
Jurnal Teknik Informatika (JUTIF)  Vol. 6, No. 4, Agustus 2025, Page. 2067-2078 
P-ISSN: 2723-3863  https://jutif.if.unsoed.ac.id                                       

E-ISSN: 2723-3871  DOI: https://doi.org/10.52436/1.jutif.2025.6.4.4922 

 

 

2067 

Mosquito Species Classification Using Wingbeat Acoustic Signals Based on 

Bidirectional Long Short-Term Memory 

Bella Melati Wiranur Dwifani1, Fatan Kasyidi*2, Ridwan Ilyas3 

1, 2, 3Informatics, Faculty of Science and Informatics, Jenderal Achmad Yani University, Indonesia 

Email: 2fatan.kasyidi@lecture.unjani.ac.id  

 

Received : Jun 20, 2025; Revised : Jul 1, 2025; Accepted : Jul 6, 2025; Published : Aug 18, 2025  

Abstract 

The increasing prevalence of mosquito-borne diseases such as Dengue, chikungunya, and malaria underscores the 

urgent need for effective mosquito vector monitoring. This study proposes a non-invasive classification system of 

mosquito species based on wingbeat acoustic signals using a deep learning approach with Bidirectional Long Short-

Term Memory (BiLSTM). The audio dataset was collected from the Wingbeats repository, consisting of six major 

mosquito species. Preprocessing was performed using Discrete Wavelet Transform (DWT) to reduce noise. Feature 

extraction combined Linear Predictive Coding (LPC) and Mel-Spectrogram to represent spectral and temporal signal 

characteristics. Each binary model was trained in a one-vs-rest scheme to recognize a target species against others, 

and a BaggingClassifier was used to fuse predictions from six BiLSTM models. Evaluation showed that the proposed 

system achieved a final accuracy of 96.85% and F1-score of 95.03%, with confusion matrices showing near-diagonal 

performance. The results indicate that the hybrid LPC-Mel features and ensemble BiLSTM architecture are effective 

for mosquito species classification using acoustic signals. 
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1. INTRODUCTION 

Mosquitoes, especially those from the Aedes aegypti and Aedes albopictus species, are known 

vectors of serious diseases such as dengue fever, chikungunya, and malaria, which remain a major health 

concern in Indonesia, particularly in West Java[1], [2]. The surge in dengue cases during the dry season 

has been exacerbated by climate phenomena like El Niño, which increases temperature and facilitates 

mosquito breeding in stagnant water[3]. According to Circular Letter No. HK.02.02/C/466/2025 issued 

by the Indonesian Ministry of Health, dengue and chikungunya cases have risen significantly in early 

2025, with 38.740 reported infections and 182 deaths by April 13, 2025[4]. 

Mosquito wingbeat frequencies vary by species: Aedes albopictus (463–541 Hz), Culex 

quinquefasciatus (366–437 Hz), and Anopheles crawfordi (295–338 Hz). These frequencies also 

increase with age, stabilizing in adulthood[5]. 

Previous research using the LSTM method and audio features like Mel-Spectrogram, Log-Mel, 

and Mel-Frequency Cepstral Coefficients (MFCC) successfully classified Aedes, Anopheles, and Culex 

mosquitoes. The best accuracy, 96.71%, was achieved with the Log-Mel feature, highlighting the 

effectiveness of frequency-based audio classification[6]. The researchers proposed a mosquito 

classification method based on images using Bootstrap Your Own Latent (BYOL), which achieved 

96.77% accuracy with only 10% labeled data[7]. 

Recent studies show mosquito wingbeat sounds can be used for species classification, with MFCC 

and Convolutional Neural Network (CNN) achieving up to 99.46% accuracy. However, these methods 

struggle in noisy environments, as seen in Abuzz and HumBug datasets[8]. Another study using 

Gammatone Frequency Cepstral Coefficients (GFCC) with a Multi-Layer Perceptron (MLP) model 
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achieved 93.82% accuracy for classifying Aedes species using the Wingbeats dataset[9]. The WbNet 

model, based on ResNet and self-attention, successfully classified six mosquito species from wingbeat 

sounds, 89.9% on the Wingbeats dataset[10]. The ResNet-9 model based on 1D convolution was used 

for classifying insect wingbeat sounds, utilizing raw audio data without spectrograms. As a result, the 

small model achieved an average accuracy of 95.37% on the Wingbeats dataset, outperforming 

DenseNet121 and WbNet[11]. The use of a CNN based on a Residual Attention Network for classifying 

six mosquito species from wingbeat signals, using Mel-Spectrogram as input. The best model achieved 

an accuracy of 89.9% on the Wingbeats dataset[12]. 

This study introduces a novel approach using Linear Predictive Coding (LPC) combined with a 

BiLSTM neural network to analyze wingbeat audio signals. The method focuses on capturing both 

spectral and temporal patterns that characterize different mosquito species. The use of BiLSTM allows 

for bidirectional sequence modeling, enhancing the system’s capability to learn context-aware 

representations. To further boost classification performance, an ensemble strategy was employed by 

training six separate BiLSTM models in a one-vs-rest scheme and combining their outputs using a 

BaggingClassifier. This system is evaluated on a publicly available dataset (Wingbeats), showing 

significant performance improvements in accuracy and reliability. 

While previous studies have explored mosquito species classification using deep learning 

approaches such as CNN, ResNet, and LSTM with audio features like MFCC, GFCC,  and Mel-

Spectrogram, many of these efforts focused on binary classification or faced challenges in noisy 

recording conditions. Furthermore, the integration of complementary spectral features like LPC has not 

been widely examined. In this study, a multi-class classification framework is presented by combining 

LPC and Mel-Spectrogram features within a BiLSTM architecture trained in a one-vs-rest strategy, 

followed by ensemble fusion using a BaggingClassifier. The aim is to enhance species-level recognition 

across six mosquito classes, even in cases of overlapping acoustic characteristics. This contribution is 

expected to complement prior approaches and support the development of adaptive, non-invasive 

bioacoustic classification systems for mosquito vector surveillance. 

2. RESEARCH METHOD 

This research uses experimental methods to classify mosquito species from noisy wingbeat audio, 

employing BiLSTM with hybrid features and ensemble learning for robust performance. 

 

 
Figure 1. Classification of Mosquito Sounds Using BiLSTM 

https://jutif.if.unsoed.ac.id/
https://doi.org/10.52436/1.jutif.2025.6.4.4922


Jurnal Teknik Informatika (JUTIF)  Vol. 6, No. 4, Agustus 2025, Page. 2067-2078 
P-ISSN: 2723-3863  https://jutif.if.unsoed.ac.id                                       

E-ISSN: 2723-3871  DOI: https://doi.org/10.52436/1.jutif.2025.6.4.4922 

 

 

2069 

Figure 1 shows the ensemble architecture, six one-vs-rest BiLSTM models output class 

probabilities, which are fused using a BaggingClassifier to produce the final prediction[13]. This 

ensemble strategy enhances classification robustness by reducing the influence of individual model 

errors and improving generalization[14]. 

2.1. Dataset and Data Distribution 

The dataset used in this study is the Wingbeats dataset, a publicly available audio collection of 

mosquito wingbeat sounds frequently used in bioacoustic research[10]. It contains 279.566 audio 

samples from six mosquito species. Each audio file lasts approximately one second and is labeled by 

species. Table 1 presents the distribution of mosquito species in the original dataset. 

 

Table 1. Initial Class Distribution in the Wingbeats Dataset 

Mosquito Species Number of Samples 

Ae. Aegypti 85.553 

Ae. Albopictus 20.231 

An. Arabiensis 19.297 

An. Gambiae 49.471 

Cu. Pipiens 30.415 

Cu. Quinquefasciatus 74.599 

Total 279.556 

 

As shown in Table 1, Ae. aegypti and Cu. quinquefasciatus dominate the dataset, while species 

like An. arabiensis and Ae. albopictus have considerably fewer samples. Such class imbalance can lead 

to a biased model that performs poorly on underrepresented classes. 

2.2. Signal Preprocessing 

The raw mosquito wingbeat recordings often contain background noise and frequency 

fluctuations due to varying environmental conditions. To ensure that relevant spectral features are 

preserved while reducing unwanted components, this study uses Discrete Wavelet Transform (DWT) as 

a denoising method. Unlike traditional techniques such as STFT or Fourier Transform, DWT provides 

a multi-resolution analysis, capturing both time and frequency domain representations with high 

precision[15]. 

cm−1,k
w = ∑ hn−2k .  cm,n

w
n  (1) 

dm−1,k
w = ∑ τn−2k .  cm,n

w
n  (2) 

This decomposition helps isolate relevant signal components while discarding high-frequency 

noise. The processed signal is then reconstructed using inverse DWT, resulting in a cleaner waveform 

that retains the mosquito wingbeat patterns[15].  

2.3. Feature Extraction 

After denoising, the next step involves extracting features that can represent both temporal and 

spectral characteristics of mosquito wingbeats. Three main types of features are used: Linear Predictive 

Coding (LPC), Mel-Spectrogram, and frame-level statistical features. 
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2.3.1. Linear Predictive Coding (LPC) 

The LPC method estimates the current audio sample as a linear combination of its previous values. 

The prediction formula is given by[16]: 

s(n) =  ∑ ais(n − i)
p
i=1  (3) 

Where ai represents the predictive coefficients and p is the prediction order. This equation 

assumes that the audio signal behaves linearly over short time intervals. The residual error of this 

prediction, calculated as[16]: 

e(n) = s(n) − ∑ ais(n − i)
p
i=1  (4) 

Provides insight into the accuracy of the linear model. LPC is particularly effective in representing 

the envelope of the speech-like signals present in mosquito wingbeats. It compresses the spectral content 

into a small set of coefficients, which can then be used as compact descriptors of the sound[17]. 

2.3.2. Mel Spectogram 

To complement the spectral modeling offered by LPC, this study also utilizes the Mel-

Spectrogram, which transforms the signal into a perceptually scaled frequency representation, 

approximating how the human ear perceives sound[18]. Frequencies are first converted to the Mel scale 

using the following formula[19]: 

m = 2595 ∙  log10 (1 +
f

700
) (5) 

This nonlinear transformation aligns with the sensitivity of the auditory system, emphasizing 

lower frequencies where mosquito wingbeats typically reside. The result is a time–frequency matrix that 

is further enhanced with its delta and delta-delta components to capture temporal variation in spectral 

content[19].\ 

Hm(k) =  

{
 
 

 
 

0
k−f(m−1)

f(m)−f(m−1)

f(m+1)−k

f(m+1)−f(m)

0

 (6) 

The equation defines the response of the m-th Mel filter as a triangular function that increases 

linearly up to its center frequency and then decreases linearly. Frequencies outside the filter’s range 

have zero contribution. This structure simulates the human auditory perception, which is more sensitive 

to lower frequency changes, and ensures smooth spectral transitions across Mel bands. 

Spectrograms are enhanced with delta and delta-delta features. Additionally, frame-wise statistics 

such as energy, mean, standard deviation, and skewness are concatenated, resulting in a final feature 

tensor of shape [T,F][20]. 

2.4. Model Architecture 

To process the sequential feature vectors generated in the previous stage, a deep neural network 

based on Bidirectional Long Short-Term Memory (BiLSTM) is employed. BiLSTM is capable of 

capturing dependencies in both forward and backward directions, making it suitable for modeling the 

temporal dynamics of wingbeat patterns. The forward hidden state at time t, denote by 
ht
→ , is computed 

as[21]: 
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ht
→ = LSTM (

ht−1
→  , xt) (7) 

While the backward hidden state 
ht
←, which processes the sequence in reverse, is given by[21]: 

ht = [
ht
→; 

ht
←] (8) 

The final hidden representation ht is the concatenation of both directions: 

ht = [
ht
→; 

ht
←] (9) 

This architecture allows the model to make predictions based not only on past information but 

also future context within the audio sequence[21]. The final output is passed through a sigmoid-activated 

dense layer for binary classification in a one-vs-rest scheme[14]. 

2.5. Training and Evaluation Strategy 

Each of the six BiLSTM models is trained individually using a one-vs-rest strategy. All models 

receive balanced input 10.000 positive samples for the target class and 10.000 negative samples drawn 

evenly from the remaining five classes. The dataset is divided using a stratified split with proportions of 

60% for training, 20% for validation, and 20% for testing. Preprocessing and fiture extraction includes 

DWT denoising (db8, level 5), LPC (order 30), Mel-Spectrogram (64 filters, delta, delta-delta), and 

statistical features.  

To optimize model performance and ensure convergence, we used the AdamW optimizer, which 

integrates weight decay with Adam to reduce overfitting and improve generalization[22]. The binary 

crossentropy loss function was chosen since each classifier performs binary prediction[23].  

To evaluate classification performance, we use standard metrics derived from the confusion 

matrix: accuracy, precision, recall, and F1-score[24]. These metrics are defined mathematically as 

follows[25]:  

Accuracy =  
TN+TP

TN+FP+TP+FN
 (10) 

Measures the proportion of correct predictions made by the model out of all predictions[24]. It 

reflects the overall correctness but may be misleading in imbalanced datasets where one class 

dominates[25]. 

Precision =  
TP

TP+FP
 (11) 

Indicates how many of the samples predicted as positive are actually positive[24]. It is useful in 

scenarios where false positives are costly and should be minimized[25]. 

Recall =  
TP

TF+FN
 (12) 

Measures the model’s ability to correctly identify all actual positive cases[24]. High recall means 

few false negatives, which is important when missing positive instances is critical[25]. 

F1 − Score = 2 × 
Precision × Recall

Precision +Recall
   (13) 
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Is the harmonic mean of precision and recall. It provides a balanced metric that is particularly 

valuable when the dataset is imbalanced or when both false positives and false negatives need to be 

considered equally[25]. 

After training, the output probabilities from all six binary models are fused using a 

BaggingClassifier, which aggregates predictions by selecting the class with the highest probability 

score[14]. This strategy significantly enhances the overall classification robustness and resolves 

conflicts among individual classifiers. 

3. RESULT 

This section presents results from six one-vs-rest BiLSTM models and their fusion for multi-class 

classification. 

3.1. Performance of Individual Models 

The classification results of each BiLSTM model were evaluated using a one-vs-rest scheme for 

six mosquito species. Figure 2 summarizes the values of precision, recall, F1-score, and accuracy. 

Among all models, the classifier for C. quinquefasciatus achieved the highest F1-score of 0.8403 and 

accuracy of 83.48%, indicating that this species may have more consistent or distinguishable acoustic 

patterns compared to others. Its high recall value (0.8695) also suggests that the model was able to 

correctly capture most of the true positive instances. 

The model for An. arabiensis also showed relatively stable performance with an F1-score of 

0.7880 and accuracy of 78.17%. Meanwhile, An. gambiae achieved slightly lower results with an F1-

score of 0.7660, indicating minor differences in the temporal or spectral patterns that may contribute to 

overlapping feature representations. Models for C. pipiens and Ae. albopictus had F1-scores of 0.7398 

and 0.7236 respectively, with moderate recall values between 0.7375 and 0.7570. This may reflect more 

variability in the signal patterns of these species, possibly due to wider recording conditions or more 

variation within class. 

 

 
Figure 1. One-vs-Rest Classification Results 

 

The model with the lowest performance was found in the Ae. aegypti classifier, which recorded 

an F1-score of 0.7084 and accuracy of 70.52%. One possible explanation is the frequency proximity 

and signal shape similarity between Ae. aegypti and other species such as Ae. albopictus, which may 

have contributed to more frequent misclassifications. These findings also highlight that classification 

difficulty may not solely depend on the number of training samples but on the distinctiveness of the 

acoustic patterns of each species. 

To further observe the model’s behavior over training time, validation accuracy and loss curves 

were monitored throughout 100 epochs for each binary classifier. Figure 3 shows the trend of validation 

accuracy per class. 
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Figure 2. Accuracy of Six Mosquito Using BiLSTM 

 

From the early epochs, Culex quinquefasciatus displayed a steep and consistent rise in accuracy, 

surpassing 0.80 around epoch 40 and maintaining a stable trend above 0.83. This could indicate that the 

species has signal characteristics that are relatively more distinguishable by the BiLSTM model, 

potentially due to its spectral distribution or stability across samples. In contrast, Aedes aegypti and 

Aedes albopictus consistently produced lower validation accuracies, both converging below 0.73. The 

curves for these classes flattened early and did not exhibit significant upward trends in the later epochs. 

This may suggest that both species have overlapping frequency components or temporal signal patterns, 

making it difficult for the model to build a strongly discriminative representation. Anopheles arabiensis 

and Anopheles gambiae presented moderately increasing accuracy curves that plateaued near 0.78 and 

0.76 respectively. Meanwhile, Culex pipiens achieved a relatively stable accuracy in the range of 0.73–

0.74 after epoch 40. These trends reinforce the idea that certain species may inherently carry more 

acoustic regularity, while others tend to fluctuate or resemble one another more closely. 

 

 
Figure 3. Loss of Six Mosquito Using BiLSTM 

 

 Figure 4 displays the validation loss curves across the same training epochs. Once again, the C. 

quinquefasciatus model exhibited the most favorable trend, showing a rapid and smooth decrease in 

validation loss to a final value below 0.40. In comparison, Ae. aegypti and Ae. albopictus settled at the 

highest loss values—both remaining above 0.55—indicating that the models for these classes had 

greater difficulty minimizing classification error. 

Another interesting observation can be seen in the early phase (epoch 0–20), where all models 

experienced rapid loss reduction, implying effective early-stage learning. However, loss convergence 

patterns diverged across classes, where models such as An. arabiensis continued to refine well into later 

epochs, while others like Ae. albopictus stabilized prematurely. From both accuracy and loss 

perspectives, C. quinquefasciatus not only reached higher classification consistency but also showed 

signs of more stable optimization behavior. This aligns with earlier findings in the classification report 

and confusion matrix, where this species achieved higher precision and recall. 

Overall, the visual trends offer additional insights beyond static evaluation metrics. Specifically, 

they help uncover learning dynamics and possible saturation points for each class. The consistently 

lower accuracy and higher loss in Ae. aegypti and Ae. albopictus further support the hypothesis that 
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class overlap or feature redundancy may have hindered clearer class separation. These findings highlight 

the need for deeper exploration of signal characteristics and potential refinement of feature extraction 

strategies for species with marginal classification performance. It may also be beneficial to investigate 

whether more fine-tuned frame segmentation or signal normalization techniques could enhance 

performance on classes with slower learning curves. 

An important observation is that none of the individual models showed extreme overfitting or 

instability, as all results fall within a relatively narrow band between 0.70 and 0.84 for F1-scores, and 

70% to 83% for accuracy. This suggests that the learning process was consistent across species, and that 

the feature representation (LPC + statistical) provided a reasonable basis for temporal modeling. 

3.2. Fusion Results 

As shown in Figure 5, the multi-class classification performance after applying the 

BaggingClassifier fusion approach illustrates how well the system was able to recognize each mosquito 

species. The highest F1-score of 0.9943 was achieved for Ae. aegypti, with an exceptionally high recall 

of 0.9990. This suggests that nearly all actual instances of Ae. aegypti in the dataset were correctly 

recognized by the model, indicating a very high sensitivity toward this class. 

 

 
Figure 4. BiLSTM Fusion Results 

 

The model also demonstrated strong recognition of An. gambiae and C. pipiens, with F1-scores 

of 0.9641 and 0.9354, respectively. These values reflect a good balance between precision and recall, 

suggesting that the model had a stable classification pattern for these species. In the case of C. 

quinquefasciatus, the recall was notably high (0.9706), indicating that the model was generally able to 

detect this species. However, the precision of 0.9231 implies that some samples from other species may 

have been incorrectly predicted as C. quinquefasciatus, possibly due to shared spectral features with 

certain classes. For Ae. albopictus and An. arabiensis, F1-scores were slightly lower at 0.9316 and 

0.9432, respectively. Although both are still high, the recall values of 0.9151 and 0.9130 suggest that 

the model was slightly less sensitive in capturing all instances of these two species. This could indicate 

acoustic similarity with other classes, which can lead to misclassifications. 

Overall, as visualized in Figure 5, the macro-average recall of 0.9496 and weighted recall of 

0.9692 indicate that no species was significantly neglected. The fusion-based classification maintained 

consistent recognition across all classes, even though inter-class differences still played a role in 

performance variations. 

3.3. Confusion Matrix Analysis 

The confusion matrix presented in Figure 5 provides a more detailed view of the classification 

outcomes for each class after the fusion stage. Diagonal values close to 1.00 indicate correct predictions, 
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while off-diagonal entries represent misclassifications. The matrix confirms that the model was able to 

classify Ae. aegypti samples with perfect accuracy (1.00), showing zero misclassifications for this class. 

For C. quinquefasciatus and An. gambiae, correct predictions reached 97%, with minimal 

confusion primarily coming from neighboring classes. For instance, 2% of An. gambiae samples were 

incorrectly predicted as C. quinquefasciatus, and 1% of C. quinquefasciatus as Ae. albopictus. Although 

minor, these misclassifications suggest that certain acoustic similarities exist between these species. C. 

pipiens achieved 93% correct predictions, with some misclassifications spread thinly across other 

classes such as Ae. aegypti and Ae. albopictus. Ae. albopictus and An. arabiensis recorded slightly lower 

values at 92% and 91%, respectively. Notably, Ae. albopictus was occasionally misclassified as C. 

quinquefasciatus (3%) and C. pipiens (3%), suggesting that those species may share overlapping signal 

patterns or ambiguous features within the extracted representations. 

Overall, Figure 5 supports the classification report findings and highlights that while most classes 

were well distinguished by the fusion model, minor confusion persisted between acoustically similar 

species. The near-diagonal dominance of the matrix indicates that the model preserved a strong capacity 

to isolate and assign each instance to the correct class. 

 

 
Figure 5. Confusion Matrix 

4. DISCUSSIONS 

This study adopts an acoustic-based classification approach using wingbeat signals of mosquitoes 

from the public Wingbeats dataset, which was consistently recorded using optoelectronic devices at the 

Biogents facility in Germany[9]. This consistent recording setup serves as a key advantage by 

minimizing channel variations commonly caused by differences in recording equipment—an issue 

frequently encountered in other datasets such as HumbugDB and Dryad[9]. 

In comparison, the model developed in this study demonstrates relatively stable and competitive 

performance. Evaluation results show an accuracy of 96.85% and an F1-score of 95.03% after applying 

the fusion method. This is slightly higher than the GFCC + MLP model, which achieved an accuracy of 

93.82% on the Wingbeats dataset[9]. This difference may be attributed to the use of BiLSTM, which is 

more sensitive to temporal dynamics than MLP, and the combination of two complementary features: 
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LPC, which captures predictive spectral information, and Mel-Spectrogram, which represents energy 

distribution across frequencies. 

From a model architecture perspective, the BiLSTM approach used in this study differs from two 

ResNet-based approaches [10], [11]. While ResNet models with attention mechanisms have shown high 

accuracy (up to 99%) in binary classification scenarios, they typically require complex tuning and large 

data volumes. Moreover, most of these studies focus only on binary classification (e.g., Ae. aegypti vs. 

non-Ae. aegypti), whereas this research addresses multi-class classification involving six mosquito 

species, including acoustically overlapping species like Ae. aegypti and Ae. albopictus. This makes the 

classification task more complex and closer to real-world conditions. 

Although the ensemble model effectively improves aggregate performance, the confusion matrix 

reveals that misclassifications still occur between certain species pairs such as An. gambiae and C. 

pipiens. This suggests that while the acoustic features are informative, spectral overlap between species 

remains a challenge. 

For future development, adopting Mamba, a recent state space model architecture designed for 

long sequential data, could be beneficial. Without relying on self-attention mechanisms, Mamba 

effectively captures complex temporal dynamics, making it highly suitable for classifying audio signals 

such as mosquito wingbeats. 

5. CONCLUSION 

This study presents a multi-class classification system for mosquito species based on their 

wingbeat acoustic signals using BiLSTM models with hybrid LPC and Mel-Spectrogram features. 

Through one-vs-rest training and ensemble fusion, the proposed approach demonstrates consistent 

performance across six mosquito classes, despite spectral overlaps and class imbalance. The Wingbeats 

dataset, recorded uniformly using optoelectronic sensors, provides a reliable benchmark for validating 

acoustic-based mosquito classification models. Experimental results indicate that the combination of 

spectral compression via LPC and perceptual mapping through Mel-Spectrogram effectively captures 

species-specific signal patterns. The BiLSTM architecture, when coupled with ensemble voting, 

enhances temporal learning and mitigates misclassification from acoustically similar species. While the 

confusion matrix reveals some inter-class confusion, especially between Culex and Anopheles species, 

the overall performance remains stable with macro-average recall above 94%. Future improvements 

may involve incorporating advanced temporal models like Mamba to better capture long-range 

dependencies in mosquito wingbeat signals. This research contributes to the development of non-

invasive, data-driven tools for mosquito species identification, with potential applications in public 

health surveillance and vector control strategies. 
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