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Abstract 

Lung cancer remains one of the most prevalent and burdensome cancers worldwide, with delayed diagnosis being a 

persistent challenge—particularly in Indonesia, where no national screening program currently exists. In this 

collaborative study, we aim to develop an interpretable machine learning model for classifying lung cancer risk levels 

using the Explainable Artificial Intelligence (XAI) approach. The CRISP-DM framework was applied, and the dataset 

underwent cleaning, feature selection, labeling, and transformation, resulting in 152 valid entries. Tree ensemble 

algorithms—XGBoost, Random Forest, and LightGBM—were used, with Random Forest achieving the best 

performance at 97.38% accuracy. SHAP and LIME methods were integrated to provide transparent visual 

interpretations. A web-based system was developed using Streamlit, incorporating these visualizations and automated 

narrative summaries generated by a language model to assist non-technical users. A simulated case based on a 

published pediatric lung cancer report was used to demonstrate its interpretability and illustrate its potential 

applicability in clinical workflows. The proposed system offers an interpretable and scalable solution for early lung 

cancer risk classification, which may enhance decision support in primary care and promote trust in AI-assisted 

diagnostics. 
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1. INTRODUCTION 

The increasing number of lung cancer patients has become one of the threats to public health. Lung 

cancer is a situation where abnormal cells grow uncontrollably in the lungs, forming tumors that cause 

breathing problems because they do not grow into healthy lung tissue [1]. Lung cancer is the most 

commonly diagnosed type of cancer in men worldwide, ranking first among all cancer cases in the male 

population [2]. Lung cancer patients are found in 37 countries, including Russia, China, Eastern Europe, 

the Middle East, and Southeast Asia [3]. Indonesia is part of the Southeast Asian region. According to 

data from the Global Cancer Observatory (GLOBOCAN) in 2020, the incidence of lung cancer in men in 

Indonesia was estimated at 19.4 per 100,000 people [4]. By 2022, the number of cases had increased to 

21.3 per 100,000 people [5]. 

The increased number of these cases shows that risk factors are still common in society. One of the 

most significant risk factors is smoking [6]. Smokers have a tenfold higher risk due to inhaling tobacco 

smoke, which consists of 4,000 harmful chemical compounds [7]. Smoking is an integral part of 

Indonesian social and cultural life, as evidenced by the high number of active smokers, estimated at around 

69 million people [4]. Many other factors can increase an individual's risk of lung cancer, including air 

pollution, passive smoking, chronic lung disease, genetic risk, gender, and age [3], [6], [8]-[11]. The 

relationships between these factors are complicated, which makes it difficult to identify at-risk groups in 

a correct and organized way. 
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The challenge of identifying high-risk groups is made more difficult by the complexity of these 

various risk factors in a healthcare system that is not yet fully capable of supporting early detection. In 

Indonesia, most lung cancer patients are only diagnosed when the disease has reached an advanced stage 

[12]. This significantly reduces life expectancy. Until now, there has been no national screening program 

for lung cancer that is organized in a systematic way [4]. The methods that are used most often for 

diagnosis still use imaging technologies such as CT scans, but these have limitations in terms of cost, 

access, and expertise [4], [13]. 

On the other hand, most of the information related to these risk factors is already documented in 

routine clinical data—either through electronic health records (EHR) or primary care records such as 

those at community health centers or outpatient clinics [14], [15], [16]. This data includes information 

such as age, smoking status, history of lung disease, and other factors that play a role in risk classification. 

Therefore, a solution is needed that can efficiently manage this clinical data and support more accurate 

early detection processes. 

Artificial intelligence (AI) can be used to address these limitations. Artificial intelligence (AI) is 

defined as the process of developing computers or computational systems that can perform tasks typically 

requiring human intelligence [17]. One of the main branches of AI that is rapidly developing today is 

Machine Learning (ML). This method enables computers to learn from data and improve their 

performance automatically without explicit programming [18]. These methods can efficiently process 

clinical data and generate risk predictions [19]. 

However, ML models are generally 'black box' and difficult for medical professionals to understand 

[20]. Explainable AI (XAI) aims to bridge this gap by transforming models that were initially black boxes 

into glass box models (explanations that are understandable to humans) [21]. Previous studies have 

evaluated the effectiveness of ML algorithms in predicting lung cancer: Dritsas and Trigka (2022) used 

Random Forest and Rotation Forest [22]; Mamun et al. (2022) applied XGBoost, LightGBM, Bagging, 

and AdaBoost [23]; Sweet et al. (2024) compared XGBoost, SVM, and Logistic Regression [24]; and 

Pathan et al. (2024) developed a model using Gradient Boosting, RF, DT, and Logistic Regression [25]. 

While Pathan et al. applied the SHAP interpretation method as an XAI approach, their research has not 

primarily focused on interactive, case study-based interpretive visualization. 

Most of these studies still focus on model performance without emphasizing interpretability based 

on case studies that are easily accessible to non-technical medical personnel. Additionally, few studies 

place this risk classification system within the context of its application as part of a national screening 

policy framework, particularly in developing countries like Indonesia. This highlights a gap that needs to 

be addressed through research that not only prioritizes model accuracy and transparency but also ensures 

the system's utility at the level of systematic early detection. 

This study aims to address these concerns by developing a lung cancer risk prediction model using 

machine learning algorithms and applying Explainable Artificial Intelligence (XAI) methods to provide 

visual explanations of the predictions in a case-based context. The research involved building a 

classification model trained on open-source data and applying XAI interpretation methods via a graphical 

user interface (GUI) that is easier for non-technical users to understand. 

2. METHOD 

This study employs the CRISP-DM (Cross-Industry Standard Process for Data Mining) approach 

as its methodological framework. CRISP-DM is a well-established process model that has been widely 

accepted in cross-industry data mining practices due to its flexibility and independence from specific 

algorithms [26], [27]. Figure 1 shows the methodological flow used in this study based on the CRISP-

DM framework. 
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Figure 1. CRISP-DM Framework 

 

This framework comprises six main stages: Business Understanding, Data Understanding, Data 

Preparation, Modelling, Evaluation, and Deployment. Each stage will be explained according to its 

implementation in this study. 

2.1. Business Understanding 

The first stage aims to understand the problem and objectives of this study. Understanding the 

context of the problem is crucial in assessing the limitations of conventional approaches and designing 

solutions that are relevant to user needs [30]. The main problem in this research is the high risk of lung 

cancer, which is often detected late, and the lack of a prediction system that can be interpreted by medical 

personnel. Therefore, this study focuses on developing a machine learning model that is not only accurate 

but also explainable (interpretable) through the Explainable AI (XAI) approach. Next, business objectives 

are determined and then translated into structured data mining objectives [27]. The primary objectives of 

this study are to build a lung cancer risk classification model, integrate XAI interpretation methods, and 

present interpretation results through a web-based prototype interface to enhance clinical understanding 

of prediction outcomes. 

2.2. Data Understanding 

This stage involves the initial exploration of the data. This process involves collecting data from 

various sources, describing the data, conducting visual and statistical explorations, and assessing data 

quality [27]. Data structure and quality are important foundations before entering the data transformation 

stage [28]. The dataset used in this study was obtained from Kaggle [29]. The Lung Cancer Dataset used 

consists of 25 features and 1000 entries representing lung cancer patients with different risk levels, such 

as low, medium, and high. These features represent risk factors and symptoms related to lung cancer [6]. 

Features representing risk factors are Age, Gender, Air Pollution, Alcohol use, Dust Allergy, Occupational 

Hazards, Genetic Risk, Chronic Lung Disease, Balanced Diet, Obesity, Smoking, and Passive Smoker. 

Meanwhile, the features representing symptoms are Chest Pain, Coughing of Blood, Fatigue, Weight Loss, 
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Shortness of Breath, Wheezing, Swallowing Difficulty, Clubbing of Finger Nails, Frequent Cold, Dry 

Cough, and Snoring. 

2.3. Data Preparation 

This stage is an important phase that is often the most time-consuming in machine learning model 

development, as it involves various technical activities to ensure that the data is clean, consistent, and 

ready for use in the modelling process [30]. This stage is iterative, allowing for readjustments if obstacles 

are encountered during the modelling or deployment phases [31]. In this study, the data preparation 

process includes feature selection by removing irrelevant attributes. Additionally, data cleaning involves 

removing duplicates and validating the quality of entries, followed by data standardization, which 

involves converting target labels (Low, Medium, High) into a numerical form. Normalization was not 

applied because the algorithm used is tree-based, which is insensitive to differences in feature scales. 

Furthermore, categorical numerical features were scaled to provide precise meaning to each feature value. 

This step aims to enable non-technical users to understand the context of input values when viewing model 

interpretations using the XAI method. 

2.4. Modelling 

This stage aims to develop a machine-learning model that can identify patterns in data and generate 

accurate predictions [30]. This process includes algorithm selection, model training, initial evaluation, 

and hyperparameter optimization [31]. The machine learning algorithms selected in this study are 

XGBoost, Random Forest, and LightGBM. The algorithms were selected based on previous studies that 

demonstrated good accuracy [22]-[24]. All three algorithms belong to the decision tree-based ensemble 

learning (tree ensemble) [32], [33]. To test the model's generalization to unseen data, validation was 

performed using the stratified k-fold cross-validation technique for each model. This technique was 

chosen because it maintains the proportion of target classes in each fold, reduces the risk of overfitting, 

and has been widely used in various clinical classification studies [27], [34]. Grid Search was applied to 

the three models —XGBoost, Random Forest, and LightGBM —to evaluate the combination of 

hyperparameters that yielded the best performance for each model. 

2.5. Evaluation 

This stage aims to evaluate the model's final performance against test data that was not used during 

the training process. The results of the system testing are then analyzed to assess the accuracy and 

effectiveness of the algorithm used [35]. The evaluation was conducted using general metrics in 

classification, namely accuracy, precision, recall, and F1-score, to assess the model's ability to distinguish 

between lung cancer risk categories (Low, Medium, High). The metrics are calculated based on the values 

obtained from the confusion matrix, which includes the number of true positives (TP), true negatives (TN), 

false positives (FP), and false negatives (FN) [32]. True Positive (TP) refers to the situation where the 

model correctly predicts the positive class of an image [36]. When the model incorrectly predicts the 

positive class of an image, it produces a False Positive (FP) [36]. True Negative (TN) corresponds to cases 

where the model correctly predicts the negative class of an image [36]. When the model incorrectly 

predicts the negative class, the result is False Negative (FN) [36]. To obtain these values, see table 1. 

 

Table 1. Confusion Matrix 

 Predicted Positive Predicted Negative 

Actual Positive TP FN 

Actual Negative FP TN 
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Accuracy is the proportion of total predictions that match the actual values [37]. This value is 

usually presented as a percentage (%) and represents how well the model can make correct predictions 

overall. Precision indicates the model's accuracy in classifying data as positive, calculated as the ratio of 

the number of actual positives correctly predicted to the total number of positives predicted [37]. 

Meanwhile, recall measures the model's ability to find all actual positive data, thus showing how many 

positive cases were successfully identified compared to the total number of actual positive cases [37]. The 

F1-score is the harmonic mean of precision and recall, with values ranging from 0 to 1, where a value of 

1 indicates the model's best performance in balancing accuracy and completeness [37]. From table 1, we 

can derive the formulas for Accuracy, Precision, Recall, and F-1 Score as follows. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (1) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (2) 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (3) 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 2(
(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛)(𝑅𝑒𝑐𝑎𝑙𝑙)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
) (4) 

2.6. Deployment 

This stage aims to implement the prediction model into a system that end-users can utilize. In this 

study, the implementation was carried out through a web-based Streamlit interface that displays lung 

cancer risk prediction results along with interpretive visualizations. The use of tree ensemble algorithms 

in this study requires a post-hoc explainability approach to improve understanding of the prediction 

process [33]. Therefore, the SHAP and LIME methods, which are categorized under feature relevance 

and visualization techniques, were selected for this analysis. Although not yet applied clinically, this 

interface is designed to be accessible to non-technical medical personnel, providing clear input options 

and understandable model explanations. This phase also considers aspects of system sustainability, 

including ease of model updating, input-output documentation, and potential future integration with 

clinical systems. 

3. RESULT 

3.1. Data Understanding 

From the dataset there is one feature, Patient Id, as a unique identifier assigned to each patient in 

the dataset. Table 2 presents descriptive statistics from 1000 observations covering 23 features consisting 

of risk factors and symptoms related to lung cancer. The feature Age shows an average of 37.17 years 

with a range of 14 to 73 years, indicating that most respondents are of productive age. Several risk features 

such as Air Pollution (3.84), Alcohol Use (4.56), Dust Allergy (5.16), and Occupational Hazards (4.84) 

have relatively high average values, indicating a relatively significant level of exposure to environmental 

and lifestyle factors. A similar pattern is observed in the features of Smoking and Passive Smoker, which 

have averaged close to 4, reflecting the prevalence of both active and passive smoking behaviors in the 

sample. 

Meanwhile, clinical symptoms such as Chest Pain (4.44), Coughing of Blood (4.86), and Shortness 

of Breath (4.24) ranked high with relatively high averages, indicating the presence of prominent physical 

complaints. Conversely, features such as Snoring and Frequent Cold had lower average values. This 

distribution pattern suggests that most features are at moderate to high levels, which can generally 

contribute significantly to the lung cancer risk classification modeling process in the next stage.  
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After exploring the dataset, the final process is to identify potential problems in the data, such as 

missing values, redundancy, and outliers. Based on the results of the examination, we did not find any 

significant issues related to these three aspects, so the dataset was deemed suitable for further processing 

in the data preparation stage. 

 

Table 2. Dataset Description 

Fitur Count Mean Std Min 25% 50% 75% Max 

Age 1000 37.17 12.01 14 27.75 36 45 73 

Gender 1000 1.40 0.49 1 1 1 2 2 

Air Pollution 1000 3.84 2.03 1 2 3 6 8 

Alcohol Use 1000 4.56 2.62 1 2 5 7 8 

Dust Allergy 1000 5.16 1.98 1 4 6 7 8 

Occupational Hazards 1000 4.84 2.11 1 3 5 7 8 

Genetic Risk 1000 4.58 2.13 1 2 5 7 7 

Chronic Lung Disease 1000 4.38 1.85 1 3 4 6 7 

Balanced Diet 1000 4.49 2.14 1 2 4 7 7 

Obesity 1000 4.46 2.12 1 3 4 7 7 

Smoking 1000 3.95 2.50 1 2 3 7 8 

Passive Smoker 1000 4.20 2.31 1 2 4 7 8 

Chest Pain 1000 4.44 2.28 1 2 4 7 9 

Coughing of Blood 1000 4.86 2.43 1 3 4 7 9 

Fatigue 1000 3.86 2.24 1 2 3 5 9 

Weight Loss 1000 3.86 2.21 1 2 3 6 8 

Shortness of Breath 1000 4.24 2.29 1 2 4 6 9 

Wheezing 1000 3.78 2.04 1 2 4 5 8 

Swallowing Difficulty 1000 3.75 2.27 1 2 4 5 8 

Clubbing of Finger Nails 1000 3.92 2.39 1 2 4 5 9 

Frequent Cold 1000 3.54 1.83 1 2 3 5 7 

Dry Cough 1000 3.85 2.04 1 2 4 6 7 

Snoring 1000 2.93 1.47 1 2 3 4 7 

3.2. Data Preparation 

Based on the descriptive analysis of each feature, we decided to remove the Patient Id feature from 

the dataset because it was not relevant to the predictive purpose of this study. After this process, we 

validated the dataset for outliers and redundant data. The examination found that the dataset did not 

contain any outliers, but there were 848 duplicate entries. Therefore, we cleaned the data, resulting in 152 

unique entries. 

Feature importance analysis was performed to evaluate the contribution of each feature to the 

classification ability of the Random Forest model in table 3. The results show that features such as 

Coughing of Blood (0.113), Wheezing (0.075), and Dust Allergy (0.072) have the highest weight in 

influencing the prediction output. Conversely, features such as Gender and Age showed very low 

contributions, with values below 0.01. 

To determine the optimal number of features used in modeling, a cumulative feature importance 

calculation was performed. The features were sorted based on their importance value in descending order, 

then summed up until their accumulated contribution reached a threshold of 90%. From the results shown 

in figure 2, it was found that the first 17 features already covered a cumulative contribution of ≥90%, 

which is considered sufficient to maintain accuracy without overly increasing model complexity. This 

approach is beneficial for simplifying the model, improving computational efficiency, and minimizing 

the risk of overfitting, especially in datasets with many redundant or non-important features. 
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Table 3. Feature Importance 

Feature Importance 

Coughing of Blood 0.113294 

Wheezing 0.074536 

Dust Allergy 0.072444 

Passive Smoker 0.068753 

Balanced Diet 0.063387 

Obesity 0.063196 

Fatigue 0.055607 

Alcohol Use 0.045861 

Occupational Hazards 0.044680 

Air Pollution 0.043680 

Chest Pain 0.043592 

Shortness of Breath 0.042337 

Smoking 0.037167 

Frequent Cold 0.037080 

Genetic Risk 0.033826 

Clubbing of Finger Nails 0.032283 

Swallowing Difficulty 0.030634 

Weight Loss 0.029044 

Snoring 0.027186 

Dry Cough 0.019841 

Chronic Lung Disease 0.015239 

Age 0.006108 

Gender 0.000226 

 

 

 
Figure 2. Cumulative Feature Importance 
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Furthermore, table 2 shows inconsistencies in the naming of several features in the dataset. To 

improve readability and consistency, we normalized the feature names by adjusting the use of capital 

letters. Three features were adjusted—namely, Alcohol use to Alcohol Use and OccuPational Hazards to 

Occupational Hazards. 

In the same stage, the feature Level is included in the object categorical with three categorical values, 

namely Low, Medium, and High. To facilitate processing by machine learning algorithms that require 

numeric input, the three categories were labeled. The results of this process show that the label Low is 

coded as “0”, Medium as “1”, and High as “2”. 

Similar adjustments to numerical categorical features were made based on a literature review, as 

shown in table 4 for risk factors, table 5.1 and table 5.2 for symptoms. The existing literature review has 

explained and proven that these features are influential in lung cancer. 

 

Table 4. Identification Categorical Numeric Risk Factors 

Feature Scale Category 

Air Pollution 

[38], [39] 

1-8 0–5 μg/m³; 6–10 μg/m³; 11–15 μg/m³; 16–20 μg/m³; 21–25 μg/m³; 26–30 

μg/m³; 31–40 μg/m³; >41 μg/m³ 

Alcohol 

Consumption 

[40]-[42] 

1-8 0 g/day (0 drinks/day); 1–5 g/day (0.5 drinks/day); 6–12 g/day (1 

drink/day); 13–24 g/day (1–2 drinks/day); 25–35 g/day (2–3 drinks/day); 

36–50 g/day (3–4 drinks/day); 51–75 g/day (4–6 drinks/day); >75 g/day 

(>6 drinks/day) 

Dust Allergy 

[43]-[45] 

1-8 No dust allergy or exposure; Mild, occasional dust contact; Moderate 

indoor allergy, controlled; Regular allergy + mild symptoms; Diagnosed + 

moderate asthma; Severe allergy + poor control; High occupational dust 

exposure; Chronic high exposure + no control 

Occupational 

Hazards 

[46]-[51] 

1-8 No occupational exposure; Occasional low exposure; Regular low 

exposure (e.g. drivers); Moderate exposure to one carcinogen; Moderate-

high exposure (e.g. diesel); High exposure (asbestos, etc.); High-risk job 

>10 years; Multiple exposures + smoking 

Genetic Risk 

[52], [53] 

1-7 No family history of lung cancer; Distant relative (2nd-degree); 1st-degree 

relative >60 y.o.; 1st-degree relative <60 y.o.; Two 1st-degree relatives; 

Two early-onset cases; Multiple relatives/genetic mutation 

Balanced Diet 

[54]-[56] 

1-7 Optimal: high plant, low red meat; (Med/PDI); Very high LLDS, low 

processed; Plant-rich, low-fat; High whole grains, non-oily fish; Moderate 

fruit/veg + some meat; Occasional fruit/veg; Poor (high red meat, low 

veg) 

Obesity 

[57] 

1-7 Very underweight; Underweight; Normal; Overweight; Obesity I; Obesity 

II; Obesity III 

Smoking 

[58], [59] 

1-8 Never smoked / <100 lifetime; Very light exposure; Light smoker; 

Moderate smoker; Heavy smoker; Very heavy; Extremely heavy; Former 

heavy smoker >15 years 

Passive 

Smoker 

[60], [61] 

1-8 No exposure; Occasional exposure; Household <10 yrs; Household >10 

yrs; Workplace <20 yrs; Workplace ≥20 yrs or 2 sources; Childhood + 

adult + work; Chronic, multi-source >20 yrs 
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Table 5.1. Identification Categorical Numeric Symptoms 

Feature Scale Category 

Chest Pain 

[62], [63] 

1-9 No chest pain; Very mild occasional ache (e.g., on deep breath/exertion); 

Mild discomfort with moderate activity; Mild-moderate pain during daily 

tasks; Moderate pain, impacting some activities; Moderate-severe daily 

pain; Severe pain (limits activity, MDASI ≥7); Very severe pain nearly 

daily; Debilitating pain at rest (MDASI 9–10) 

Coughing of 

Blood 

[63] 

1-9 No coughing up blood; Very minimal: streaks only once; Mild traces (<1 

tsp, once/month); Occasional small streaks (~1 tsp, a few times/month); 

Frequent mild (daily streaks, <1 tsp); Moderate daily bleeding (1–2 tsp); 

Daily significant bleeding (2–3 tsp); Heavy bleeding (>3 tsp), distressing; 

Massive hemoptysis (emergency-level) 

Fatigue 

[63], [64] 

1-9 No fatigue; Very mild fatigue during unusual exertion; Mild fatigue after 

activity; Mild-moderate fatigue—frequent but manageable; Moderate 

fatigue—daily, noticeable; Moderate-severe fatigue—daily, affects 

chores; Severe fatigue (MDASI ≥7)—limits most activities; Very 

severe—daily exhaustion, rest needed; Debilitating fatigue (MDASI 9–

10)—unable to function 

Shortness of 

Breath 

[63], [65], [66] 

1-9 No breathlessness; Very mild on strenuous activity; Mild on moderate 

exertion; Shortness during daily tasks; Moderate SOB with normal 

activities; Daily, persistent SOB; Severe SOB during moderate tasks 

(MDASI ≥7); Very severe SOB, at rest; Debilitating SOB with minimal 

effort 

Wheezing 

[63] 

1-8 No wheezing; Rare, during colds or exercise; Wheezing <1x/week; 

Wheezing several times/week; Frequent, without infection; Daily 

wheezing during activities; Severe wheezing at rest; Distressing, 

continuous wheezing 

 

Table 5.2. Identification Categorical Numeric Symptoms cont. 

Feature Scale Category 

Swallowing 

Difficulty 

[63], [67], [68] 

1-8 No swallowing difficulty; Occasional throat discomfort with solids; 

Difficulty with solids once or twice/week; Needs semi-solid/liquid diet 

occasionally; Semi-solid/liquid diet daily; Difficulty swallowing liquids; 

Can only swallow saliva, frequent choking; Unable to swallow 

solids/liquids (needs NGT) 

Clubbing of 

Finger Nails 

[63], [69] 

1-9 No clubbing; normal Lovibond angle; Slightly curved nail tips; Mild 

rounding with partial Schamroth loss; Persistent rounding; angle >180°; 

Obvious bulbous enlargement; Clubbing + joint pain/swelling; Clubbing + 

periostosis on imaging; Extreme clubbing + systemic signs; Severe 

clubbing + cancer-related features 

Frequent Cold 

[63], [70] 

1-7 No respiratory infections in past year; 1 mild cold/year; 2–3 mild 

infections/year; 4–5 infections/year; ≥6 infections or ≥1 needing 

antibiotics; ≥2 moderate infections/year; 3+ hospital-treated infections 
 

3.3. Modelling 

After the data preparation process is complete and the dataset is ready for analysis, the next step is 

to apply machine learning algorithms. The process of modelling and also the evaluation as seen in figure 
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3. In this study, three algorithms were selected to build predictive models, namely XGBoost, RF, and 

LightGBM. Before that, to ensure the model runs optimally, hyperparameter tuning was performed using 

the Grid Search Cross Validation method. This method searches for the best parameter combination based 

on model performance on the validation data. Table 6 summarizes the best hyperparameter configurations 

for each algorithm based on the tuning results. 

 

 
Figure 3. Modelling and Evaluation Process 

 

Table 6. Hyperparameter Tunning 

XGBoos

t 

[15] 

'colsample_bytree': 0.8 

'gamma': 0 

'learning_rate': 0.1 

'max_depth': 6 

'min_child_weight': 1 

'n_estimators': 200 

'scale_pos_weight': 1 

'subsample': 0.8 

RF [15] bootstrap': True 

'max_depth': None, 

'max_features': 'sqrt' 

'min_samples_leaf': 2 

'min_samples_split': 2 

'n_estimators': 100 

LightGB

M [15] 

'colsample_bytree': 0.8 

'learning_rate': 0.1 

'max_depth': 6 

'min_child_weight': 1 

'n_estimators': 100 

'num_leaves': 31 

'subsample': 0.8 

 

To obtain optimal results and avoid the risk of overfitting, a Stratified K-Fold Cross Validation 

approach with a value of k equal to 5 was used. This approach was chosen to ensure that the data 

distribution in each fold remained balanced between target classes. In each iteration, the model was trained 

using four parts of the data and validated on the remaining part until all data had been used as validation 

data. 

3.4. Evaluation 

Table 7. The Average of Algorithm Results 

 Random Forest XGBoost LightGBM 

Accuracy (%) 97.38 96.71 96.71 

Precision (%) 97.73 97.22 97.17 

Recall (%) 97.26 96.59 96.52 

F1-Score (%) 97.30 96.69 96.57 
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To validate model stability across the dataset, we also performed Stratified 5-Fold Cross Validation. 

Although table 7 presents the average scores, each fold’s metrics were consistently high. This consistency 

indicates that the model is robust and generalizes well to unseen data. The evaluation results, as seen in 

table 7, show that Random Forest produced the best performance with an accuracy of 97.38%, precision 

of 97.73%, recall of 97.26%, and F1-score of 97.30%. These figures are higher than those of XGBoost 

and LightGBM, which achieved an accuracy of 96.71%. In addition, from figure 4 the average confusion 

matrix shows that Random Forest can classify all classes with a very low error rate and balanced 

prediction distribution. Based on these results, the Random Forest model was selected as the main model 

in this study. This selection was made due to its consistently superior metric performance and stability in 

processing data across folds. As a result, Random Forest is considered the most suitable model for use in 

the lung cancer risk classification system in this study. In addition, the average confusion matrix shows 

that Random Forest can classify all classes with a very low error rate and balanced prediction distribution. 

 

 
Figure 4. The Average of Matrix Confusion 

 

Based on these results, the Random Forest model was selected as the main model in this study. This 

selection was made due to its consistently superior metric performance and stability in processing data 

across folds. As a result, Random Forest is considered the most suitable model for use in the lung cancer 

risk classification system in this study. 

3.5. Deployment 

In this study, the Random Forest classification model that has undergone training and validation 

processes was applied to a graphical user interface (GUI)-based application using the Streamlit framework, 

as shown in figure 5. This system allows patient data input based on risk factors and symptoms. Based on 

the input data, the model predicts whether the patient falls into the Low, Medium, or High category. The 

prediction interpretation is provided through two Explainable AI (XAI) approaches, namely SHAP 

(SHapley Additive exPlanations) and LIME (Local Interpretable Model-Agnostic Explanations), which 

are then reinforced with automatic narrative explanations from the Chat-GPT model [26]. 

Figure 6-10 presents the risk prediction result for an 8-year-old girl presenting with severe 

hemoptysis (±110 cc/day), nonproductive cough, shortness of breath, and wheezing in the left hemithorax 

that had been ongoing for three months [71]. The patient also experienced significant weight loss (5 kg in 

2 weeks) without a history of smoking, exposure to pollution, or genetic predisposition. Radiology 

revealed a mediastinal mass with compression of the left bronchus and air trapping. Bronchoscopy 

revealed total obstruction of the left bronchus, and biopsy confirmed stage T1N0M0 lung adenocarcinoma. 

No metastasis was detected, and lobectomy was performed without chemotherapy. The patient is currently 

under follow-up without recurrence. 

From the result figure 6 presents the model prediction output, which classifies the patient as Low 

risk with a probability of 84.89%. To provide transparency, SHAP values are visualized in figure 7, 

indicating that Wheezing (2), Alcohol Use (1), and Obesity (3) contribute the most to the risk score. The 

SHAP explanation in figure 8 reinforces these findings by detailing the influence of each feature, such as 
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mild wheezing having the highest SHAP value (+0.11), aligning with known clinical evidence. Figure 9 

shows the LIME explanation, in which the most influential features for ruling out the Medium-risk class 

are Wheezing (2.00), Dust Allergy (1.00), and Alcohol Use (1.00). Figure 10 provides a narrative 

summary confirming the alignment between SHAP and LIME, increasing the interpretability and clinical 

trust in the model’s prediction. 

 

 
Figure 5. Graphic User Interface 

 

 
Figure 6. Prediction Probability of System 

 

 
Figure 7. SHAP Waterfall Interpretation 
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Figure 8. Chat-GPT Explanation of SHAP Interpretation 

 

 
Figure 9. LIME Interpretation 
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Figure 10. Chat-GPT Explanation of LIME Interpretation 

4. DISCUSSION 

Previous studies have explored the effectiveness of machine learning algorithms in predicting lung 

cancer risk. A 2022 study demonstrated that ensemble methods such as Random Forest and Rotation 

achieved 97.1% for the accuracy in the binary classification of lung cancer [22]. These findings highlight 

the accuracy of tree-based models in recognizing complex clinical patterns. Although this study was 

limited to two classes (positive and negative cancer), the approach remains relevant in this study, which 

develops a multi-class classification based on risk levels. 

A 2024 study evaluated several algorithms, including XGBoost and LightGBM, with XGBoost 

providing the best performance (97.50% accuracy) in lung cancer prediction based on symptom and 

lifestyle data [24]. However, their study did not emphasize the interpretability aspect of the model. This 

study complements this shortcoming by not only comparing performance but also integrating Explainable 

AI (XAI) techniques to support model decision transparency. 

In the same year, 2024, several algorithms were explored, including SVM, RF, DT, and KNN. In 

this study, the importance of interpretability in multi-class lung cancer risk classification was emphasized 

[25]. They also used LIME to explain decisions made by Random Forest and SVM models, concluding 

that local-global visualizations can enhance trust among non-technical users. This research expands this 

approach by adding automatic explanations based on natural language through a GPT model, enabling 

access for users unfamiliar with technical visualizations. 

Furthermore, In 2020 highlight that an ideal Explainable AI system should be able to provide 

interpretations that are understandable, trustworthy, and actionable [33]. The approach applied in this 

study aligns with these principles through SHAP and LIME-based visualizations, complemented by 

automatic explanations that both medical professionals and patients can understand. 

Based on this conceptual framework, this study evaluates three machine learning algorithms—

Random Forest, XGBoost, and LightGBM—for lung cancer risk classification. The evaluation was 

validated with 5-fold cross validation. The results show that Random Forest achieves the highest 

performance, with an accuracy of 97.38%, precision of 97.73%, recall of 97.26%, and an F1-score of 

97.30%. 

This model not only excels in terms of metric performance but also demonstrates stability in 

classification distribution on the confusion matrix, making it the primary model proposed. To 

transparently explain prediction results, two visual interpretation methods were applied: SHAP and LIME. 

System evaluation was conducted on the medical report of an 8-year-old child patient. SHAP visualization 
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shows that features such Wheezing, Passive Smoker, and Alcohol Use contribute positively to the low-

risk classification while Coughing of Blood rejects the prediction. LIME visualization on a case of a girl 

with severe symptoms but no classic risk exposure shows that other high-risk features are not dominant, 

supporting the Low class prediction. 

As a complement, the system includes GPT-based explanations that generate automatic narratives 

from the SHAP and LIME results. These narratives address three main points: supporting features, 

opposing features, and brief clinical interpretations. The combination of visual and narrative elements, 

the prediction system is not only interpretable by researchers but also understandable by medical staff 

without deep technical backgrounds. This multimodal approach reinforces the principles of transparency 

and accountability in the use of clinical AI. 

Although the developed system shows promising performance and interpretability, several 

limitations need to be considered. First, the dataset used is sourced from open-source and non-clinical 

sources, so it may not fully represent the diversity of patient data in the real world. Second, although the 

system has been tested on the medical report of an 8-year-old child with severe respiratory symptoms and 

a diagnosis of lung adenocarcinoma, this trial is still illustrative and cannot replace actual clinical 

validation. Third, the user interface and automatic narratives generated by the GPT model, although 

intended to facilitate understanding for non-technical users, have not been directly evaluated by healthcare 

professionals to assess their clarity, accuracy, or usefulness in a clinical context. Therefore, further 

research is needed to test this model on real patient data, involving evaluation by medical professionals, 

and exploring its potential integration into decision-making workflows in healthcare services. 

5. CONCLUSION 

This study demonstrates the potential of integrating machine learning and explainable artificial 

intelligence (XAI) to support early detection and risk classification of lung cancer. The results show that 

Random Forest achieves the highest performance, with an accuracy of 97.38%, precision of 97.73%, recall 

of 97.26%, and an F1-score of 97.30%. By leveraging Random Forest as the primary classifier, the system 

achieved high predictive performance while maintaining stability across different data partitions. SHAP 

and LIME are the methods deployed to provide transparent and accessible explanations of the model's 

predictions for making the outputs more understandable for non-technical. The integration of the GPT-

based model allows the system to communicate critical insights in a human-readable format. This 

combination reinforces trust in AI-driven decisions. Then, the prototype of GUI can demonstrate a 

practical, interpretable, and scalable approach for risk stratification in lung cancer, aligning with the 

broader goals of responsible and explainable medical AI deployment. 

Further research is recommended to test the system's application on actual clinical data, involving 

assessments by healthcare professionals, and evaluating the level of usability and effectiveness of the 

interface in real-world screening contexts. Such efforts are important to ensure that this AI-based system 

can be effectively and reliably applied to support public health policies and national screening programs. 
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