity with respect to minority classes 

significantly. This is especially important for intrusion detection systems in real environments. 

 

 
Figure 9. Confusion Matrix Stacking Hybrid for Test Set Binary Scenario 

 

 

Table 6. Binary Classification Evaluation Results 

Class Precision Recall F1-score 

BENIGN (0) 0.9998 0.9969 0.9969 

ATTACK (1) 0.8027 0.9832 0.8838 

Macro Avg 0.8446 0.9910 0.9045 

Weighted Avg 0.9959 0.9941 0.9947 
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4. DISCUSSIONS 

The discussion makes explicit contributions to informatics and computer-science practice by 

formalizing an imbalance-aware stacking framework that integrates SMOTE within a leakage-

controlled evaluation protocol and advances the macro-to-weighted F1 disparity as a compact diagnostic 

of classwise equity on held-out data; reductions in this disparity relative to single-model baselines 

substantiate improved minority-class behavior under skewed web traffic (Table 5; Figure 8). The 

protocol enforces train-only fitting for preprocessing and SMOTE with stratified splits and dual 

macro/weighted reporting, establishing a reproducible standard for IDS evaluation. On the practical side, 

an implementable pipeline combining concise preprocessing, targeted SMOTE, and a heterogeneous 

Stacked RF–LightGBM topology yields high attack sensitivity at scale while preserving overall 

accuracy; in binary screening the system attains recall 0.9832 with eight false negatives out of 654 

attacks at accuracy 0.9941, and in multiclass evaluation it balances detection across Brute Force, SQL 

Injection, and XSS (Figures 9–10; Table 6). The macro-to-weighted F1 gap and per-class sensitivities 

are positioned as actionable levers for thresholding and alarm budgeting in production NIDS, translating 

empirical findings into deployable policy. 

4.1. Comparison With Literature 

Results in Table 5 and Figure 8 indicate that the SMOTE-augmented Stacking Hybrid consistently 

attains higher macro-F1 than all baselines while maintaining comparable weighted accuracy. In 

multiclass evaluation on the CICIDS-2017 web-attack subset, the Proposed Models reach 99.46% 

accuracy, 99.42% precision, 99.32% recall, and 99.32% F1 (Table 7), exceeding classical learners 

reported for the same subset, including Random Forest and AdaBoost at 98% accuracy and F1 [19]. 

Against more elaborate frameworks that consume the entire CICIDS-2017 dataset, such as Op-

ReDMAT and EFedID, the Proposed Models remain competitive (Table 7) [47][48]. In binary 

screening, performance surpasses the DMAE+RF approach of Tang et al. with 99.67% accuracy and 

99.69% F1 versus 97.8% and 96.1% respectively (Table 8) [21]. These comparisons position the 

stacking design, rather than dataset scale, as the primary driver of the observed gains. 

 

 

4.2. Advantages 

The hybrid ensemble reduces the macro-to-weighted discrepancy at test time and elevates macro-

F1, indicating more even classwise behavior and stronger minority-class sensitivity. Figure 9 shows 

balanced multiclass predictions, including 102 Brute Force, 6 SQL Injection, and 190 XSS detections, 

reflecting improved visibility of rare patterns. In the binary analysis (Figure 10), 50,124 of 50,415 

BENIGN instances are correctly classified with 291 false positives, and 646 of 654 ATTACK instances 

are correctly identified with 8 false negatives, yielding high recall for the ATTACK class and a low 

false-negative rate that is operationally salient. These observations are consistent with prior evidence 

that combining SMOTE with ensembles can raise sensitivity without compromising predictive stability 

[49], and with reports that SMOTE applied to multiclass settings improves macro-level performance 

and recognition of rare attacks [22]. The preprocessing pipeline further contributes to robustness: 

duplicate removal, invalid-record correction, protocol-attribute filtering, Min-Max normalization, 

targeted removal of non-informative attributes such as IP addresses and ports, and winsorization for 

outlier control reduce noise while preserving core distributions. Similar benefits of imputation, 

normalization, and feature reduction for CICIDS-2017 have been documented [27], while cautions 

regarding improper preprocessing and metric inflation reinforce the adopted controls [50]. 
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4.3. Limitations 

Despite strong aggregate metrics, confusion-matrix inspection in Figures 9–10 reveals residual 

errors for minority classes, notably Brute Force and XSS, indicating remaining challenges under extreme 

skew. Generalizability is bounded by a focus on the web-attack subset; attack families such as botnet, 

DNS tunneling, and DDoS are not covered. SMOTE may synthesize samples that diverge from fast-

changing traffic distributions, and adversarial robustness as well as deployment-time efficiency have 

not been stress-tested, echoing recommendations for cost-sensitive learning and multidimensional IDS 

evaluation [45][51]. 

4.4. Implications For Future Work 

Results indicate that algorithmic design is the dominant lever for improving minority-class recall 

under skewed web-attack traffic. Future work should concentrate on systematic trials of alternative 

algorithms and loss formulations, including cost-sensitive stacking and boosting with class-dependent 

costs, focal loss and label-distribution-aware margins, adaptive resampling variants such as Borderline-

SMOTE, SMOTE-ENN, and ADASYN, generative synthesis using GAN or CTGAN, and stronger 

tabular learners beyond Random Forest and LightGBM, such as CatBoost, XGBoost, TabNet, and deep 

ensembles. Comparative studies should hold preprocessing and splits constant, report macro and per-

class F1 alongside weighted aggregates, and quantify the macro-to-weighted gap to attribute gains 

strictly to algorithm choice. 

 

Table 7. Model Comparison in Multiclass Classification 

Models Dataset 
 Multi Class  

Acc Prec Rec F1 

Op-ReDMAT [47] CICIDS-2017 (all) 99.12% 98.6% 98.2% 98.8% 

EFedID [48] CICIDS-2017 (all) 95.51% 96.5% 96% 96.2% 

Semisupervised (AC + K- 

Means + Voting)[52] 

CICIDS-2017 (DDoS) 96.66% 97% - - 

KNN [19] CICIDS-2017 (web attack) 96% 96% 96% 96% 

Naïve Bayes [19] CICIDS-2017 (web attack) 96% 96% 96% 96% 

Decision Tree [19] CICIDS-2017 (web attack) 96% 96% 96% 96% 

Random Forest [19] CICIDS-2017 (web attack) 98% 98% 98% 98% 

AdaBoost[19] CICIDS-2017 (web attack) 98% 98% 98% 98% 

Proposed Models CICIDS-2017 (web attack) 99.46% 99.42% 99.32% 99.32% 

 

Table 8. Model Comparison in Binary Classification 

Models Dataset 
 Binary Class  

Acc Prec Rec F-1 

DMAE + RF classifiers [21] CICIDS 2017 (web attack) 97.8% 96.1% 96.1% 96.1% 

Proposed Models CICIDS 2017 (web attack) 99.67% 99.73% 99.67% 99.69% 

4.5. Conclusion 

The study set out to improve minority-class detection of web attacks on the CICIDS-2017 Web-

Attack subset through an imbalance-aware ensemble. This research contributes to the field of computer 

science by demonstrating an imbalance-aware stacking framework (Random Forest as base and 

LightGBM as meta) integrated with SMOTE and a leakage-controlled evaluation protocol that 
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measurably improves minority-class detection under skewed web traffic. The approach strengthens 

sensitivity to rare attacks while preserving overall reliability, yielding a reproducible and 

implementation-ready baseline for IDS deployment. Limitations persist on extremely scarce classes and 

the present scope is confined to web-attack traffic. Future work will expand validation across broader 

attack families and datasets, incorporate cost-sensitive and adaptive resampling, and evaluate robustness 

under distribution shift and adversarial conditions. 
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