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Abstract 

Emotion is a condition that plays an important role in human interaction and is the main focus of intelligence research 

in utilizing multimodal. Previous studies have classified multimodal emotions but are still less than optimal because 

they do not consider the complexity of human emotions as a whole. Although using multimodal data, the selection 

of feature extraction and the merging process are still less relevant to improving accuracy. This study attempts to 

categorize emotions and improve precision through a multimodal methodology that utilizes Transformer-based 

Fusion. The data used consists of a synthesis of three modalities: text (extracted through BERT and assessed through 

the affective dimensions of NRC Valence, Arousal, and Dominance), audio (extracted through MFCC and delta-

delta2 from the RAVDESS and TESS datasets), and images (extracted through VGG16 on the FER-2013 dataset). 

The model is built by mapping each feature into an identical dimensional representation and processed through a 

Transformer block to simulate the interaction between modalities, known as feature-level interactions. The 

classification procedure is run through a dense layer with softmax activation. Model evaluation was performed using 

Stratified K-Fold Cross Validation with k=10. The evaluation results showed that the model achieved 95% accuracy 

in the ninth fold. This result shows a significant improvement from previous research at the feature level (73.55%), 

and underlines the effectiveness of the combination of feature extraction and Transformer-based Fusion. This study 

contributes to the field of emotion-aware systems in informatics, facilitating more adaptive, empathetic, and 

intelligent interactions between humans and computers in practical applications. 
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1. INTRODUCTION 

The World Health Organization (WHO) reported a rise in mental disorders, including anxiety and 

depression, in recent years. The WHO reported a 25% increase in the prevalence of anxiety and 

depression disorders in 2020. This rise is mostly linked to the global effects of the COVID-19 epidemic. 

This event illustrates the significance of comprehending the emotional essence of humanity. 

Consequently, there exists a necessity for technology that facilitates human emotional identification [1]. 

The system's capacity to identify and react to patient emotions is becoming increasingly 

significant in the realm of human-computer interaction (HCI). The recognition of emotions enables the 

system to modify its responses based on the patient's emotional state. Nevertheless, numerous 

impediments hinder the precision of emotion recognition. Occasionally, patients exhibit confused 

feelings. Recognizing emotions solely through text or voice frequently fails to capture the intricacies of 

complicated human emotions [2], [3]. 

A multimodal technique integrates text, audio, and visual data to discern emotions [4], [5]. Prior 

research has demonstrated that the incorporation of many modalities from different sources enhances 

system accuracy [6]. The study MMFT-BERT: Multimodal Fusion Transformer with BERT Encodings 

for Visual Question Answering by Khan et al. [7] presents a model that integrates BERT text and visual 
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representations from CNN independently before merging them using a transformer or called merging at 

the feature-level. The findings of this study demonstrated a notable enhancement in the accuracy of 

utilizing modality data sourced from various origins. The accuracy results achieved were 73.55% with 

3 datasets (trimodal) namely Question, Visual, and Subtitles, significantly surpassing previous studies 

that reported figures between 44.42% and 51.83% with only 2 datasets (bimodal) namely Question and 

Visual. This indicates that integrating three modalities from various sources can enhance comprehension 

and improve applications. Consequently, the application of multimodal approaches is widely sought 

after in contemporary research [8], [9], [10]. 

The Bidirectional Encoder Representations from Transformers (BERT) model is commonly 

employed in text data due to its proficient comprehension of semantic context [11]. BERT specializes 

in understanding word meanings through the interactions of words inside phrases or across sentences, 

making it particularly effective at collecting complex emotional nuances in text data [12], [13]. Affective 

representations, such as Valence–Arousal–Dominance (VAD), are crucial for capturing nuanced 

emotional characteristics. VAD categorizes emotions into three psychological dimensions: valence, 

arousal, and dominance [14]. This study used a combination of BERT and VAD extraction based on 

these concerns. 

The Mel-Frequency Cepstral Coefficients (MFCC), Delta-MFCC, and Delta2-MFCC models in 

audio data encapsulate the acoustic properties of speech signals [15]. MFCC accurately captures spectral 

patterns linked to human vocal articulation. Delta-MFCC and Delta2-MFCC captures temporal 

variations, enabling the detection of emotional dynamics such as intonation and vocal intensity [16], 

[17]. Voice-based emotion identification systems have extensively utilized this feature extraction 

method [18]. This study employs the MFCC and delta-MFCC models based on these concerns. 

The VGG16 architecture serves as the visual feature extractor for facial expressions in picture 

data. VGG16 possesses the capability to discern spatial patterns, including eyebrow movements, smiles, 

and tense emotions [19], [20]. These visual characteristics are crucial as facial expressions serve as the 

primary markers of emotion in non-verbal communication. A study by Saravanan et al. [21] shown the 

successful application of VGG16 for face mask detection. This study used the VGG16 model based on 

these assumptions. 

Evaluation necessitates the execution of multimodal data fusion. Conventional fusion methods, 

such as early and late fusion, frequently fail to capture intricate relationships between modalities. 

Transformer-Based Fusion was developed to address these limitations [22], [23]. This method employs 

self-attention and cross-attention mechanisms, along with Stratified K-Fold Cross Validation, to 

dynamically integrate diverse features [24], [25], [26]. This approach facilitates a more comprehensive 

understanding of the patient's psychological background. 

Therefore, this study develops and evaluates an emotion classification model employing a 

Transformer-Based Fusion architecture. By effectively integrating multimodal data, the primary 

objective is to achieve a significant improvement in predictive accuracy compared to prior research. The 

findings are anticipated to contribute to the technological advancement of more nuanced and accurate 

emotion recognition systems. 

2. METHOD 

This research comprises four principal stages as illustrated in Figure 1, namely data collection 

(both primary and secondary), data preprocessing (encompassing text preprocessing, feature extraction, 

data normalization, and feature selection), development of a test system via multimodal data fusion 

utilizing Transformer-Based Fusion and the Multi-Head Self-Attention model, and evaluation to assess 

model performance. 
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Figure 1. Research Stages 

2.1. Data Collection 

The main data used for multimodal emotion classification uses text, audio, and image modalities 

taken from Kaggle separately from tweet emotions, RAVDESS, TESS, dan FER-2013 data. FER-2013 

was chosen in this study because until 2020 and beyond, this dataset is still often used to conduct facial 

image research [27], [28], [29]. Then, the supporting data used is VAD which comes from the NRC 

VAD Lexicon with updated version 2022. The supporting data is used to extract text features in order 

to capture affective dimensions [30]. 

2.2. Data Preprocessing 

The primary stage in this study begins with selecting the target class to preserve data alignment 

across modalities. Given the multimodal nature of the data, it is crucial to verify that each modality has 

a consistent representation of the emotion class [31]. This technique is carried out by finding the target 

class available in each modality, then deleting any entries that do not have the same class in one of the 

modalities. In addition, to preserve semantic consistency, numerous emotion labels that have 

comparable meanings but are written differently will be standardized into one label [32]. 

2.2.1. Text Preprocessing 

In the text modality, a preprocessing technique is carried out to remove noise and simplify the 

data structure. This stage includes converting all text to lowercase, eliminating digits, deleting 

punctuation, removing stopwords, and the stemming process. This approach seeks to provide cleaner 

and more representative data, hence boosting the effectiveness of the feature extraction process and 

subsequent analysis [33]. 

2.2.2. Feature Extraction 

Feature extraction is done out independently according to the type of modality. In the text 

modality, a combination of BERT and NRC-VAD is utilized to capture phrase context and affective 

dimensions of emotion based on valence, arousal, and dominance [7]. The audio modality is retrieved 

using Mel Frequency Cepstral Coefficients (MFCC), Delta-MFCC, and Delta2-MFCC. MFCC is 

employed to describe the spectral features of the speech signal, while Delta and Delta2-MFCC record 
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temporal variations to reflect the emotional dynamics of voice intonation [34]. The visual modality 

(picture) is retrieved using a pretrained VGG16 model, which is able to distinguish spatial patterns in 

facial emotions such as eyebrow movements, grins, and facial muscular tension [29]. 

All extracted features are then standardized using StandardScaler to guarantee that the numerical 

distribution between features is on a comparable scale [35]. This stage is necessary to improve the 

performance of the classification model and prevent the dominance of one characteristic over the others. 

2.2.3. Feature Selection 

Furthermore, a feature selection stage is carried out to increase the efficiency and accuracy of the 

model by filtering the features that are most relevant to the target label. This study uses the Mutual 

Information approach, which calculates the degree of reliance between each feature and the target class. 

The features with the highest mutual information values were picked because they were believed to have 

the most significant impact to the emotion classification process [36]. Unlike linear correlation methods 

such as Pearson, Mutual Information can detect complex relationships hidden inside multimodal data.  

This strategy improves the relevance of features to the target class while significantly reducing input 

dimensionality without sacrificing critical information [37]. 

2.3. Data Balancing 

This study employed SMOTE for data balancing. The Synthetic Minority Over-sampling 

Technique (SMOTE) is an approach employed to address data imbalance by augmenting the minority 

class through the generation of synthetic data derived from existing minority data. In SMOTE, the 

selection of minority class instances and the determination of k-nearest neighbors for each instance are 

involved in the oversampling procedure. Subsequently, rather than merely replicating the current 

minority class instances, synthetic instances are generated through the combination or interpolation of 

the chosen instances. Thus, SMOTE can assist in addressing the issue of significant overfitting [38]. 

2.4. Modeling 

This study models multimodal data using the Transformer-Based Fusion architecture. The 

architecture aims to balance the feature representation of the three modalities by utilizing the attention 

mechanism to identify interactions between modalities [39]. Each modality is processed separately 

through a 128-dimensional Dense layer with the ReLU activation function to equalize the dimensions 

of the feature space with the equation 1: 

𝑀𝑜𝑑𝑎𝑙𝑖𝑡𝑦𝑃𝑟𝑜𝑗𝑖 = 𝑅𝑒𝐿𝑈(𝑋𝑖𝑊𝑖 + 𝑏𝑖) 𝐹𝑜𝑟 𝑖 ∈  {𝑡𝑒𝑥𝑡, 𝑎𝑢𝑑𝑖𝑜, 𝑖𝑚𝑎𝑔𝑒} (1) 

The ModalityProj or modality representations of text, audio, and image are combined into a fixed 

three-dimensional tensor to form an input structure of (batch_size, 3, 128) where X is input feature 

matrix, W is weight matrix, and b is bias vector. The Multi-Head Attention layer, which has four heads 

(num_heads = 4) and a key dimension of 64, collects cross-modality relations by the equation 2: 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄𝐾⊤

√𝑑𝑘
) 𝑉    (2) 

With Q = XWQ, K = XWK, V = XWV, and dk = 64 where the Q is query matrix, K is key matrix, 

and dk is dimesionality of key vectors. The results of several attention heads are combined through 

concatenation and linear projection with the equation 3: 

𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑(𝑄, 𝐾, 𝑉)  = 𝐶𝑜𝑛𝑐𝑎𝑡(ℎ𝑒𝑎𝑑1, … , ℎ𝑒𝑎𝑑ℎ)𝑊𝑂  (3) 
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The output of this layer is recombined through residual connections and normalized using Layer 

Normalization, according to the basic principles of the Transformer encoder architecture with the 

equation 4: 

𝑍1 = 𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚(𝑋 + 𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑(𝑄, 𝐾, 𝑉))   (4) 

Next, the attention results are processed by a two-layer feedforward neural network (FFN) block, 

each consisting of 128 neurons with ReLU activation using the equation 5: 

𝐹𝐹𝑁(𝑥) = 𝑅𝑒𝐿𝑈(𝑥𝑊1 + 𝑏1)𝑊2 + 𝑏2 (5) 

To keep the activation distribution stable and facilitate better training, this process also uses 

residual connection and Layer Normalization after FFN using the equation 6: 

𝑍2 = 𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚(𝑋 + 𝐹𝐹𝑁(𝑍1)) (6) 

To generate probabilities for each emotion class, Z2 where Z is fused representation then 

summarized using Global Average Pooling with the equation 7: 

𝑧 =
1

3
∑ 𝑍2[𝑖]3

𝑖=1  (7) 

This results in a single latent representation that represents the combined information from all 

three modalities. This representation is then mapped to the output space using a softmax-enabled Dense 

layer using the following equation 8: 

ŷ = softmax(𝑧𝑊 + 𝑏) (8) 

So, Transformer-Based Fusion not only combines modalities, but also models complex relation 

learning [40]. 

2.5. Evaluation 

2.5.1. Validation Strategy 

This study utilized a Stratified K-Fold Cross Validation strategy with 10 folds to ensure the 

validity and reliability of the performance results. This method partitions the complete dataset into 10 

distinct, equally sized subsets, commonly referred to as "folds." This validation method employs 10 

folds, allocating 90% of the data for training and 10% for testing. The validation process is conducted 

ten times, with each iteration holding one unique fold as the test set, while the other nine folds are 

combined to create the training set. As a result, every data point is utilized as test data one time and as 

training data nine times throughout all iterations. 

An essential element of this approach is stratification, which rigorously preserves the same class 

distribution within each fold as it exists in the overall dataset. Stratification guarantees that every fold 

accurately reflects the class proportions of the dataset, effectively reducing the sampling bias that may 

occur with basic random splitting. This enhances the dependability of the overall performance 

assessments and offers a more precise evaluation of the model's capacity to generalize to novel, unseen 

data [41]. 

2.5.2. Evaluation Matrix 

At this stage, perform an evaluation matrix by assessing the model performance through the use 

of a confusion matrix, as illustrated in Table. 1: 
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Table 1. Confusion Matrix 

Classification Predicted Positive Predicted Negative 

Actual Positive True Positive (TP) False Negative (FN) 

Actual Negative False Positive (FP) True Negative (TN) 

 

In using confusion matrix, there are 4 components that must be considered, namely true positive 

(TP) or positive data that is predicted to be correct, true negative (TN) or negative data that is predicted 

to be correct, false positive (FP) or negative data but predicted as positive, and false negative (FN) or 

positive data but predicted as negative. The data is also used to perform classification reports by 

calculating the accuracy, precision, recall, and f1-score values which can be seen in equations 9, 10, 11, 

and 12: 

• Accuracy is the ratio of correct predictions from all data. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
(𝑇𝑃+𝑇𝑁)

(𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁)
 (9) 

• Precision is the ratio of correct positive predictions from all predictions that result in 

positive. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (10) 

• Recall is the ratio of correct positives from all data that are true positive. 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (11) 

• F1-Score is a comparison of precision and recall. 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 =
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
 (12) 

So, with the formula above, the results of the evaluation will be informative and can decide the 

next stage by looking at the classification report and confusion matrix [42]. 

3. RESULT 

A sequence of procedures has been conducted to assess the efficacy of the multimodal emotion 

categorization model utilizing three modalities: text, audio, and visuals. This procedure entails assessing 

classification accuracy, analyzing the distribution of classifications among emotion labels, and 

evaluating the performance of each modality in relation to the final outcome following the fusion process 

utilizing the Transformer-Based Fusion architecture. 

3.1. Data Collection 

The utilized data comprises primary data and supporting data. The primary data comprises a 

dataset of three modalities: text with 44.001 data, audio with 4.240 data, and image with 35.900 data. 

The multimodal data has six selected categories: neutral, happy, sad, surprised, angry, and fear. The 

audio and image dataset is contained within a ZIP folder, with file names according to their respective 

sentiments or labels. The dataset for text data is structured as a CSV file, comprising columns for text 

and sentiment, which include a compilation of tweets that can be seen in the Table 2: 
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Table 2. Text Dataset 

Feature Description 

Text A collection of text taken from tweets that represent emotions. 

Sentiment Shows whether tweets in the text feature fall into one of the labels (neutral, happy, sad, 

surprised, angry, or fear). 

 

For supporting data, utilize the VAD list of English words sourced from an emotion lexicon 

provider with updated version 2022. 

3.2. Data Preprocessing 

At this stage, each label is ensured to have the same name across modalities by performing label 

mapping. The goal is to ensure labels are consistent and there are no duplicate labels with the same 

intent but different label names. Label mapping provisions can be seen in Table 3: 

 

Table 3. Label Mapping 

Label name list Label name standard 

anger, angry angry 

fear, fearful fear 

happy, happiness happy 

neutral neutral 

sad, sadness sad 

surprise, surprised surprised 

 

Subsequently, it is essential to perform label equalization to guarantee that each modality has a 

uniform label, with the selected labels stored in the COMMON_LABELS variable: “neutral”, “happy”, 

“sad”, “surprised”, “angry”, and “fear”. 

3.2.1. Text Preprocessing 

At this stage, preprocess the text by converting to lowercase, removing numbers, removing 

punctuation, removing stopwords, and stemming. So, the results are as in Table 4: 

 

Table 4. Text Preprocessing 

No. Before text preprocessing After text preprocessing 

1 the poetry event was a success. I don't think 

... 

poetri event success dont think ever realli 

th... 

2 @MichelleZen That sounds good, too! michellezen sound good 

3 its sad that the rats are becoming aggressive 

... 

sad rat becom aggress guinea pig seper 

4 I FOUND A PROM DRESS found prom dress 

5 got THE best mothers day present from Tys. 

It ... 

got best mother day present ty made cri 

uncont... 

 

 With text preprocessing, the data will be cleaner, simpler, and standardized to create raw text 

that is easier and more effective to analyze. 
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3.2.2. Feature Extraction 

Subsequently, feature extraction is conducted for each modality. In the text modality, employing 

the VAD Lexicon to quantify valence, arousal, and dominance on a scale from 0 to 1. Furthermore, the 

BERT model serves as a tool for text feature extraction. After that, perform data normalization using 

StandardScaler on the feature extraction results. Thus, it produces 771 feature columns in the text as in 

the Table 5: 

 

Table 5. Text Feature Extraction 

No. Valence Arousal Dominance BERT_0 BERT_1 … BERT_767 

1 0.664875 0.437500 0.613555 -1.519009 -0.150525 … -1.498952 

2 0.000000 0.000000 0.000000 0.137627 0.811491 … -0.997816 

3 0.407000 0.554359 0.459362 0.564261 0.407000 … 0.347465 

4 0.000000 0.000000 0.000000 -0.033311 -2.065822 … -1.617836 

5 0.575000 0.385504 0.491770 -2.705802 -0.175697 … -0.035887 

 

In audio modality, employing MFCC, Delta-MFCC, and Delta2-MFCC models. MFCC is selected 

to extract pertinent frequency data from the sound spectrum. Subsequently, Delta-MFCC and Delta2-

MFCC are employed to track variations in MFCC features across time intervals. After that, perform data 

normalization using StandardScaler on the feature extraction results. Thus, it produces 40 feature 

columns in the audio as in the Table 6: 

 

Table 6. Audio Feature Extraction 

No. MFCC_0 MFCC_1 MFCC_2 MFCC_3 … Delta2_MFCC_12 

1 -1.193781 0.608742 0.227484 -0.360233 … -0.134319 

2 -1.201477 0.664056 0.701380 0.735217 … -0.257554 

3 0.043896 0.120376 -2.994666 -1.201312 … -0.157851 

4 -0.910055 -0.571925 -0.854156 -1.041108 … 0.010721 

5 -0.889016 -0.612343 -1.641003 -1.194173 … -0.348083 

 

In the image modality, using the VGG16 model. This model is chosen to extract images into 

numeric feature vectors by capturing edges, textures, patterns, and shapes of objects. After that, perform 

data normalization using StandardScaler on the feature extraction results. Thus, it produces 512 feature 

columns in the image as in the Table 7: 

 

Table 7. Image Feature Extraction 

No. 0 1 2 3 … 510 511 

1 -0.761640 -0.10832 0.064264 0.068542 … 0.005430 -0.308691 

2 1.325315 -0.10832 -0.517475 3.167578 … -0.172866 -0.308691 

3 0.813441 -0.10832 2.568999 -0.371058 … 0.730289 -0.308691 

4 0.872871 -0.10832 -0.231355 -0.908448 … 0.115922 -0.308691 

5 -0.761640 -0.10832 0.064264 0.068542 … 0.005430 -0.308691 

3.2.3. Feature Selection 

from the feature extraction results, features that have a large number of columns will be selected 

using Mutual Information. In the text feature, there are 771 columns. Because there are too many 

features, feature selection is carried out on text by determining the 100 best features, the results of which 

can be seen in the Table 8: 
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Table 8. Text Feature Selection 

No. Valence Arousal Dominance BERT_0 BERT_2 … BERT_760 

1 0.664875 0.437500 0.613555 -1.519009 -1.229215 … 1.335034 

2 0.000000 0.000000 0.000000 0.137627 -0.204385 … -1.419773 

3 0.407000 0.554359 0.459362 0.564261 -1.913765 … -1.577483 

4 0.000000 0.000000 0.000000 -0.033311 -1.864708 … 1.014428 

5 0.575000 0.385504 0.491770 -2.705802 -0.410916 … 0.844633 

 

In addition, the image feature also produces a very large number of features reaching 512 

columns. Therefore, the image feature also needs to be selected by selecting the 100 best features from 

all image features. The results can be seen in the Table 9: 

 

Table 9. Image Feature Selection 

No. 0 8 15 27 … 499 506 

1 -0.761640 -1.196760 0.644437 -0.421204 … -1.043551 0.324348 

2 1.325315 -0.690800 -0.519002 -0.795902 … -0.983943 -0.725453 

3 0.813441 0.645709 0.107909 -0.400142 … 0.655538 2.126331 

4 0.872871 0.172662 -0.601962 0.391708 … 0.120511 -1.305351 

5 -1.829473 -1.275732 0.723356 -0.299732 … -1.051156 -1.181131 

 

For audio, it has 40 feature columns and is still relatively small so there is no need to select the 

features. Upon finalizing the feature selection process, the subsequent step involves executing modality 

alignment.  The data quantity is established for each modality by identifying the minimum data set 

across all modalities, resulting in a uniform amount of 2856 per modality. 

3.3. Data Balancing 

This study utilized SMOTE to rectify data imbalance. The Synthetic Minority Over-sampling 

Technique (SMOTE) is an oversampling method employed to correct class distribution by creating 

synthetic instances for minority classes derived from existing minority data. Before implementing 

SMOTE, the sample count per label for each modality was standardized by choosing the least sample 

size available among the three modalities. This approach ensures that each modality provides data 

uniformly, preventing any deficiency and preserving consistency among all input sources. The pre-

balancing sample counts per label were 592 for the angry and happy classes, 496 for neutral, and 392 

for sad, fear, and surprised. SMOTE was subsequently employed on each modality separately to produce 

synthetic data for underrepresented classes, yielding a balanced dataset. The ultimate data distribution 

following SMOTE processing is depicted in Figure 2: 

 

 
Figure 2. (a) before SMOTE per Modality; (b) after SMOTE per Modality 
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In Figure 2 indicates that each modality, following SMOTE application, is balanced with a total 

of 3552 data points per modality. 

3.4. Modeling 

This step builds a Transformer-based Fusion categorization architecture to combine text, audio, 

and image information with a total of 3552 data per modality after the SMOTE process. A feature vector 

extracted using BERT + NRC-VAD for text, MFCC, Delta-MFCC, and Delta2-MFCC for audio, and 

VGG16 for image represents each modality. In Keras, the Input layer receives three inputs, one for each 

modality's feature dimension. Each feature vector is projected to the same spatial dimension using a 

128-dimensional Dense layer and ReLU activation before fusion. The attention layer processes a 3D 

tensor created by combining the three projection representations using tf.stack. 

Inter-modality fusion uses Multi-Head Self Attention with 4 heads (num_heads = 4) and 64 key 

dimensions. In an integrated spatial representation, this attention mechanism lets the model record 

contextual links between information from the three modalities. The residual connection from attention 

is added to the initial input and normalized using LayerNormalization. Next, output is sent to a two-

layer Feed Forward Network (Dense 128 to ReLU, back Dense 128, then to ReLU again) with residuals 

and renormalization. After spatial aggregation with GlobalAveragePooling1D, a Dense layer with 

softmax activation classifies emotions. 

3.5. Evaluation 

3.5.1. Validation Strategy 

The evaluation of model performance was performed using the Stratified K-Fold Cross Validation 

method with 10 folds. This strategy was selected to maintain a balanced distribution of class labels in 

each fold, hence rendering the model performance evaluation more representative. 

The model is trained on each fold with predetermined parameters: batch size of 32, 15 epochs, 

and the Adam optimizer. Following the training on each fold, predictions are generated for the test data, 

after which the assessment metrics, specifically accuracy and weighted F1-score, are computed. 

Furthermore, a classification report and confusion matrix are generated for each fold to assess the 

model's efficacy across each emotion category with the report classification results in Table 10: 

 

Table 10. Classification Report of Trimodal Best Fold 

Fold param Precision Recall F1-Score Support Accuracy 

9 

Neutral 0.98 0.98 0.98 59 

0.95 

Happy 0.98 0.97 0.97 60 

Sad 0.95 0.98 0.97 59 

Surprised 0.92 0.92 0.92 59 

Angry 0.93 0.90 0.91 59 

Fear 0.92 0.93 0.92 59 

 

The trimodal model's performance underwent a thorough evaluation through a 10-fold cross-

validation approach. Table 10 provides a comprehensive overview of the classification metrics for the 

single fold that achieved the best performance, designated as Fold 9. The fold reached a peak accuracy 

of 0.95, which corresponds to 95%. The performance across the other folds exhibited variability, with 

the following accuracies recorded: 85% for fold 1, 81% for fold 2, 81% for fold 3, 88% for fold 4, 90% 

for fold 5, 91% for fold 6, 93% for fold 7, 94% for fold 8, and 93% for fold 10. Fold 9 is the best fold 

because it is the standard result of the cross-validation process that representing the model's peak 

capability on the specific data partition that proved most useful during iterative validation. 
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3.5.2. Evaluation Matrix 

From the classification report from Table 10, confusion matrix of best fold trimodal model can 

be calculated which can be seen in Figure 3: 

 

 
Figure 3. Confusion Matrix – Best Fold Trimodal Model 

 

From the Figure 3, it is known that the model successfully classified 58 data as neutral correctly, 

58 data as happy correctly, 58 data as sad correctly, 54 data as surprised correctly, 53 data as angry 

correctly, and 55 data as fear correctly. 

 

Table 11. Comparison Between Models - Highest Accuracy 

Models Accuracy F1-Score 

BERT-VAD + MFCC, Delta, and Delta2 + 

VGG16 + Early Fusion 

0.93 0.93 

BERT-VAD + MFCC, Delta, and Delta2 + 

VGG16 + Late Fusion 

0.94 0.94 

BERT-VAD + MFCC, Delta, and Delta2 + 

VGG16 + Transformer-Based Fusion 

0.95 0.95 

 

From Table 11, a comparative analysis was conducted to assess the efficacy of the proposed 

architecture, focusing on three distinct multimodal fusion strategies: Early Fusion, Late Fusion, and the 

proposed Transformer-Based Fusion. Table 11 illustrates that this experiment was structured to examine 

the influence of the fusion mechanism on classification performance while ensuring uniformity in the 

input features utilized, namely, BERT-VAD for text, MFCC, Delta, and Delta² for audio, and VGG16 

for image. 

The assessment uncovered a clear performance ranking among the three models. The 

Transformer-Based Fusion architecture demonstrated exceptional performance, achieving an Accuracy 

and F1-Score of 0.95. The performance exceeded that of the Late Fusion architecture, which achieved 

a score of 0.94, and the Early Fusion architecture, which recorded a score of 0.93. The Transformer-

Based Fusion architecture was quantitatively proven to be the most effective strategy among the 

architectures or model types tested, highlighting the importance of integrating attention-based features 

for this task. 
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Figure 4. (a) Average Accuracy Between Models; (b) Trimodal Model Performance Trend per Fold 

 

The Figure 4 presents a detailed overview of the proposed model's performance. The bar chart on 

the left illustrates a comparative ablation study, showcasing the average accuracy attained by three 

distinct model configurations: unimodal (Text), bimodal (Text + Audio), and the final trimodal (Text + 

Audio + Image) architecture. This chart illustrates a notable enhancement in performance as additional 

modalities are incorporated, with the trimodal model reaching the peak average accuracy of 0.89 or 89%. 

The line chart on the right illustrates the performance trend of the final trimodal model throughout the 

10 folds of the cross-validation process. The plot displays the Accuracy represented by the blue line and 

the F1-Score indicated by the red line for each fold. The data indicates that although performance varies, 

which is a typical feature of cross-validation, the model reliably attains high scores (exceeding 0.90) 

starting from fold 5. The strong correlation between the Accuracy and F1-Score metrics suggests a 

balanced classification performance across various emotion labels, with the model demonstrating its 

highest effectiveness in the later folds. 

4. DISCUSSIONS 

An extensive analysis was conducted on the performance of the multimodal emotion classification 

model, which incorporates features from three primary modalities namely text using BERT and NRC-

VAD, audio using MFCC, Delta-MFCC, and Delta2-MFCC, and images using VGG16. The evaluation 

utilized the Stratified K-Fold Cross Validation method (k = 10) and achieved an accuracy of 95% on the 

ninth fold, indicating a significant proficiency in emotion recognition from multimodal input. 

Testing each mode individually revealed that the text modality had the lowest accuracy relative 

to the other two modalities. This is probably attributable to the restricted context of emotions that may 

be conveyed just through writing. Conversely, the image modality yields the highest accuracy, as facial 

expressions visually convey emotions most directly. The auditory modality occupies an intermediary 

position, demonstrating a strong capacity to identify high-intensity emotions. 

The integration of the three modalities using the Transformer-Based Fusion architecture 

technique yields a substantial enhancement in accuracy. This combination effectively harnesses the 

distinct advantages of each modality synergistically, particularly in the classification of ambiguous 

emotions like "fear" and "surprise," which frequently overlap both visually and verbally. 

These research are juxtaposed with other prior research that share a comparable focus. For 

instance, in the research conducted by Khan et al. [7], which focused on emotion categorization utilizing 
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two modalities namely text and visual, a maximum accuracy of 73.55% was achieved through a late 

fusion method employing the Question, Visual, and Subtitles datasets. The findings suggest that 

including audio modalities and employing transformer-based fusion topologies, as demonstrated in this 

study, can yield substantial enhancements in performance. 

This evaluation demonstrates that the integration of text, audio, and image-based modalities using 

a Transformer-Based Fusion approach yields substantial accuracy enhancements and exhibits flexibility 

in addressing the variability of emotional expressions in complex inputs. This methodology is very 

applicable to numerous real-world contexts, including emotion analysis in customer service systems, 

human-computer interaction, and psychological well-being assessment. It is important to acknowledge 

that augmenting model complexity leads to elevated computing demands. Consequently, the deployment 

of this system on resource-constrained devices necessitates adjustments via model optimization or the 

application of effective model compression techniques. 

5. CONCLUSION 

The multimodal emotion classification system, utilizing a Transformer-Based Fusion 

architecture, achieved an accuracy of 95% in the ninth k-fold validation based on the test data. The 

integration of features from three modalities namely text using BERT and NRC-VAD, audio using 

MFCC, Delta-MFCC, and Delta2-MFCC, and pictures using VGG16, demonstrated a considerable 

enhancement in performance relative to their individual applications. The test results from the ninth fold 

shown elevated and consistent precision, recall, and F1-score metrics across all emotion categories. The 

“neutral” emotion achieved the highest f1-score of 0.98, succeeded by “happy” and “sad” at 0.97, 

“surprised” and “fear” at 0.92, and “angry” recorded the lowest F1-score at 0.91, yet remained within a 

high range. The mean macro and weighted F1-scores were both 0.95, showing the model's consistency 

across classes. 

Analysis by modality indicates that the image modality yields the highest accuracy relative to the 

other two, as facial expressions more effectively convey emotions. The text modality has the lowest 

accuracy due to the contextual and ambiguous nature of emotional expressions in written form, but the 

audio modality ranks in the middle and effectively differentiates high-intensity emotions. 

Furthermore, the implementation of the SMOTE oversampling technique facilitates the 

equilibrium of class distribution without inducing overfitting, as it is executed with a maximum ratio of 

1:2. This enhances the stability of classification outcomes among classes and augments performance in 

classes with less data. 

This study demonstrates that the multimodal Transformer-Based Fusion methodology possesses 

significant potential for use in many real-world scenarios, including user emotion analysis, AI-driven 

psychological services, and enhanced empathetic and adaptable human-computer interactions. 

For future development, it is advisable to evaluate the system using data from diverse real-world 

contexts, including noise, picture distortion, or non-standard text, and to compare alternative fusion 

architecture such as cross-modal attention or joint embedding. Evaluating devices with constrained 

resources is crucial for assessing the system's efficiency in practical applications. 
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