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Abstract 

The growing complexity and volume of data across various domains necessitate machine learning models that are 

scalable and robust for large-scale classification tasks. Ensemble methods such as Gradient Boosting Decision Trees 

(GBDT) demonstrate effectiveness; however, they encounter issues concerning scalability and training stability when 

applied to very deep architectures. This work presents a novel enhancement using residual connections derived from 

deep neural networks into the Distributed Gradient Boosting Forest (DGBF) algorithm. By enabling direct gradient 

propagation across layers, residual connections solve the vanishing gradient problem and so improve gradient flow, 

accelerate convergence, and stabilise the training process. The Residual DGBF model was assessed using seven 

distinct datasets across the domains of cybersecurity, financial fraud, phishing, and malware detection. The Residual 

DGBF consistently surpassed the baseline DGBF in terms of accuracy, precision, recall, and F1-score across all 

datasets. Particularly in datasets marked by imbalanced classes and complex feature interactions, this suggests 

improved generalisation and higher predictive accuracy. By proving more stable and strong gradients across the depth 

of the model, layer-wise gradient magnitude analysis supports these improvements and so confirms the effectiveness 

of residual connections in deep ensemble learning. This work improves ensemble techniques by combining the 

scalability and interpretability of decision tree ensembles with the residual architecture optimising benefits. The 

proposed Residual DGBF enables future research on enhanced deep boosting frameworks by offering a strong and 

scalable method to address challenging real-world classification tasks. 
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1. INTRODUCTION 

In recent years, ensemble learning methods have become a cornerstone in machine learning, 

especially for structured and tabular data, due to their robust performance and interpretability [1], [2], 

[3], [4]. However, real-world applications (particularly in cybersecurity and fraud detection) pose 

increasingly complex challenges. These include extreme class imbalance, high-dimensional features, 

and evolving attack patterns that degrade model performance over time. Traditional classifiers, and even 

standard ensemble techniques, often struggle to generalize effectively under these conditions. In high-

stakes domains such as phishing detection, malware analysis, and transaction fraud detection, 

misclassification can lead to significant security breaches and financial loss. This risk is further 

exacerbated by class imbalance and evolving behavior patterns, which are pervasive issues in financial 

fraud and cybersecurity applications [5], [6], [7]. Among these, Gradient Boosting Decision Trees 

(GBDT) have become rather well-known since their capacity to repeatedly combine weak learners to 

generate strong predictive models [8], [9]. The iterative character of GBDT helps the model to 

concentrate progressively on challenging-to-predict samples, so improving general performance [10], 

[11], [12], [13] 
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However, classical boosting methods often face scalability issues when applied to very large 

datasets or complex problem domains [14]. This limitation arises from the sequential nature of the 

training process, which constrains parallelization and results in extended training durations. These 

constraints present considerable difficulties in big data contexts and real-time applications where 

computational efficiency is essential [12], [15], [16]. To address these issues, Distributed Gradient 

Boosting Forest (DGBF) has been presented as a new design that expands boosting into a distributed, 

layered ensemble framework [17].  

DGBF proposes an ensemble technique based on gradient descent, using Gradient Boosting and 

Random Forest as its basic learners. Random Forest is an ensemble learning method that builds 

numerous decision trees during the training phase, ultimately producing final predictions by averaging 

results in regression tasks or utilizing majority voting in classification tasks [18]. Gradient Boosting 

(GB) provides a robust ensemble method in machine learning and develops predictive models 

sequentially, with the objective of reducing errors at each iteration. This methodology optimizes 

differentiable loss functions, providing significant versatility across different problem types [19]. DGBF 

diverges from conventional sequential boosting by training multiple decision trees concurrently at each 

layer, thereby creating a deep forest structure akin to neural network architectures. This design enables 

DGBF to acquire complex data representations while utilizing the interpretability of tree models and 

efficiently scaling across distributed computing environments [17].  

Several studies have recently explored ensemble deep learning architectures in various domains. 

Ganaie et al. [1] and Mohammed and Kora [2] presented comprehensive reviews on ensemble methods, 

highlighting their robustness and challenges in scaling. In the field of cybersecurity, Hossain and Islam 

[3] proposed a hybrid ensemble approach for botnet detection, emphasizing the need for improved 

feature learning. Additionally, Borisov et al. [4] reviewed the limitations of deep neural networks on 

tabular data, reinforcing the relevance of tree-based methods like DGBF for structured data. While 

DGBF has demonstrated promise in distributed learning [18], its ability to propagate gradients 

efficiently across deep layers remains underexplored. 

Despite its promising capabilities, DGBF, like many deep learning-inspired ensemble methods, 

can suffer from the vanishing gradient problem [17], [20]. As the ensemble deepens with more layers, 

the gradient signals propagated during training may weaken exponentially, leading to slower 

convergence and reduced learning effectiveness [1], [21]. Deep neural networks identify this 

phenomenon, which limits the depth models can be trained with efficiency. 

A key advance in mitigating this problem came with the inclusion of residual connections in deep 

neural networks, as exemplified by ResNet [22], [23], [24], [25], [26], [27]. Residual learning employs 

bypass connections that transmit data input across layers, maintaining gradient magnitude and enabling 

the training of extremely deep models without deterioration [24]. Specifically, residual connections 

allow models to learn identity mappings, which ease the flow of gradients and prevent vanishing, making 

the training of very deep architectures feasible. A comprehensive survey on deep residual learning 

elaborates on its theory, applications, and benefits, confirming residual learning as a powerful 

mechanism for stabilizing and enhancing deep model training [22]. 

Apart from convolutional networks, this architectural innovation has been extensively applied in 

transformer models in natural language processing [28], [29]. However, residual connection variants 

such as Post-Layer Normalization (Post-LN) and Pre-Layer Normalization (Pre-LN) each suffer from 

different limitations: Post-LN models can suffer from gradient vanishing that hinders training very deep 

Transformers, while Pre-LN models risk representation collapse that reduces model capacity [29]. The 

ResiDual Transformer architecture has been proposed to address these issues by integrating the 

advantages of both variants through the use of dual residual connections (Pre-Post-LN). This method 

concurrently tackles gradient vanishing and representation collapse, thereby ensuring stable gradient 
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flow and preserving substantial representational diversity [29], [30]. Theoretical analyses prove that 

ResiDual provides a lower bound on the gradient norm and preserves model expressiveness, and 

empirical results confirm its superior performance on machine translation benchmarks of varying scales 

[29]. 

While residual learning has been extensively adopted in deep neural network architectures, 

particularly in convolutional and transformer models [22], [24], [28], its integration into ensemble-based 

tree learners such as DGBF has not been systematically studied. Existing implementations of DGBF 

focus primarily on distributed efficiency and structural layering, without addressing training stability in 

deeper configurations. This indicates a gap in leveraging residual mechanisms to improve gradient flow 

and convergence within distributed tree-based boosting frameworks. Motivated by developments in 

residual learning architectures, our research incorporates dual residual connections into the DGBF 

framework, introducing a Residual DGBF model that maintains gradient magnitude across layers and 

reduces convergence instability.  This facilitates more profound and stable distributed boosting forests 

that leverage gradient stabilisation approaches inspired by neural networks. The novelty of this study 

lies in the explicit integration of dual residual connections into the DGBF framework, forming a 

Residual Distributed Gradient Boosting Forest (Residual DGBF). To the best of our knowledge, this is 

the first attempt to combine gradient-stabilizing residual paths with a layered boosting structure, 

enabling deeper, more stable training of ensemble tree models while preserving interpretability and 

scalability. 

We evaluate the model across seven diverse and challenging datasets spanning financial fraud 

and cybersecurity domains, including TUANDROMD, creditcard fraud, transaction fraud detection, 

phising dataset, phishing email classification, malware behavior detection, and general fraud detection 

datasets. 

We assess the performance of the residual Distributed Gradient Boosting Forest (DGBF) using 

accuracy, precision, recall, and F1-score as primary metrics. The analysis of layer-wise gradient 

magnitudes indicates that residual learning stabilises the training process by maintaining strong gradient 

signals throughout the entire ensemble depth.  This study introduces an improved DGBF model that 

enables more profound ensemble learning, rendering it applicable to various real-world classification 

tasks. 

2. METHOD 

The research process in this study is structured into several interconnected phases, as illustrated 

in Figure 1. It begins with the data collection stage, in which seven publicly available benchmark 

datasets from cybersecurity and fraud detection domains are selected based on their relevance and 

representativeness. The second phase is data preprocessing, where raw data undergoes cleaning to 

remove duplicates and invalid entries, followed by handling missing values through median imputation 

and encoding categorical features. This phase guarantees that the input data is consistent, numerical, and 

appropriate for model ingestion. The third phase involves the development of the predictive model. 

Here, the Distributed Gradient Boosting Forest (DGBF) is implemented and subsequently enhanced 

using residual connections to form the Residual DGBF model. This architectural innovation is aimed at 

improving gradient flow and training stability in deep ensemble structures. The fourth phase consists of 

the experimental setup, including the configuration of hyperparameters, environment settings, and 

model training protocols. The datasets are divided into training and testing subsets using stratified 

sampling to preserve class distribution. Finally, the performance of the models is evaluated using 

classification metrics accuracy, precision, recall, and F1-score as well as layer-wise gradient magnitude 

analysis to measure gradient stability across layers. Each of these stages is elaborated in the subsequent 

subsections to offer a thorough perspective of the methodology employed. 

https://jutif.if.unsoed.ac.id/
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Figure 1. Research Flowchart 

 

 

2.1. Data Collection 

Data collection techniques encompass the systematic methods employed by researchers to gather 

relevant information or data necessary for the study. These techniques constitute a fundamental and 

strategic component of the research methodology, as the quality and accuracy of collected data directly 

impact the validity and reliability of the research findings [31]. This work evaluates the performance of 

the suggested models using seven different datasets gathered and applied. Every dataset reflects unique 

domains and features, so offering a varied collection of samples to fully evaluate the generalizability 

and resilience of the systems. Crucially important elements affecting model performance are the 

variations in the number of instances, feature types, and class distributions among the datasets. Table 1 

lists the main features of every dataset together with the target variable, name, source, total sample 

count, number of attributes. The deliberate choice of these datasets guarantees that the evaluation spans 

a broad spectrum of real-world classification difficulties, so strengthening the validity and applicability 

of the experimental results. 

Each dataset was carefully selected not only for its domain diversity (ranging from cybersecurity 

to financial fraud), but also for its distinct data characteristics that pose specific modeling challenges. 

For instance, the creditcard dataset is highly imbalanced, with fraudulent transactions comprising less 

than 0.2% of the total samples. This makes it a suitable benchmark for evaluating the model's 

performance under extreme class skew. On the other hand, the TUANDROMD and 

Android_Malware_Benign datasets are high-dimensional, containing 242 and 328 features respectively. 

This introduces sparsity and increases the risk of overfitting, making them ideal scenarios to test the 

generalization capacity of deep ensemble models. 

Additionally, the Phishing_Email dataset is notably low-dimensional (only 3 features), offering 

a unique contrast to test model behavior on minimal input information. The 

dynamic_api_call_sequence_per_malware_100_0_306 dataset contains sequential behavioral logs 

https://jutif.if.unsoed.ac.id/
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from malware samples, representing temporally ordered, non-i.i.d. data. This structure challenges the 

model to capture complex time-dependent patterns. 

By including datasets that vary in size, dimensionality, class distribution, and domain-specific 

complexity, this study ensures that the proposed model is rigorously evaluated under diverse real-world 

conditions. These considerations are essential to test not only classification performance but also the 

resilience and adaptability of the model to different data structures and noise characteristics. 

 

Table 1.  Experiment datasets 

Dataset Source Sample Attributes 
Target 

Variable 

Android_Malware_Benign [32] 4.464 328 Label 

creditcard [33] 284.807 31 Class 

dataset_phishing [34] 11.430 89 status 

dynamic_api_call_sequence_per_malware_100_0

_306 

[35] 43.876 102 malware 

Phishing_Email [36] 18.640 3 Email Type 

Transaction_Fraud_Detection_2023 [37] 568.630 31 Class 

TUANDROMD [38] 4.464 242 Label 

 

2.2. Pre-Processing Data 

Data pre-processing is a critical step in arranging raw data for effective analysis and modeling. It 

refers to a set of approaches used to improve data quality, preserve consistency, and convert data into a 

format suitable for machine learning algorithms. This work's pre-processing pipelines include data 

cleaning to eliminate duplicates and erroneous values, handle missing values to complete incomplete 

records, encode category variables into numerical form, and partitioning the dataset into training and 

testing subsets for thorough model evaluation [39]. The steps outlined collectively enhance the accuracy 

and reliability of the predictive models developed in this research. The preprocessing phase involved 

removing duplicate records, handling missing values using median imputation, and replacing infinite 

values with the maximum finite value per feature. Categorical variables were encoded using 

LabelEncoder, while the data was split into training and test sets with a stratified 80:20 ratio to preserve 

class distribution. 

2.2.1. Data Cleaning 

Data cleansing is a critical step in the preparation process that ensures the dataset's quality and 

dependability.  This strategy involves identifying and eliminating duplicate entries, resolving conflicts, 

and correcting erroneous or aberrant information. Duplicate items were eliminated in this study to 

prevent biased model training and enhance overall data quality. Furthermore, infinite values were 

detected and replaced with suitable alternatives to avert computational problems during analysis. 

2.2.2. Handling Missing Values 

Effective management of missing data is crucial for preserving the integrity and usability of the 

dataset. Missing values may arise from various factors, such as data entry errors and equipment 

malfunctions. This study handled missing values by imputing the mean of the corresponding feature 

columns.  This straightforward yet efficacious technique maintains dataset size while mitigating 

potential bias from absent data.  Alternative imputation techniques may be employed based on the 

characteristics of the data. 

 

2.2.3. Data Encoding 
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Most machine learning algorithms necessitate numerical input; therefore, categorical variables 

must be appropriately transformed. Data encoding converts non-numeric categorical features into 

numerical representations that the model can interpret [40]. In this investigation, all categorical columns 

were label encoded, with each unique category assigned an integer value.  This technique preserves 

category information while allowing for smooth integration with downstream machine learning models. 

2.2.4. Split Data 

The conventional method for evaluating model performance on raw data involves dividing the 

dataset into training and testing subsets. The testing set assesses the model's generalization ability, 

whereas the training set facilitates its fitting process. Using random sampling with a set random seed to 

guarantee repeatability, the set of data was split here into 20% for testing. and 80% for training. This 

partitioning technique reduces overfit and supports strong performance assessment. 

2.3. Model Development 

2.3.1. Distributed Gradient Boosting Forest 

Distributed Gradient Boosting Forest (DGBF) is an innovative ensemble learning method that 

synthesizes and integrates the concepts of Random Forest and Gradient Boosting into a profound, graph-

based architecture.  DGBF diverges from conventional boosting techniques that incrementally construct 

trees to reduce residual errors, instead distributing the learning process across numerous layers of tree 

ensembles, akin to the hierarchical architecture of neural networks.  Each layer in DGBF comprises 

many decision trees that autonomously learn segments of the gradient signal, which together 

approximate the comprehensive gradient descent trajectory.  This design enables DGBF to attain 

distributed representation learning without dependence on backpropagation or alteration of the internal 

architecture of decision trees. 

Mathematically, the DGBF prediction function is defined as: 

𝐹𝐿(𝑥) = ∑
1

𝑇
𝐿
𝑙=1 ∑ ℎ𝑙,𝑡(𝑥)𝑇

𝑡=1    (1) 

where: 

𝐿 is the number of boosting layers; 

T is the number of trees in each forest (layer); 

ℎ𝑙,𝑡(𝑥) is the prediction of the 𝑡-th tree in the 𝑙-th layer. 

 

The learning process at each boosting step optimizes over the distributed gradient components 

as: 

𝑔𝑙,𝑡
′ (𝑥) =

1

𝑇
(𝑇. 𝑦𝑖 − ℎ𝑙−1,𝑡(𝑥𝑖))   (2) 

Where: 

𝑔𝑙,𝑡
′ (𝑥) : Distributed residual gradient (pseudo-residual) allocated specifically for tree 𝑡 in layer 

𝑙 for sample 𝑥𝑖. 

𝑦𝑖: The true target value for sample 𝑖. 

ℎ𝑙−1,𝑡(𝑥𝑖): The prediction output of tree 𝑡 in layer 𝑙 for the sample 𝑥𝑖. 

𝑇: The number of trees in a single layer. 

 

Each tree is trained to minimize the loss with respect to its assigned gradient component: 
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ℎ𝑙,𝑡(𝑥) = arg min
ℎ

∑ 𝐿(𝑔𝑙,𝑡
′ (𝑥), ℎ(𝑖 𝑥𝑖))  (3) 

Where:  

ℎ𝑙,𝑡(𝑥): the decision tree 𝑡 in layer 𝑙 currently being trained. 

arg min
ℎ

 : the function ℎ that minimizes the loss value. 

𝐿:  the loss function measuring the difference between the target and the prediction. 

 𝑔𝑙,𝑡
′ (𝑥): the residual gradient (the new target for the tree) for sample 𝑥𝑖. 

ℎ(𝑥𝑖): the prediction of the tree ℎ on sample 𝑥𝑖.  

 

Dynamic sampling is employed across layers to mitigate overfitting and improve learning 

variety.  Earlier layers of trees are trained on smaller subsamples, with the sample size continuously 

augmented in later levels.  This emulates curricular learning, wherein the model initially acquires 

overarching patterns and subsequently integrates more intricate information. 

 DGBF serves as a natural extension of both Random Forest and Gradient Boosting, which are 

considered special examples.  When set up with a single layer, it functions as a conventional Random 

Forest, however decreasing the number of trees per layer yields a configuration akin to traditional 

Gradient Boosting.  Empirical findings indicate that DGBF consistently surpasses both Random Forest 

and Gradient Boosting across diverse datasets, affirming its enhanced generalization capability and 

proficiency in acquiring deep representations. 

Illustratively, in contrast to neural networks where the output of every neuron is transferred to 

the following layer., DGBF propagates averaged tree predictions forward. During training, distributed 

gradients not activations are transmitted from one layer to the next, enabling each tree to independently 

learn part of the residual while maintaining coordinated ensemble learning. This architecture allows 

DGBF to learn complex hierarchical representations similar to neural networks, without modifying the 

fundamental non-parametric structure of decision trees. 

2.3.2. Residual Connection 

Residual connection is an architectural innovation that addresses the vanishing issue in training 

very deep neural networks. The vanishing issue refers to the phenomena in which increasing network 

depth beyond a certain point leads to higher training error and poorer performance, not primarily caused 

by overfitting but by optimization difficulties. To address this, residual learning reformulates the target 

function to be learned. 

Formally, let 𝐻(𝑥) denote the desired underlying mapping for a set of stacked layers with input 

𝑥. Instead of directly approximating 𝐻(𝑥), residual learning allows the network to approximate a 

residual function defined as 

𝐹(𝑥): = 𝐻(𝑥) − 𝑥  (5) 

which implies the original mapping can be expressed as 

𝐻(𝑥) = 𝐹(𝑥) + 𝑥  (6) 

This simple reformulation has profound implications: if the identity mapping is optimal (i.e., no 

transformation is needed), the network can more easily push the residual 𝐹(𝑥) toward zero, rather than 

forcing the layers to learn an explicit identity mapping. By learning residuals, the network focuses on 

the disparity between inputs and results, which empirically results in easier optimization and faster 

convergence. 

https://jutif.if.unsoed.ac.id/
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The practical implementation of this idea is realized through (also called skip connections), 

which perform identity mapping by skipping one or more layers and directly adding the input 𝑥 to the 

output of the stacked layers representing 𝐹(𝑥). This addition is element-wise and adds no new 

parameters or computational cost.  As a result, residual networks can be trained end-to-end with normal 

backpropagation while incurring minimum overhead. 

 Experimental evidence shows that networks with residual connections yield lower training error 

and improved generalization even at depths greater than 100 layers. This residual formulation stabilizes 

gradient flow, mitigates vanishing gradients, and so allows for the successful optimization of deeper 

architectures, marking a significant development in deep learning methodology. 

2.3.3. Distributed Gradient Boosting Forest + Residual Connection 

The Distributed Gradient Boosting Forest (DGBF) framework's ability to learn deep hierarchical 

representations is enhanced by the addition of residual connections, which also solves common training 

issues with deep ensembles. Residual connections allow the model to pass input or intermediate 

predictions directly between layers, freeing up following trees to learn residual mistakes rather than the 

entire goal mapping.   This considerably reduces the issues of degradation and vanishing gradients 

commonly found in deep models. 

The integration of DGBF's distributed, layered structure with residual learning enables each layer 

to enhance the predictions of preceding layers through the learning of incremental residual functions.  

This residual formulation corresponds with the concept of incrementally minimising prediction errors, 

while the distributed architecture enables concurrent learning among trees within each layer.  As a result, 

the model benefits from improved optimisation dynamics and increased representational capacity. 

Formally, let 𝐹𝑙(𝑥) denote the ensemble prediction at layer 𝑙, and ℎ𝑙,𝑡(𝑥) represent the prediction 

of the 𝑡-th tree in layer 𝑙, where 𝑇 is the number of trees per layer. The residual-enhanced DGBF updates 

its prediction using the formula: 

𝐹𝑙(𝑥) = 𝐹𝑙−1(𝑥) +
1

𝑇
∑ ℎ𝑙,𝑡(𝑥)𝑇

𝑡=1   (7) 

Here: 

𝐹𝑙(𝑥) is the updated prediction after the 𝑙-th layer, 

𝐹𝑙−1(𝑥) is the prediction from the previous (𝑙 − 1)-th layer, 

ℎ𝑙,𝑡(𝑥) is the output from the 𝑡-th decision tree in the current layer 𝑙, 

𝑇 is the total number of trees in each layer, 

 

The term ∑ ℎ𝑙,𝑡(𝑥)𝑇
𝑡=1  represents the averaged residual function learned by the trees at layer 𝑙, 

which serves as a correction or refinement to the previous prediction. 

Similar to the success of residual networks in deep learning, where learning residual mappings 

has been shown to lower gradient flow and improve convergence, by focusing on residuals the model 

simplifies the optimisation task. The residual connections solve problems including vanishing or 

inflating gradients and the degradation problem often found in very deep models by offering consistent 

gradient transmission across layers. This produces a model that is both articulate and simpler to train. 

Empirical evidence demonstrates that the residual-enhanced DGBF attains superior convergence speed 

and accuracy relative to traditional tree ensemble methods devoid of residual connections.  Furthermore, 

the residual design maintains consistent gradient magnitudes throughout layers, facilitating the effective 

training of deep ensembles while preserving interpretability and computational efficiency. 

2.4. Evaluation Metrics 

https://jutif.if.unsoed.ac.id/
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This study employed a set of standard evaluation metrics to measure the performance of the 

proposed classification models. These metrics include accuracy, precision, recall, and F1-score, which 

are particularly relevant in binary classification tasks involving imbalanced datasets [41]. Accuracy 

evaluates the overall correctness of the model, representing the proportion of correctly classified 

instances. Precision indicates the model’s ability to minimize false positives, defined as the ratio of true 

positives to all positive predictions. Recall (also referred to as sensitivity) demonstrates the model's 

ability to accurately identify all pertinent positive instances. The F1-score serves as a balanced metric, 

integrating both precision and recall into a singular value through the calculation of their harmonic mean. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑁+𝑇𝑃

𝑇𝑁+𝑇𝑃+𝐹𝑃+𝐹𝑁
  (8) 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 =
2∗𝑇𝑃

2∗𝑇𝑃+𝐹𝑃+𝐹𝑁
  (9) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
   (10) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
   (11) 

These metrics were chosen due to their robustness in evaluating the classification performance of 

models under class imbalance, a common challenge in fraud detection and cybersecurity datasets. In 

addition to these traditional metrics, layer-wise gradient magnitude was analyzed to assess the internal 

stability of deep ensemble models, particularly those incorporating residual connections [42], [43].  Let 

𝑔𝑙 denote the gradient vector at layer 𝑙, and 𝑑 the number of units in that layer. The magnitude of the 

gradient is defined as: 

|𝑔𝑙| = √∑ (
∂ℒ

∂ℎ𝑙,𝑖
)

2
𝑑
𝑖=1   (12) 

This formulation helps monitor the strength of gradient signals during backpropagation. Stable 

and non-vanishing gradients across layers suggest improved convergence and effective learning. Thus, 

the integration of both conventional evaluation metrics and gradient-based analysis provides a 

comprehensive performance assessment of the proposed model. 

3. RESULT 

This section presents the comprehensive results obtained from the entire research process, 

following the methodological sequence outlined in the previous chapter. The process began with the 

selection of seven diverse datasets covering cybersecurity and fraud detection domains. These datasets 

were preprocessed through several stages, including data cleaning, handling of missing values, and 

encoding of categorical variables. Subsequently, two models were implemented and evaluated: the 

baseline Distributed Gradient Boosting Forest (DGBF) and its enhanced variant using residual 

connections (DGBF + RC). Each model was trained and tested using an 80:20 split on each dataset. The 

evaluation focused on key performance metrics including accuracy, precision, recall, and F1-score, and 

further analyzed layer-wise gradient magnitudes to observe training stability and convergence 

behaviors. 

As outlined in the methodology (Section 2), the research followed a sequential process including 

dataset selection, preprocessing, model development, and evaluation. Table 1 in the methodology 

section summarizes the characteristics of the datasets used. In this section, we present the results 
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obtained from applying the proposed Residual DGBF model across those datasets. The results are 

organized following the stages described in the methods, beginning with the experimental setup, 

followed by performance evaluation using standard classification metrics and gradient-based training 

analysis. 

3.1. Experimental Setup 

The tests sought to evaluate the efficacy of the suggested model under controlled and replicable 

conditions. Seven benchmark datasets, covering various areas and complexities, were utilized to assess 

the generalizability of the findings. The preprocessing of each dataset included managing missing 

values, encoding categorical variables, and normalizing numerical characteristics, as detailed in the 

methodology section. The datasets were divided into training and testing subsets in an 80:20 ratio, and 

all experiments were conducted multiple times with varying random splits to reduce variability. 

The Distributed Gradient Boosting Forest (DGBF) model featuring residual connections was 

executed using hyperparameters that were optimized via initial tuning. The primary hyperparameters of 

the proposed model, such as the number of layers, the number of trees per layer, and the maximum tree 

depth, were consistently fixed across all datasets to facilitate fair and comparable evaluation. Table 2 

summarizes the configuration of these hyperparameters, offering a clear overview of the model settings 

utilized in the experiments. Baseline models, including standard Random Forest and Gradient Boosting, 

were trained under comparable conditions utilizing default parameters from commonly used libraries. 

 

Table 2. Hyperparameter Configuration 

Hyperparameter Value Description 

Number of Layers (L) 12 Number of boosting 

iterations (layers) 

Number of Trees per 

Layer (T) 

10 Number of decision 

trees in each layer 

Learning Rate 0.1 Step size for gradient 

updates 

 

An extensive evaluation of classification performance was conducted using measures such as 

accuracy, precision, recall, and F1-score. The magnitudes of the gradients were recorded for each layer 

to analyse the training dynamics of the deep ensemble. The studies were conducted within a computing 

environment equipped with Windows 11 Home Single Language 64-bit (10.0, Build 26100) as the 

operating system, Intel Core 5 Ultra 125H, Intel Arc Graphics, and 16GB RAM, ensuring sufficient 

resources for efficient training and evaluation. 

All seven datasets utilized in this study were obtained from publicly available repository Kaggle, 

as detailed in Table 1. These datasets were selected to represent diverse real-world classification 

challenges in cybersecurity and fraud detection domains. The data acquisition process ensured that only 

datasets with clear labeling and sufficient sample size were included. 

Prior to model training, each dataset underwent a consistent preprocessing pipeline as described 

in Section 2.1. This involved duplicate removal, missing value imputation using median or mean 

strategies, label encoding is applied to categorical features, followed by a stratified split into training 

and testing sets at an 80:20 ratio to maintain class distribution. Preprocessing was automated using 

Python and standard libraries such as pandas and scikit-learn. 

The model training and evaluation were conducted using the Residual DGBF model implemented 

in Python. Each experiment was run multiple times with randomized seeds to ensure result stability. 

Hyperparameters such as the number of layers, trees per layer, and learning rate were kept constant 

across datasets as summarized in Table 2. Performance metrics, including accuracy, precision, recall, 
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and F1-score, were computed using standard formulas (Equations 8–11), and gradient magnitude 

analysis was applied for deeper model interpretation. 

3.2. Performance Evaluation 

Adding residual connections to the Distributed Gradient Boosting Forest (DGBF) design 

significantly improves the classification performance over a wide range of datasets, as demonstrated by 

the comprehensive results in Table 3. As presented in Table 3, the residual-enhanced variant (DGBF + 

RC) consistently surpasses the baseline DGBF model in terms of accuracy, precision, recall, and F1-

score across all datasets. This quantitative comparison highlights the positive impact of residual learning 

on deep ensemble methods. 

By allowing each layer to explicitly learn the residual errors in respect to the predictions of 

previous layers, the residual connection approach solves basic optimisation challenges usually observed 

in deep ensembles, including vanishing gradients and training deterioration. This method increases 

gradient flow inside the model, so enabling the DGBF + RC to converge faster and more consistently to 

produce better solutions. Crucially for datasets with class imbalances or complex feature distributions, 

the new model achieves a more fair trade-off between precision and recall. 

The quantitative performance presented in Table 3 indicates that the DGBF + RC model 

consistently surpasses the standard DGBF in almost all assessed datasets. For instance, in the 

TUANDROMD dataset as shown in Table 3, accuracy increases by approximately 1.5%, rising from 

94.74% to 96.24%. Precision improves notably from 0.9310 to 0.9655, while recall also advances from 

0.8438 to 0.8750, indicating improved detection of positive classes and a reduction in false positives. 

The aggregate enhancements elevate the F1-score from 0.8852 to 0.9180, signifying improved 

robustness and efficacy in categorisation. 

 

Table 3. Result Evaluation 

Dataset Model Accuracy Precision Recall F1-Score 

Android_Malware_Benign 

 

DGBF 95.5994 0.9486 0.9632 0.9559 

DGBF + RC 95.7511 0.9515 0.9632 0.9573 

creditcard DGBF 99.9454 0.9403 0.7000 0.8025 

DGBF + RC 99.9471 0.9545 0.7000 0.877 

dataset_phishing 

 

DGBF 94.4882 0.9411 0.9477 0.9444 

DGBF + RC 94.6194 0.9420 0.9495 0.9457 

dynamic_api_call_sequence_per_

malware_100_0_306 

DGBF 98.5869 0.9876 0.9980 0.9928 

DGBF + RC 98.6553 0.9882 0.9981 0.9931 

Phishing_Email 

 

DGBF 67.2118 0.6754 0.8896 0.7678 

DGBF + RC 67.7480 0.6790 0.8927 0.7713 

Transaction_Fraud_Detection_20

23 

DGBF 99.9552 0.9996 0.9995 0.9996 

DGBF + RC 99.9604 0.9997 0.9995 0.9996 

TUANDROMD DGBF 94.7368 0.9310 0.8438 0.8852 

DGBF + RC 96.2406 0.9655 0.8750 0.9180 

 

Comparable patterns are evident in additional datasets such as creditcard and 

dynamic_api_call_sequence_per_malware_100_0_306, as shown in Table 3, where precision and F1-

score improvements further support the robustness of the residual-enhanced model. The 

Android_Malware_Benign and dynamic_api_call_sequence_per_malware_100_0_306 datasets 

demonstrate consistent enhancements across all metrics, thereby reinforcing the generalisability of the 

residual connection approach. 
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 Although certain datasets, like Phishing_Email, show more modest improvements, the residual-

enhanced DGBF consistently outperforms the baseline in key metrics. This indicates that the 

incorporation of residual learning yields stable enhancements, irrespective of the complexity or noise 

levels of the dataset. 

 The findings in Table 3 indicate that residual connections are a crucial architectural improvement 

in the DGBF framework.  They enhance model performance by facilitating deeper and more stable 

ensemble learning, especially in the context of challenging, high-dimensional, and imbalanced datasets.  

The findings indicate that the DGBF + RC model serves as a scalable, accurate, and reliable solution for 

various real-world classification challenges. 

3.3. Layer-wise Gradient Magnitude Results 

To obtain deeper insight into how residual connections influence the training dynamics of deep 

ensemble models, we performed a rigorous examination of the layer-wise gradient magnitudes across 

seven diverse benchmark datasets. Understanding gradient propagation is essential, as the strength and 

stability of gradients at each layer directly affect the model’s ability to learn effectively and converge 

reliably. Poor gradient flow, especially in deeper layers, can lead to vanishing or exploding gradients, 

which impedes optimization and degrades performance. 

In this study, for each dataset, we computed and visualized the average gradient magnitude at 

every layer of the Distributed Gradient Boosting Forest (DGBF) in both its standard form and its 

enhanced variant with residual connections (DGBF + RC). These visualizations, presented as individual 

figures per dataset, serve as a granular diagnostic tool to observe how gradients behave through the 

ensemble depth. By comparing the gradient magnitudes layer-by-layer between the two models, we can 

directly evaluate the effectiveness of residual connections in mitigating common gradient-related issues 

in deep models. 

Such a layer-wise perspective not only highlights the resilience of residual-enhanced models in 

maintaining robust gradient signals across all layers but also provides empirical evidence explaining the 

improved convergence speed and predictive accuracy observed in earlier performance evaluations. This 

comprehensive gradient analysis forms a critical component of our experimental validation, bridging 

theoretical advantages with practical outcomes in distributed gradient boosting frameworks. 

Figure 2(a) depicts the average gradient magnitude across the layers for the 

Android_Malware_Benign dataset, showing that the residual-enhanced DGBF maintains stronger 

gradient flow than the standard model, particularly in middle layers. The residual-enhanced DGBF 

consistently maintains higher gradient magnitudes than the standard model throughout most layers, 

especially in the middle layers. This sustained gradient strength indicates improved gradient flow and 

reduced risk of vanishing gradients, which supports more stable and effective training. The stronger 

gradients in the residual model contribute to better parameter updates and likely explain its superior 

performance on this dataset. 

Figure 2(b) presents the layer-wise average gradient magnitudes for the creditcard dataset. The 

standard DGBF generally exhibits slightly higher gradient magnitudes across most layers compared to 

the residual-enhanced DGBF. Both models show relatively low gradient values overall, reflecting the 

dataset’s complexity and class imbalance. The residual DGBF’s slightly lower gradients may indicate 

more stable and focused learning, potentially helping reduce overfitting. Despite this, gradient 

magnitudes remain consistent across layers for both models, suggesting stable training dynamics. 
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(a) (b) 

Figure 2. Distribution of gradient magnitude values of both models. (a) Android_Malware_Benign;  

(b) creditcard. 

 

  
(a) (b) 

Figure 3. Distribution of gradient magnitude values of both models. (a) dataset_phishing;  

(b) dynamic_api_call_sequence_per_malware_100_0_306. 

 

Figure 3(a) depicts the average gradient magnitude across layers for the dataset_phishing dataset. 

The residual-enhanced DGBF generally maintains higher gradient magnitudes than the standard DGBF, 

particularly in the early and middle layers. Both models exhibit a sharp increase in gradient magnitude 

at the initial layers, followed by fluctuations in subsequent layers. The higher gradient values in the 

residual model suggest more effective gradient flow and stronger learning signals, which contribute to 

improved training stability and potentially better predictive performance on this dataset. 

Figure 3(b) illustrates the average gradient magnitude across layers for the 

dynamic_api_call_sequence_per_malware_100_0_306 dataset. Both the standard DGBF and residual-

enhanced DGBF models show a gradual increase in gradient magnitude from the initial to the deeper 

layers, indicating strengthening gradient signals as the layers progress. The residual DGBF slightly 

outperforms the standard model by maintaining marginally higher gradient magnitudes in most layers, 

particularly in the early and middle stages. This suggests that residual connections contribute to 

improved gradient propagation and training stability, enabling the model to learn more effectively from 

complex sequential malware data. 

Figure 4(a) shows the average gradient magnitude across layers for the Phishing_Email dataset. 

The residual-enhanced DGBF maintains consistently higher gradient magnitudes than the standard 
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DGBF across all layers, with a widening gap as the layer depth increases. This indicates that residual 

connections significantly enhance the flow of gradients and help stop the problem of the diminishing 

gradient, especially in deeper layers. The stronger gradients facilitate more stable and effective training, 

which is crucial for the complex and noisy characteristics of phishing email data. 

Figure 4(b) illustrates the average gradient magnitudes across layers for the 

Transaction_Fraud_Detection_2023 dataset. Both the standard DGBF and residual-enhanced DGBF 

maintain very high and nearly identical gradient magnitudes throughout all layers, indicating strong and 

stable gradient propagation in this dataset. The residual DGBF shows a slight edge in maintaining 

marginally higher gradients in some intermediate layers, which may contribute to its improved 

convergence and predictive performance. The consistently high gradient values reflect the model’s 

effective training dynamics on this relatively balanced and well-structured dataset. 

 

  
(a) (b) 

Figure 4. Distribution of gradient magnitude values of both models. (a) Phishing_Email;  

(b) Transaction_Fraud_Detection_2023. 

 

 

Figure 5. Distribution of gradient magnitude values of both models on the TUANDROMD dataset. 

 

Figure 5 presents the average gradient magnitude across layers for the TUANDROMD dataset. 

The residual-enhanced DGBF consistently maintains higher gradient magnitudes compared to the 

standard DGBF, particularly from the middle to deeper layers. This indicates that residual connections 

improve gradient preservation, enabling more stable gradient flow during training. The gradual increase 
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and higher values of gradient magnitudes in the residual model suggest better learning dynamics, which 

likely contribute to the improved classification performance observed for this dataset. 

The layer-wise gradient magnitude analysis across all seven datasets consistently demonstrates 

the effectiveness of integrating residual connections within the Distributed Gradient Boosting Forest 

framework. The residual-enhanced models show stronger and more stable gradient signals throughout 

the network layers compared to the standard DGBF models. This improved gradient flow helps mitigate 

common optimization challenges such as vanishing gradients, thereby promoting more reliable training 

and faster convergence. The empirical evidence from these gradient visualizations complements the 

quantitative improvements observed in classification performance, reinforcing the crucial role of 

residual connections in enhancing deep ensemble learning. 

4. DISCUSSIONS 

The experimental results presented in the previous chapter demonstrate the clear advantage of 

integrating residual connections into the Distributed Gradient Boosting Forest (DGBF) framework. 

Across a variety of datasets with differing characteristics and complexities, the residual-enhanced DGBF 

(DGBF + RC) consistently outperformed the baseline DGBF model in key classification metrics such 

as accuracy, precision, recall, and F1-score. This improvement validates the hypothesis that residual 

learning significantly enhances the model’s ability to capture complex patterns and mitigate common 

optimization challenges inherent in deep ensemble structures. 

One of the fundamental contributions of residual connections is their ability to improve gradient 

propagation throughout the network layers, as evidenced by the layer-wise gradient magnitude analysis. 

The stronger and more stable gradient signals observed in the residual-enhanced models facilitate more 

effective parameter updates, which contribute to faster convergence and improved generalization. This 

is particularly important in deep ensemble models where vanishing gradients can severely hamper 

training efficiency and model performance. 

Several previous studies have highlighted the benefits of residual learning and ensemble methods 

in improving model performance and training dynamics. For instance, He et al. [19] and Wu et al. [23] 

demonstrated that residual connections significantly enhance gradient flow and enable deeper 

architectures in convolutional networks without suffering from degradation. Our findings align with this 

observation, showing that residual-enhanced DGBF models maintain stronger gradient magnitudes and 

achieve better convergence. In the context of ensemble learning, Mohammed and Kora [2] noted that 

ensemble deep learning methods often struggle with overfitting and optimization in deep structures. The 

improvements observed in our residual DGBF framework, particularly in datasets with high 

dimensionality and class imbalance, support the hypothesis that integrating residual connections into 

ensemble models helps alleviate these challenges. 

The variation in performance gains across datasets also provides insights into the robustness of 

the residual connection mechanism. For datasets with significant class imbalance or complex feature 

interactions, such as TUANDROMD and creditcard fraud detection, the residual-enhanced DGBF 

achieved more pronounced improvements. Meanwhile, datasets with inherently noisier or more 

ambiguous data, such as Phishing_Email, showed more modest but still consistent benefits. This 

suggests that residual connections enhance the model’s learning dynamics in diverse practical scenarios 

without overfitting or compromising stability. 

Moreover, the consistent improvements in precision and F1-score across most datasets 

underscore the model’s improved balance in handling false positives and false negatives. This balance 

is crucial in real-world applications like fraud detection and malware classification, where minimizing 

incorrect classifications directly impacts operational efficiency and security. 
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While the residual connections significantly improve training dynamics and predictive accuracy, 

the distributed nature of the DGBF framework ensures scalability and parallelization, ensuring the 

method is applicable to extensive and high-dimensional datasets. The synergy between distributed 

boosting and residual learning offers a promising direction for future ensemble methods that require 

both interpretability and depth. 

The integration of residual connections into DGBF not only addresses critical optimization issues 

but also enhances the model’s practical applicability across varied domains. Future work may explore 

further optimization techniques, adaptive residual mechanisms, or extensions to other ensemble 

architectures to build on these promising findings. 

The consistent performance improvements across multiple datasets underscore the fundamental 

strength of combining residual learning with distributed gradient boosting. This outcome not only 

validates the technical soundness of the proposed approach but also suggests that deep ensemble models 

can be significantly stabilized with relatively lightweight architectural modifications. The author 

believes that this stability, particularly in the face of vanishing gradients and imbalanced class 

distributions, represents a critical step toward making deep tree-based models more robust and 

interpretable. 

The findings of this research carry notable implications for both the academic and applied 

domains. In the academic context, this study contributes to the growing body of literature on hybrid 

ensemble architectures by demonstrating that residual learning principles, traditionally applied in deep 

neural networks, can be effectively adapted into tree-based boosting frameworks. In applied settings, 

the improved performance and training stability of the DGBF + RC model are especially relevant to 

domains such as fraud detection and malware classification, where data are often imbalanced, noisy, or 

high-dimensional. By addressing key challenges such as vanishing gradients and convergence 

instability, this work offers a scalable and interpretable solution that bridges the gap between theory and 

practice in intelligent classification systems. 

5. CONCLUSION 

This study proposed an enhanced Distributed Gradient Boosting Forest (DGBF) model integrated 

with residual connections to address optimization challenges commonly faced in deep ensemble 

learning. By leveraging residual learning, the model effectively preserves gradient magnitudes across 

multiple layers, mitigating the vanishing gradient problem and enabling more stable and efficient 

training of deep boosting forests. Extensive experiments conducted on seven diverse and challenging 

datasets from domains such as cybersecurity and financial fraud detection demonstrated the superior 

performance of the residual-enhanced DGBF over the baseline model. 

Quantitative evaluations revealed consistent improvements in accuracy, precision, recall, and F1-

score metrics, confirming that the integration of residual connections enhances the model’s ability to 

capture complex data patterns and maintain robust generalization across varied scenarios. Layer-wise 

gradient magnitude analysis further validated that residual connections facilitate stronger and more 

stable gradient propagation, which underpins the observed gains in training convergence and predictive 

accuracy. These observations reinforce the conclusion drawn in earlier discussions that residual learning 

can act as an implicit regularizer in deep ensembles, improving generalization while reducing training 

instability. 

In addition to practical improvements, this research contributes conceptually by demonstrating 

that residual learning principles, originally developed for deep neural networks, can be effectively 

translated into tree-based ensemble architectures. This enhances the theoretical foundation of ensemble 

learning and opens new directions for hybrid model design that balances interpretability and depth. The 
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approach is particularly valuable for domains with high-dimensional and imbalanced data, where 

robustness and scalability are essential. 

Future work may explore adaptive residual weighting mechanisms, integration with attention 

modules, or deployment in streaming and real-time environments to further improve the model’s 

efficiency and applicability across broader machine learning tasks. 
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