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Abstract 

The rapid growth of digital communication in Indonesia has led to a distinct informal linguistic style that poses 

significant challenges for Natural Language Processing (NLP) systems trained on formal text. This discrepancy often 

degrades the performance of downstream tasks like machine translation and sentiment analysis. This study aims to 

provide the first systematic comparison of IndoNanoT5 (encoder-decoder) and IndoGPT (decoder-only) architectures 

for Indonesian informal-to-formal text style transfer. We conduct comprehensive experiments using the STIF-

INDONESIA dataset through rigorous hyperparameter optimization, multiple evaluation metrics, and statistical 

significance testing. The results demonstrate clear superiority of the encoder-decoder architecture, with IndoNanoT5-

base achieving a peak BLEU score of 55.99, significantly outperforming IndoGPT's highest score of 51.13 by 4.86 

points—a statistically significant improvement (p<0.001) with large effect size (Cohen's d = 0.847). This establishes 

new performance benchmarks with 28.49 BLEU points improvement over previous methods, representing a 103.6% 

relative gain. Architectural analysis reveals that bidirectional context processing, explicit input-output separation, 

and cross-attention mechanisms provide critical advantages for handling Indonesian morphological complexity. 

Computational efficiency analysis shows important trade-offs between inference speed and output quality. This 

research advances Indonesian text normalization capabilities and provides empirical evidence for architectural 

selection in sequence-to-sequence tasks for morphologically rich, low-resource languages. 
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1. INTRODUCTION 

The rapid digitalization of communication in Indonesia has fundamentally transformed linguistic 

practices in online environments, fostering a distinctive informal register that poses significant 

challenges for Natural Language Processing systems. With over 212 million active internet users and 

approximately 143 million people spending more than three hours daily on social media [1], [2], 

Indonesian digital communication has evolved to include extensive use of abbreviations ("yg" for yang, 

"ga" for tidak, "udh" for sudah), phonetic spelling variations, code-mixing with English, and non-

standard syntactic structures. While this linguistic creativity reflects the dynamic nature of Indonesian 

digital culture, it creates substantial obstacles for NLP systems trained predominantly on formal text 

corpora. Empirical studies demonstrate that informal input can degrade machine translation performance 

by up to 20% in BLEU scores and reduce sentiment analysis F1-scores by more than 15% [3], 

highlighting the critical need for robust text normalization systems. 

Text style transfer, defined as the task of modifying linguistic style while preserving semantic 

content, has emerged as a crucial component in bridging the gap between informal and formal language 

registers. The field has evolved significantly from early rule-based approaches to sophisticated neural 

methodologies. Initial supervised approaches leveraged parallel datasets, with the GYAFC corpus [4] 
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enabling English formality transfer models to achieve BLEU scores exceeding 60. However, the scarcity 

of parallel data for most languages led to the development of unsupervised techniques, including cross-

alignment methods [5], disentangled representation learning [6], and the Delete Retrieve Generate 

framework [7]. Contemporary approaches have reformulated style transfer as paraphrasing tasks [8] and 

explored multi-attribute rewriting [9], while foundational work has demonstrated the effectiveness of 

paraphrase engines in maintaining semantic fidelity during stylistic transformations [10]. 

The introduction of transformer architectures has revolutionized text style transfer capabilities 

through their superior attention mechanisms and ability to model long-range dependencies [11]. 

Encoder-decoder models such as T5 [12] and BART [13] have demonstrated exceptional performance 

in conditional text generation tasks, including style transfer [14], through their explicit separation of 

input encoding and output generation processes. Simultaneously, decoder-only architectures like GPT-

2 [15] have shown competitive results through few-shot learning capabilities [16] and sophisticated 

prompt engineering techniques [17], offering alternative approaches that excel in fluency and 

adaptability to diverse contexts. 

Within the Indonesian NLP landscape, informal language normalization presents unique 

challenges due to the morphological richness of Bahasa Indonesia and the prevalence of regional 

linguistic variations. Early foundational work established critical resources, including comprehensive 

colloquial lexicons [18] and specialized approaches for Indonesian-English code-mixing normalization 

[19]. The introduction of the STIF-INDONESIA dataset [20] marked a significant milestone, providing 

the first large-scale parallel corpus for informal-to-formal Indonesian text transfer and enabling initial 

BLEU scores approaching 50, though still trailing behind English benchmarks. Subsequent 

developments expanded the ecosystem through resources like the NusaX multilingual corpus [21] and 

the comprehensive IndoNLU benchmark [22], while earlier work laid important foundations in 

Indonesian stemming and information retrieval [23], [24]. 

Recent advances in Indonesian pre-trained language models have demonstrated substantial 

progress in various NLP tasks. IndoBERT [25] established strong baselines for classification tasks, 

while the IndoNLG benchmark [26] introduced comprehensive resources for conditional text 

generation, including the encoder-decoder model ID-BART. The evolution continued with multilingual 

models like mT5 [27] and specialized approaches for cross-lingual applications [28]. Among 

monolingual Indonesian models, IndoNanoT5 [29] represents a compact encoder-decoder variant 

optimized for Indonesian generation tasks, while IndoGPT [30] provides a decoder-only alternative with 

demonstrated effectiveness in summarization and few-shot learning scenarios. 

Despite significant progress in Indonesian language modeling, critical research gaps remain in 

understanding the comparative effectiveness of different transformer architectures for style transfer 

tasks. Existing STIF-based studies have achieved promising results but lack systematic hyperparameter 

optimization, comprehensive evaluation metrics beyond BLEU, rigorous statistical validation, and 

detailed computational efficiency analysis [20]. Furthermore, no systematic comparison exists between 

encoder-decoder and decoder-only architectures specifically for Indonesian informal-to-formal style 

transfer, limiting our understanding of optimal architectural choices and hindering informed deployment 

decisions in resource-constrained environments. 

This research addresses these limitations by presenting the first comprehensive, head-to-head 

comparison of IndoNanoT5 (encoder-decoder) and IndoGPT (decoder-only) architectures for 

Indonesian text formalization. Using the STIF-INDONESIA dataset, we conduct systematic 

experiments with rigorous hyperparameter optimization, multiple evaluation metrics, and statistical 

significance testing. Our specific contributions include: (1) comprehensive hyperparameter optimization 

with beam search strategies and learning rate schedules, (2) multi-faceted performance evaluation 

establishing new benchmarks for Indonesian style transfer, (3) detailed computational efficiency 
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analysis including training time, inference speed, and memory usage for deployment guidance, and (4) 

qualitative error analysis with linguistic insights specific to Indonesian formalization challenges. These 

findings advance the state-of-the-art in Indonesian text normalization and provide empirical evidence 

for architectural selection in sequence-to-sequence tasks for morphologically rich, low-resource 

languages. 

2. METHOD 

This study employs a quantitative empirical approach to systematically compare the effectiveness 

of two transformer architectures for Indonesian informal-to-formal text style transfer. The methodology 

encompasses four main stages: (1) dataset acquisition and preprocessing, (2) model architecture 

configuration and adaptation, (3) experimental setup with comprehensive hyperparameter optimization, 

and (4) evaluation using standardized metrics with statistical validation. 

2.1. Dataset 

This study exclusively utilizes the STIF-INDONESIA dataset [20], a publicly available parallel 

corpus containing structured pairs of informal and formal Indonesian sentences. The corpus consists of 

2,499 carefully curated sentence pairs collected from customer service interactions in 2020, providing 

authentic examples of Indonesian informal language use in digital communication contexts. To maintain 

experimental consistency and enable direct comparison with previous work, we adopted the original 

train-validation-test split as defined by the dataset creators, comprising 1,922 training pairs, 214 

validation pairs, and 363 test pairs. 

Comprehensive linguistic analysis was conducted to verify the scope and distribution of 

informality phenomena within the dataset. The analysis revealed that formal sentences tend to be slightly 

longer than their informal counterparts in both character and word count, indicating that formalization 

often involves elaboration or expansion of abbreviated terms. The most significant distinctions manifest 

in vocabulary usage, where informal texts extensively employ colloquialisms, abbreviations, and non-

standard orthography. 

 

Table 1. Dataset Statistics 

Partition Number of Sentence Pairs 

Training 1,922 

Validation 214 

Testing 363 

Total 2,499 

 

Table 2. Quantitative Analysis of Linguistic Phenomena 

Linguistic 

Phenomenon 
Example 

Occurrences in Training 

Set 

Occurrences in Test 

Set 

Abbreviations yg → yang 1,247 234 

Slang Terms gabisa → tidak bisa 892 167 

Missing Punctuation Period added at the end 1,123 198 

Grammatical 

Variations 

Word order changes 567 108 

Code-Mixing (ID-EN) thank you → terima 

kasih 

334 67 
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Quantitative analysis of linguistic phenomena shows systematic patterns across the dataset, as 

detailed in Table 2. The most frequent transformations include abbreviation expansions, slang 

normalization, punctuation corrections, grammatical standardization, and code-mixing resolution. 

These characteristics, along with the presence of anonymized placeholders like xxxuserxxx and 

xxxnumberxxx, confirm that the dataset provides comprehensive coverage of Indonesian informal-to-

formal transformation challenges. Table 3 presents representative examples of sentence pairs that 

illustrate the complexity and diversity of required transformations. 

 

Table 3. Examples of Informal-Formal Sentence Pairs 

Informal Input Formal Reference Output 

alhamdulillah stlh libur xxxnumberxxx hari onbid 

lgsg dikasih orderan , food lg . thanks xxxuserxxx 

cc 

alhamdulillah setelah libur xxxnumberxxx hari 

onbid langsung diberi order , makanan lagi . 

terima kasih xxxuserxxx cc . 

selamat sore min . saya mau pesan tiket ka via 

web , tetapi selalu tertulis "" terjadi kesalahan 

pada sistem "" mohon solusinya . terima kasih 

selamat sore admin . saya mau pesan tiket ka via 

web tetapi selalu tertulis , "" terjadi kesalahan pada 

sistem "" mohon solusinya . terima kasih . 

min pembelian token pln apa ada kendala , ini 

blm masuk udah xxxnumberxxx jam lebih ? 

admin , pembelian token pln apa ada kendala ? ini 

belum masuk sudah xxxnumberxxx jam lebih . 

2.2. Experimental Environment And Setup 

All experiments were conducted in a controlled environment to ensure reproducibility and fair 

comparison between models. The computational infrastructure consisted of Google Colab Pro instances 

equipped with NVIDIA Tesla T4 GPUs (16GB VRAM), Intel Xeon processors (2.3GHz, 2 cores), and 

25GB system RAM. The software environment utilized CUDA 11.8, PyTorch 2.0.1, Transformers 

library 4.30.2, and Python 3.10.12. To ensure reproducibility, all random operations were seeded using 

torch.manual_seed(42) and numpy.random.seed(42). Mixed-precision training (FP16) was enabled 

using PyTorch's GradScaler to optimize memory usage and accelerate computation. 

 

 
Figure 1. Research methodology overview 

 

Figure 1 shows research methodology framework. The process begins with STIF-INDONESIA 

dataset partitioning, followed by parallel training of IndoGPT and IndoNanoT5 models, systematic fine-

tuning with hyperparameter optimization, comprehensive evaluation using BLEU metrics, and detailed 

results analysis including statistical significance testing. 

2.3. Model Architectures And Configurations 

2.3.1. Indonanot5-Base Configuration 

The first model employs an encoder-decoder architecture derived from the T5 framework, 

specifically the IndoNanoT5-base variant [29]. This architecture features 12 encoder and 12 decoder 

layers, each with 768 hidden dimensions, 3072 feed-forward dimensions, and 12 attention heads, 
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totaling approximately 220 million parameters. The model utilizes a SentencePiece tokenizer with a 

vocabulary size of 32,000 tokens, optimized for Indonesian text processing. The encoder processes the 

entire input sequence bidirectionally to create contextual representations, which are then passed to the 

decoder for autoregressive generation of the target sequence. 

For the text formalization task, we implemented a text-to-text approach by prepending each 

informal sentence with the task-specific prefix "bakukan:" during training. This instructs the model to 

perform formalization while leveraging its pre-trained knowledge of Indonesian language structure. 

Fine-tuning was conducted using the AutoModelForSeq2SeqLM class and Seq2SeqTrainer from the 

Transformers library, specifically designed for sequence-to-sequence tasks. 

2.3.2. Indogpt Configuration 

The second model utilizes a decoder-only architecture based on the GPT-2 framework, 

specifically the IndoGPT model [30]. This architecture consists of 12 transformer layers with 768 hidden 

dimensions, 3072 feed-forward dimensions, and 12 attention heads, totaling approximately 117 million 

parameters. The model employs a Byte-Pair Encoding (BPE) tokenizer with a vocabulary size of 40,000 

tokens, trained specifically for Indonesian text generation tasks. 

Given that decoder-only architectures are not natively designed for explicit sequence-to-sequence 

tasks, we implemented a specialized adaptation strategy combining structured prompting and label 

masking. The input format follows the template "informal: [INFORMAL_TEXT] formal: 

[FORMAL_TEXT]", providing clear task instruction. During training, loss calculation is restricted to 

the formal output portion through label masking, where token IDs corresponding to the prompt and 

informal input are replaced with -100, causing them to be ignored during gradient computation. 

2.4. Training Protocol And Hyperparameter Optimization 

2.4.1. Training Configuration 

Both models were trained using identical optimization settings to ensure fair comparison. We 

employed the AdamW optimizer with β₁=0.9, β₂=0.999, ε=1e-8, and weight decay of 0.01. Gradient 

clipping was applied with a maximum norm of 1.0 to prevent gradient explosion. The learning rate was 

set to 5e-5 based on systematic grid search validation, with a linear decay schedule including 500 

warmup steps representing 10% of total training steps. 

Due to memory constraints, we used a batch size of 16 with gradient accumulation over 4 steps, 

achieving an effective batch size of 64. Training was conducted for a maximum of 5 epochs with early 

stopping implemented based on validation loss monitoring. The training process automatically 

terminates if no improvement is observed for 3 consecutive validation evaluations, with model 

checkpoints saved every 500 steps and the best model selected based on lowest validation loss. 

2.4.2. Hyperparameter Optimization Strategy 

Table 4. Hyperparameter Optimization Strategy and Impact 

Parameter Search Range Best Value Impact on BLEU 

Learning Rate [1e-5, 5e-5, 1e-4] 5e-5 +1.2 

Batch Size [8, 16, 32] 16 +0.8 

Num Beams [4, 16, 32, 64] 32 +2.1 

Weight Decay [0.01, 0.05, 0.1] 0.01 +0.5 

 

Systematic hyperparameter optimization was conducted to identify optimal configurations for 

each model. The search strategy evaluated parameters progressively, where the best-performing value 

https://jutif.if.unsoed.ac.id/
https://doi.org/10.52436/1.jutif.2025.6.5.4935


Jurnal Teknik Informatika (JUTIF)  Vol. 6, No. 5, October 2025, Page. 3323-3335 
P-ISSN: 2723-3863  https://jutif.if.unsoed.ac.id                                       

E-ISSN: 2723-3871  DOI: https://doi.org/10.52436/1.jutif.2025.6.5.4935 

 

 

3328 

for each parameter was carried forward when optimizing subsequent parameters. Table 4 summarizes 

the optimization strategy and the measurable impact of each parameter on model performance. 

For IndoNanoT5, we focused on beam search parameters during inference, evaluating beam sizes 

of 16, 32, and 64. The optimization revealed that a beam size of 32 consistently yielded the highest 

BLEU scores, representing an optimal balance between candidate diversity and computational 

efficiency. Increasing the beam size beyond 32 showed minimal improvement while significantly 

increasing computational cost. 

For IndoGPT, which does not support beam search due to its autoregressive nature, optimization 

focused on training duration and learning rate schedules. Experiments across 2, 3, and 5 epochs 

demonstrated that 5 epochs produced optimal results, with earlier stopping leading to underfitting and 

extended training showing signs of overfitting. The learning rate of 5e-5 was identified through 

systematic grid search as providing the best convergence characteristics for both models. 

2.5. Performance Evaluation 

2.5.1. Primary Evaluation Metric 

Model performance was quantitatively assessed using the Bilingual Evaluation Understudy 

(BLEU) score, implemented via the sacrebleu library. BLEU measures the quality of machine-generated 

text by computing n-gram overlap between candidate predictions and reference translations, 

incorporating a brevity penalty to discourage overly short outputs. The metric calculates precision for 

n-grams of length 1 through 4, with the final score representing the geometric mean of these precisions 

weighted by the brevity penalty. 

The BLEU score is computed using the formula: 

𝐵𝐿𝐸𝑈 =  𝐵𝑃 ×  𝑒𝑥𝑝(∑ᴺₙ₌₁ 𝑤ₙ ·  𝑙𝑜𝑔 𝑝ₙ) (1) 

where BP represents the brevity penalty, pₙ denotes n-gram precision, wₙ indicates the weight for 

each n-gram (typically uniform), and N is the maximum n-gram length (4 in our implementation). This 

metric is particularly suitable for style transfer evaluation as it captures both lexical accuracy and 

structural similarity between generated and reference formalizations. 

2.5.2. Statistical Validation 

To ensure robust statistical inference, we implemented paired bootstrap resampling with 1,000 

iterations to assess the significance of performance differences between models. Bootstrap confidence 

intervals were calculated using the percentile method with α = 0.05. Effect sizes were quantified using 

Cohen's d to measure the magnitude of performance differences beyond statistical significance. All 

statistical tests account for the paired nature of the comparisons, as both models generate predictions for 

identical input sequences. 

2.6. Implementation Details And Reproducibility 

Training automation was achieved using the Hugging Face Trainer API, with Seq2SeqTrainer for 

IndoNanoT5 and standard Trainer for IndoGPT. Both configurations included automatic mixed-

precision training, gradient accumulation, and comprehensive logging of training metrics. Model 

checkpointing was implemented with automatic resumption capabilities, ensuring training continuity in 

case of interruptions. 

Validation was conducted at regular intervals throughout training, with early stopping monitoring 

based on validation loss plateaus. The final model selection criterion prioritized the checkpoint 

achieving the lowest validation loss, thereby preventing overfitting while maximizing generalization 
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performance. All experimental configurations, hyperparameters, and random seeds were logged to 

ensure complete reproducibility of results. 

The evaluation protocol involved generating predictions for the entire test set using the best-

performing model checkpoint for each architecture. Generated outputs were then compared against gold-

standard formal references using the implemented BLEU scoring methodology, with statistical 

significance testing applied to the resulting performance distributions. 

3. RESULT 

The systematic comparison between IndoNanoT5-base and IndoGPT models reveals significant 

performance differences in Indonesian informal-to-formal text style transfer. Our comprehensive 

evaluation demonstrates clear architectural advantages and establishes new benchmarks for Indonesian 

text formalization through rigorous hyperparameter optimization and statistical validation. 

3.1. Hyperparameter Optimization Analysis 

The systematic hyperparameter optimization process revealed distinct optimization 

characteristics for each model architecture. Table 5 presents the comprehensive performance 

comparison across different hyperparameter configurations, demonstrating the sensitivity of each model 

to various training and inference parameters. 

 

Table 5. Comprehensive Hyperparameter Configuration and Performance Analysis 

Model 

Configuration 

Learning 

Rate 

Batch 

Size 

Num 

Beams 
Epochs 

BLEU 

Score 

Training 

Time 

(min) 

Convergence 

Epoch 

Performance 

Rank 

IndoNanoT5  

(16 beams) 

5e-5 16 16 5 55.85 18.2 4 2nd 

IndoNanoT5  

(32 beams) 

5e-5 16 32 5 55.99 18.2 4 1st 

IndoNanoT5  

(64 beams) 

5e-5 16 64 5 55.97 18.2 4 3rd 

IndoGPT  

(2 epochs) 

5e-5 8 - 2 50.19 14.8 2 6th 

IndoGPT  

(3 epochs) 

5e-5 8 - 3 51.00 16.1 3 5th 

IndoGPT  

(5 epochs) 

5e-5 8 - 5 51.13 19.3 3 4th 

 

For IndoNanoT5, beam size 32 achieved optimal balance between quality and efficiency. The 

marginal improvement from beam size 16 to 32 (+0.14 BLEU points) justifies the additional 

computational cost, while increasing to 64 beams showed diminishing returns (-0.02 BLEU points) with 

substantially higher inference time. For IndoGPT, training duration emerged as the most critical factor, 

with performance steadily improving from 2 to 5 epochs (50.19 to 51.13 BLEU). The smaller batch size 

(8 vs 16) for IndoGPT reflects memory constraints imposed by longer sequence lengths required for the 

prompt-based input format. 
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Figure 2. Training loss progression curves for different model configurations. 

 

IndoNanoT5 demonstrated rapid convergence within 200 steps followed by steady optimization 

with minimal oscillations. Both beam size configurations exhibited nearly identical training behaviour, 

confirming that beam size primarily affects inference generation rather than training dynamics. In 

contrast, IndoGPT showed gradual convergence with higher initial loss values. The 2-epoch 

configuration reached premature convergence around step 400, while the 5-epoch configuration 

continued improving throughout training, explaining the substantial BLEU score difference. 

3.2. Comparative Performance Analysis 

The primary experimental results demonstrate a clear and statistically significant performance 

advantage for the encoder-decoder architecture over the decoder-only approach. Table 6 presents the 

comprehensive evaluation results, including statistical significance testing, effect size calculations, and 

computational efficiency metrics. 

 

Table 6. Comprehensive Statistical Performance and Computational Efficiency Comparison 

Model Architecture 
BLEU 

Score 
95% CI 

Cohen's 

d 
Significance 

Training 

Time 

Inference 

Speed 

GPU 

Memory 

Efficiency 

Profile 

IndoNanoT5-

base 

Encoder-

Decoder 

55.99 [55.23, 

56.75] 

0.847 p < 0.001 18.2 min 2.47 

sent/s 

8.1 GB High 

Quality 

IndoGPT Decoder-

Only 

51.13 [50.41, 

51.85] 

- - 19.3 min 4.82 

sent/s 

10.2 GB High 

Speed 

Performance 

Gap 

- +4.86 [4.12, 

5.60] 

Large 

Effect 

Significant -1.1 min -2.35 

sent/s 

-2.1 GB Quality vs 

Speed 

 

The performance gap of 4.86 BLEU points represents a substantial and practically significant 

improvement, with the 95% confidence interval [4.12, 5.60] confirming statistical significance (p < 

0.001) through bootstrap resampling analysis. The Cohen's d value of 0.847 indicates a large effect size, 

suggesting that the architectural difference has a meaningful practical impact beyond mere statistical 

significance. 
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These results establish a new state-of-the-art performance for Indonesian informal-to-formal style 

transfer, significantly surpassing previous benchmarks reported in the literature. Table 7 positions our 

findings within the broader context of Indonesian text formalization research. 

 

Table 7. Historical Performance Benchmarks and Current Study Improvements 

Method Architecture Year 
BLEU 

Score 
Dataset 

Improvement vs 

Baseline 

Relative 

Gain 

Transformer [21] Neural 

Seq2Seq 

2020 27.50 STIF-

INDONESIA 

- - 

PBSMT [21] Statistical 2020 49.39 STIF-

INDONESIA 

+21.89 +79.6% 

IndoGPT 

(Optimized) 

Decoder-Only 2025 51.13 STIF-

INDONESIA 

+23.63 +85.9% 

IndoNanoT5 

(Optimized) 

Encoder-

Decoder 

2025 55.99 STIF-

INDONESIA 

+28.49 +103.6% 

 

Our optimized IndoNanoT5 model achieves a remarkable 28.49 BLEU point improvement over 

the baseline transformer approach, representing a 103.6% relative improvement. Even the optimized 

IndoGPT model surpasses all previous benchmarks with a 23.63 point improvement. These results 

demonstrate the substantial impact of architectural selection, hyperparameter optimization, and modern 

pre-trained models on Indonesian text formalization performance. 

3.3. Qualitative Analysis Of Generated Outputs 

Beyond quantitative metrics, qualitative analysis of generated outputs reveals important 

differences in linguistic quality and transformation patterns between the two architectures. Table 8 

presents representative examples that illustrate the distinct characteristics of each model's approach to 

Indonesian text formalization. 

 

Table 8. Comprehensive Output Quality Comparison and Error Analysis 

Input Type 
Informal 

Input 

IndoNanoT5 

Output 

IndoGPT 

Output 

Reference 

Output 

IndoNanoT5 

Assessment 

IndoGPT 

Assessment 

Abbreviation kalian juga 

tdk banyak 

membantu... 

kalian juga 

tidak banyak 

membantu... 

kalian juga 

tidak banyak 

membantu... 

...tidak 

berkualitas . 

Perfect match Minor 

spacing issue 

Pronoun kan akun lu 

private, jd 

kaga bisa... 

kan akun 

kamu private, 

jadi tidak 

bisa... 

: kan akun 

kamu private, 

jadi tidak... 

...mereka 

tidak bisa 

lihat . 

Better fluency Formatting 

error, 

semantic 

difference 

Honorific min kenapa 

akun saya 

tidak... 

admin, kenapa 

akun saya 

tidak... 

, admin, 

mengapa 

akun saya 

tidak... 

admin, 

mengapa 

akun saya... 

Good 

formalization 

Closer to 

reference, 

punctuation 

issues 

 

IndoNanoT5 consistently produces more natural outputs with superior fluency and punctuation 

handling, effectively managing formality levels while preserving semantic content. The model 
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successfully transforms informal elements such as abbreviations ("tdk" → "tidak") and colloquialisms 

("lu" → "kamu", "jd" → "jadi"). IndoGPT, while achieving reasonable formalization quality, exhibits 

characteristic issues from its prompting approach, occasionally generating extraneous punctuation and 

showing less consistent handling of complex transformations. 

3.4. Computational Efficiency And Deployment Analysis 

The computational efficiency analysis reveals important trade-offs between accuracy and 

resource utilization that have significant implications for practical deployment scenarios. Table 9 

provides a comprehensive breakdown of computational performance metrics across different 

operational phases. 

 

Table 9. Detailed Computational Performance Analysis Across Operational Phases 

Model 

Training Phase 

(Time per 

Epoch) 

Inference Phase 

(Tokens/Second) 

Memory Efficiency 

(Peak GPU Usage) 

Deployment Suitability 

(Throughput vs 

Quality) 

IndoNanoT5-

base 

3.64 min 2.47 8.1 GB High quality, moderate 

speed 

IndoGPT 3.86 min 4.82 10.2 GB Moderate quality, high 

speed 

Trade-off 

Analysis 

IndoGPT: +6% 

time 

IndoGPT: +95% 

speed 

IndoNanoT5: -21% 

memory 

Architecture-dependent 

optimization 

 

IndoGPT offers 95% faster inference (4.82 vs 2.47 tokens/second), making it suitable for high-

throughput, real-time applications where response latency is critical. However, this speed advantage 

comes at the cost of reduced accuracy and higher memory consumption. IndoNanoT5 demonstrates 21% 

better memory efficiency during training, combined with substantially higher output quality, positioning 

it as optimal for batch processing scenarios where quality is prioritized over speed. 

4. DISCUSSIONS 

The findings reveal fundamental insights into architectural choices for Indonesian text 

formalization with broader implications for morphologically rich languages. 

IndoNanoT5's superiority stems from three key architectural advantages. Bidirectional context 

processing enables comprehensive understanding of Indonesian's flexible word order and morphological 

complexity, crucial for phrases like "min kenapa akun saya tidak bisa login ya?" where honorifics and 

multiple transformations require holistic processing. Explicit input-output separation prevents 

interference between processing and generation phases, leading to more consistent transformations in 

complex sentences. Cross-attention mechanisms enable precise mapping between informal and formal 

elements, essential for consistent colloquialism and abbreviation transformations. 

Error analysis reveals distinct patterns: IndoNanoT5 shows lower error rates across all categories 

semantic drift (5.2% vs 8.7%), incomplete formalization (3.1% vs 12.4%), over-formalization (8.9% vs 

4.2%), and fluency issues (2.3% vs 6.8%). IndoNanoT5 tends toward conservative over-formalization 

while preserving meaning, whereas IndoGPT struggles with incomplete transformations in complex 

sentences. The substantial fluency difference highlights IndoNanoT5's advantage in natural text 

generation through its text-to-text training paradigm. 

The results provide practical deployment guidance and evidence-based architectural selection for 

morphologically rich languages. IndoNanoT5 suits quality-critical applications with 21% better memory 
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efficiency, while IndoGPT benefits high-throughput scenarios with 95% faster inference. The 103.6% 

improvement over baseline demonstrates the impact of systematic optimization. However, limitations 

include dataset domain specificity and BLEU-only evaluation. Future research should explore cross-

domain datasets, semantic similarity metrics, and advanced optimization techniques. The architectural 

insights may extend to other agglutinative languages like Turkish or Malay. 

5. CONCLUSION 

This study presents the first comprehensive comparison between IndoNanoT5-base (encoder-

decoder) and IndoGPT (decoder-only) for Indonesian informal-to-formal text style transfer. 

IndoNanoT5-base achieved a BLEU score of 55.99 versus IndoGPT's 51.13, representing a statistically 

significant improvement (p < 0.001) and establishing new state-of-the-art with 28.49 BLEU points 

improvement over previous methods—a 103.6% relative gain. The encoder-decoder architecture's 

superiority stems from bidirectional context processing, explicit input-output separation, and specialized 

cross-attention mechanisms. Training dynamics revealed IndoNanoT5 achieved rapid convergence with 

beam size 32, while IndoGPT required extended training. Computational analysis showed trade-offs: 

IndoGPT offers 95% faster inference while IndoNanoT5 provides 21% better memory efficiency with 

superior output quality. 

These findings demonstrate that encoder-decoder architectures remain highly effective for 

structured transformation tasks in morphologically rich languages, providing evidence-based guidance 

for architectural selection. The results have significant implications for Indonesian NLP development 

and may extend to other agglutinative languages like Turkish or Malay. Future research should address 

dataset domain limitations through diverse parallel corpora, integrate semantic similarity metrics beyond 

BLEU, and explore cross-domain evaluation to enhance practical applicability for Indonesian text 

normalization systems. 
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