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Abstract 

The traceability of palm oil seed origins plays a vital role in ensuring transparency, legality, and sustainability across 

the palm oil supply chain. Recent advances in deep learning have created new opportunities to improve classification 

systems by leveraging both visual and contextual data. This study proposes a deep learning-based model for 

classifying the origin of palm oil seeds by integrating thermal imagery with agricultural data. Two convolutional 

neural network (CNN) architectures, ResNet50 and MobileNet, were evaluated under three experimental setups: 

using only thermal images, combining thermal images with agricultural features (socio-economic, soil, and spectral 

fruit characteristics), and applying hyperparameter tuning to the best-performing model. The results show that 

ResNet50 consistently outperformed MobileNet, particularly in multimodal configurations. The highest performance 

was achieved using ResNet50 with the Adam optimizer, a learning rate of 0.001, and a batch size of 16, resulting in 

training accuracy of 99.75%, validation accuracy of 99.92%, and test accuracy of 100.00%. Evaluation metrics 

confirmed the model’s robustness with precision, recall, and F1-score all reaching 100.00%. This research highlights 

the significant potential of combining thermal imagery and agricultural data in CNN-based models for accurate and 

reliable classification of palm oil seed origins. The approach can support traceability systems in the palm oil industry, 

offering a scalable and data-driven solution for ensuring supply chain integrity and sustainability. 
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1. INTRODUCTION 

Palm oil is one of the most significant agricultural commodities globally, contributing greatly to 

various industries such as food, cosmetics, and bioenergy [1]. The palm oil industry in Indonesia, in 

particular, plays an important role in the global economy. According to data from the Central Statistics 

Agency (BPS), in 2023, Indonesia had approximately 15.93 million hectares of oil palm plantations with 

a total production of 47.08 million tons. In terms of exports, "Other Palm Oil" accounted for 81.83% of 

total exports, followed by Crude Palm Oil (CPO) at 13.06%, Other Palm Kernel Oil at 4.97%, and Crude 

Palm Kernel Oil at 0.14%. This data demonstrates Indonesia’s dominance as a global producer and 

exporter of palm oil [2].  

With the increasing demand for sustainable agricultural products that have traceable origins, 

identifying the provenance of palm oil seeds has become a crucial aspect in the palm oil supply chain 

[3], [4], [5]. Accurate traceability ensures products come from legal and eco-friendly sources, while 

supporting audits, certifications, and regulatory compliance [6]. A reliable classification system for seed 

origin can enhance transparency and build trust among consumers and stakeholders [7], [8]. 

Conventional methods of determining the origin of palm oil seeds generally still rely on manual 

records, laboratory testing, or supply chain documentation, that are labor-intensive, expensive, and 
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susceptible to mistakes [9], [10]. Therefore, more efficient and automated solutions are needed, one of 

which is by combining image processing and machine learning techniques [11], [12], [13]. 

To date, thermal imaging has been widely applied in agricultural settings, particularly in assessing 

fruit maturity and plant stress [14], [15], [16], [17]. However, its specific application for classifying the 

origin of palm oil seeds remains limited, offering an opportunity for further exploration in this study. In 

particular, supporting agricultural data such as soil type, spectral fruit data, and socio-economic 

variables can enhance classification accuracy and enable more reliable identification of seed origin [18]. 

Convolutional Neural Networks (CNN) have proven highly effective in image classification tasks, 

including agricultural applications. One widely used CNN architecture is ResNet50, which employs 

residual connections to mitigate vanishing gradient problems in deep networks [19], [20]. This enables 

training of very deep models with improved feature extraction, making ResNet50 suitable for complex 

image data such as thermal images of palm oil seeds. Another architecture is MobileNet, designed to be 

lightweight and efficient by using depthwise separable convolutions [21], [22]. This design allows 

MobileNet to be deployed on resource-constrained devices without significant loss in accuracy. 

Previous research showed that the ResNet50 model can classify the fresh fruit bunches (FFB) 

maturity of oil palm into two classes with 97% accuracy [23]. The model achieved strong results in 

precision, recall, and F1-score using an optimal setup consisting of a 90:10 data split, the Adam 

optimizer, and a 0.0001 learning rate. Meanwhile, a study developed an adapted and optimized 

MobileNet model to detect and classify strawberries and cherries in outdoor environments [24]. By 

modifying the original MobileNet architecture, like substituting the upper layers and eliminating the 

fully connected layer, the model attained an average validation accuracy of 98.60% with a loss 

percentage of merely 0.38%, indicating elevated classification accuracy with minimal computational 

expense. Additionally, another research demonstrated that concatenating features extracted from 

multiple models can improve tomato leaf disease classification accuracy, achieving a best accuracy of 

97% [25]. 

Building upon these considerations, this research investigates the effectiveness of two different 

CNN architectures, ResNet50 and MobileNet, in classifying the origin of palm oil seeds based on 

thermal images and agricultural data. The research is conducted in three stages: (1) classification using 

thermal images only, (2) combined classification with agricultural data, and (3) hyperparameter tuning 

regarding the highest-performing model. The results of this research aim to aid in developing a more 

accurate, dependable, and data-driven system for identifying the origins of palm oil seeds. 

2. METHOD 

The overall workflow of the palm oil seed origin classification process is illustrated in Figure 1. 

The system comprises several stages, beginning with data acquisition involving thermal imagery and 

the collection of agricultural data, such as socio-economic, soil, and fruit spectral characteristics. This 

is followed by a data preparation phase that includes handling missing values, selecting relevant features, 

applying normalization techniques, and splitting the dataset into training, validation, and testing sets. 

The prepared data is then used to train two convolutional neural network (CNN) architectures, ResNet50 

and MobileNet, under two input scenarios: one using only thermal images and another combining 

thermal images with agricultural data. The best-performing model is further optimized through 

hyperparameter tuning to improve accuracy and robustness. This step-by-step process is summarized as 

shown in  Figure 1. 
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Figure 1. Palm Oil Seed Origin Classification Workflow 

2.1. Dataset 

The dataset utilized in this study is part of a research project conducted by the Research Center 

for Rural Development and Sustainable Agriculture at Syiah Kuala University. It consists of a total of 

7,257 thermal images of palm oil seeds, categorized into 73 distinct class labels representing different 

seed origins. Alongside the thermal images, supporting agricultural data is collected, including soil 

properties, spectral fruit data, and socio-economic variables. These agricultural data are numerical and 

labeled according to the same class scheme. 

 

    
ab 3 ab 13 ab 21 nr 9 

    
nr 24 su 2 su 12 su 26 

Figure 2. Thermal Image of Palm Oil Seeds Sample 

 

Figure 2 illustrates a selection of sample thermal images from the dataset. Each image corresponds 

to a specific palm oil seed origin and is captured using a thermal imaging device. The figure highlights 

the visual differences in thermal signatures across seed origins, which are later used as input to the CNN 

model. This visual representation provides insight into the nature of thermal variations present in the 

dataset. 

Table 1 presents example entries of the class labeling scheme used in this study. It includes 

information such as the class name, the actual location name, and the sample location where the seed 

was collected. The table helps contextualize the diversity and distribution of the seed origins, providing 
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an overview of the spatial labeling used for both the thermal and agricultural data. Only 8 out of the 73 

class labels are shown for illustration purposes. 

 

Table 1. Corresponding Class Name and Descriptions 

Class name Location name Sample location 

ab 3 Aceh Barat Daya 3 

ab 13 Aceh Barat Daya 13 

ab 21 Aceh Barat Daya 21 

nr 9 Nagan Raya 9 

nr 24 Nagan Raya 24 

su 2 Subulussalam 2 

su 12 Subulussalam 12 

su 26 Subulussalam 26 

 

2.2. Pre-processing Data 

Data preprocessing is a vital and crucial stage in preparing the dataset to ensure it is clean, 

consistent, and suitable for model training [26]. This process addresses common data quality issues 

involving missing values, duplications, and inconsistency, as well as transforming and normalizing data 

to meet the requirements of the CNN architectures [27]. In this study, several preprocessing steps were 

carried out on both thermal images and supporting agricultural data. Thermal images were normalized 

and resized to a consistent resolution compatible with the CNN input requirements. Meanwhile, 

agricultural data including soil properties, spectral fruit data, and socio-economic variables underwent 

cleaning, normalization, and encoding to convert categorical variables into numerical formats. 

2.2.1. Handling Missing, Irrelevant and Duplicates Data in Agriculture Data 

This step focuses on preparing and refining the agricultural dataset to ensure its preparedness for 

later examination and modeling. Initially, the dataset is examined to identify which features are relevant 

and suitable for use. Irrelevant or unnecessary data are removed to streamline the dataset, and the cleaned 

data are saved for further processing [28]. In cases where duplicate entries are detected, these records 

are consolidated by averaging their values according to their class labels. Furthermore, missing data 

points are addressed by imputing the average value associated with that specific feature, thereby 

preserving the dataset’s completeness and reliability [29]. This process ensures that the final dataset 

contains only pertinent features that contribute effectively to model training while maintaining high data 

quality. 

2.2.2. Feature Selection for Agriculture Data 

Feature selection is utilized to determine the most significant and relevant features associated with 

the target labels, while excluding those that are less informative or redundant [30]. This process aims to 

enhance model performance and computational efficiency by reducing the data's dimensionality, 

accelerating training time, and minimizing overfitting risk. By focusing on the most predictive attributes 

in the dataset, the model’s generalization capability is improved. In this study, Correlation-based Feature 

Selection (CFS) utilizing Pearson Correlation is applied as the feature selection method. This technique 

assesses how each feature is linearly associated with the target variable to determine relevance, while 

simultaneously examining inter-feature correlations to detect redundancy [31]. Consequently, CFS 

yields an optimized subset of features that are both highly relevant to the target and minimally redundant, 
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thereby supporting improved model accuracy. The Pearson correlation coefficient used in this method 

is calculated as (1). 

𝒓 =  
∑(𝒙𝒊−𝒙̅)(𝒚𝒊−𝒚̅)

√∑(𝒙𝒊−𝒙̅)𝟐∑(𝒚𝒊−𝒚̅)𝟐
 (1) 

In this context, r represents the Pearson correlation coefficient, which quantifies the strength and 

direction of the linear relationship between the input feature and the target class. x_i\ represents the 

value of the input feature, y_i\ denotes the corresponding class label, while\ \bar{x} and \bar{y} refer 

to the mean of the feature and the mean of the target class, respectively. The aforemention expression is 

applied into three agricultural datasets to evaluate the correlation between individual target class and 

features, as well as to examine the relationships among the features themselves. The results of this 

analysis are presented in Figure 3. 

 

 
Figure 3. Correlation with Target Result of Agricultural Datasets 

 

After calculating the correlation coefficients for the features, a thresholding process was applied 

to determine the most informative variables for each set of agricultural data. Specifically, features with 

correlation values exceeding thresholds of 0.2 for socio-economic data, 0.2 for soil data, and 0.65 for 

fruit data were retained as the most significant contributors to the target class. These selected features 

were then used as inputs for feature extraction within the Convolutional Neural Network (CNN). By 

focusing on these optimized feature subsets, the CNN is able to process a more refined dataset, 

enhancing its learning capability and generalization performance. This step is essential for building a 

robust predictive model that leverages the strongest predictors identified in the data. The results of the 

feature selection are illustrated in Figure 4 and including the selected agricultural features used for 

integration with thermal images are detailed in Table 2. 

 

 
Figure 4. Selected Features of Agricultural Datasets 
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Figure 4 visualizes the correlation scores of individual features from the three agricultural datasets 

with respect to the target class. The result highlights which variables surpassed the defined thresholds 

and were consequently selected for integration. This figure serves to illustrate the effectiveness of the 

correlation-based feature selection process and the relative importance of each variable category (socio-

economic, soil, and spectral fruit). 

 

Table 2. Agricultural Data Features Used for Multimodal Integration 

Agricultural Data Features to be Combined with the Image 

Socio-economic Umur Tanaman (Tahun), Produktivitas(Ton/ha/Thn), 

ISPO 

Soil P-av, KTK 

Spectral Fruit SPEKT 547,8, SPEKT 549,7, SPEKT 545,9, 

SPEKT 543,9, SPEKT 551,6 

 

Table 2 lists the specific agricultural features that were retained after thresholding and 

subsequently integrated with thermal image data. It includes the feature names and their data source 

(e.g., soil, socio-economic, or spectral fruit). This table provides a clear overview of which features were 

deemed most relevant and helps justify their inclusion in the multimodal deep learning model. 

2.2.3. Normalization, Resizing, and Feature Preparation 

In this study, a comprehensive preprocessing pipeline was implemented to prepare both thermal 

images and supporting agricultural data for model training. Thermal images were resized to a consistent 

resolution of 96×96 pixels to maintain uniformity and compatibility with the input layer of the CNN 

architectures. Values of the pixels in the images were normalized by scaling them to the range [0, 1] 

through division by 255, which facilitates faster convergence during training [32]. 

Concurrently, agricultural data from socio-economic, soil, and spectral fruit datasets were 

aggregated and aligned based on their class labels. The features from these diverse sources were merged 

into a unified dictionary, ensuring consistent key formatting by converting all class labels to uppercase 

and removing whitespace. For each class, the combined feature vectors were constructed by extracting 

values corresponding to a consolidated set of all relevant feature keys, filling missing entries with zeros 

to maintain dimensional consistency. The results of this aggregation and alignment process are 

illustrated in Figure 5, which shows a sample of the unified feature vectors. These combined agricultural 

feature vectors are subsequently integrated with thermal image inputs within the classification 

framework, enabling the model to learn from both visual and contextual data for improved accuracy. 

 

 
Figure 5. Aggregated Agricultural Feature Vectors by Class Labels 
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Additionally, categorical class labels were standardized and encoded into numerical formats using 

label encoding to maintain uniformity across the dataset. The aggregated feature dictionaries were then 

vectorized into numerical arrays compatible with the model input requirements. Feature normalization 

was performed utilizing StandardScaler, which normalizes each feature by subtracting the mean and 

adjusting to unit variance [33], [34], as shown in the equation (2). 

𝑋′  =  
𝑋−𝜇

𝜎
 (2) 

The standardized value, denoted as 𝑿′, is obtained by subtracting the mean µ of the feature from 

the original value 𝑿, and then dividing the result by the standard deviation 𝝈 of that feature. This 

vectorization, combined with image resizing and normalization, effectively reshapes and aligns the 

multi-modal input data, facilitating seamless integration within the CNN framework. This integrated 

preprocessing step ensures that both image and tabular agricultural data are properly formatted, 

normalized, and synchronized, enabling the model to leverage heterogeneous data sources effectively 

for improved classification performance. 

2.2.4. Split Data 

To evaluate the effectiveness and resilience of the classification models, The dataset was split 

into three portions: 70% for training, 20% for validation, and 10% for testing. The model parameters 

were trained using the training set, whereas the validation set was employed to fine-tune 

hyperparameters and track for overfitting. The test set was reserved for the final evaluation to provide 

an unbiased measure of the model’s generalization to unseen data. A Stratified selection was applied to 

ensure that the distribution of classes remained consistent across all subsets, preserving class balance 

and supporting reliable performance assessment [35]. 

2.3. CNN Models: ResNet50 and MobileNet 

This study employs two widely recognized Convolutional Neural Network (CNN) architectures, 

ResNet50 and MobileNet, to classify the origin of palm oil seeds based on thermal images and 

supporting agricultural data. ResNet50 is utilized for its capability to train very deep networks 

effectively by leveraging residual connections that alleviate the vanishing gradient problem, enabling 

robust feature extraction from complex thermal images [36]. MobileNet was preferred for its efficient 

architecture, which leverages depthwise separable convolutions to minimize resource usage while still 

delivering reliable performance. Therefore, MobileNet can be effectively applied for deployment in 

resource-constrained environments [37]. 

Both models are initialized with pretrained weights from ImageNet and adapted by removing their 

top fully connected layers to serve as feature extractors. The extracted feature maps from the CNN 

backbone are then processed through a global average pooling layer which transforms spatial features 

into fixed-length vectors. These image feature vectors are subsequently combined with agricultural data 

features through a concatenation layer, followed by fully connected layers utilizing ReLU activations 

and dropout regularization to capture complex relationships between multimodal inputs. In the final 

stage, a softmax-activated output layer is used to produce class probabilities corresponding to seed origin 

labels. 

This model design enables the integration of visual and tabular data, enabling the model to capture 

intricate correlations between diverse input types. The MobileNet model shares the same architecture, 

differing only in the choice of the CNN backbone, facilitating a fair comparison between the two CNN 

variants. Furthermore, this study evaluates the effectiveness performance of ResNet50 and MobileNet 

architectures to recognize the highest-performing model for this multimodal classification task. The 

overall architecture of the proposed multimodal CNN model is illustrated in Figure 6. 
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Figure 6. Proposed Multimodal CNN Architecture for Palm Seed Origin Classification 

2.4. Hyperparameter Tuning 

Hyperparameter optimization constitutes a fundamental aspect of deep learning model 

development, as it significantly affects the model’s learning dynamics and its capacity to generalize 

effectively to previously unseen data. Proper tuning of hyperparameters such as optimizer, learning rate, 

and batchsize choice can significantly enhance model performance, reduce training time, and prevent 

issues like overfitting or underfitting. According to a study [38], optimizing machine learning model 

performance and generalization critically depends on effective hyperparameter tuning, which plays a 

vital role across a range of applications and involves diverse optimization strategies. 

In this study, Hyperparameter tuning was conducted on the model demonstrating the best result 

from the initial comparison between ResNet50 and MobileNet architectures. The tuning process 

systematically explored 12 different combinations of core training settings, comprising learning rate, 

optimizer, and batch size, as shown in Table 3. 

 

Table 3. Hyperparameter Settings 

Hyperparameter Value 

Optimizer Adam and SGD 

Learning Rate 0.001 and 0.0001 

Batchsize 16, 32, and 64 

 

The tuning involved varying the learning rate between 0.001 and 0.0001, experimenting with 

batch sizes of 16, 32, and 64, and testing two popular optimizers: Adam and Stochastic Gradient Descent 

(SGD). Each combination was evaluated based on validation accuracy and loss with the goal of selecting 

the most effective parameter combination for classification performance while maintaining model 

generalizability. 

2.5. Evaluation Metrics 

To comprehensively assess the classification models performance, various evaluation metrics 

were employed. These metrics offer a multifaceted view of the models’ predictive capabilities, capturing 

not only the overall correctness but also the quality of predictions in terms of precision, sensitivity, and 

ensuring consistent performance across both types of classification errors. Evaluating models through a 

variety of metrics is especially important in scenarios where class distributions are imbalanced, as 

relying solely on accuracy can be misleading [39]. By incorporating metrics such as, recall, precission 

and F1-score, the evaluation framework provides a deeper understanding of the model’s strengths and 

limitations in correctly identifying each class, ultimately determining a robust and accurate measurement 

of classification performance [40]. 
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2.5.1. Accuracy 

The accuracy metric quantifies the proportion of correctly predicted instances relative to the 

overall number of cases assessed, and can be computed using the following expression (3). 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  (
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
) (3) 

𝑇𝑃 refers to true positives, 𝑇𝑁 is true negatives, 𝐹𝑃 refers to false positives, and 𝐹𝑁 is false 

negatives. Although accuracy gives an overall indication of the model’s correctness, it may not be 

reliable when the class distribution in the dataset is skewed. 

2.5.2. Precision 

Precision indicates the proportion of true positive predictions among all instances that the model 

classified as positive, reflecting the accuracy of positive predictions. It is defined as (4). 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  (
𝑇𝑃

𝑇𝑃+𝐹𝑃
) (4) 

High precision indicates a low false positive rate, reflecting the model’s ability to avoid 

misclassifying negative samples as positive. 

2.5.3. Recall 

Recall assesses the model capability to identify all true instances of the positive class. It is 

calculated as the proportion of true positives to the total actual positive cases, including true positives 

and false negatives. It is defined as (5). 

𝑅𝑒𝑐𝑎𝑙𝑙 =  (
𝑇𝑃

𝑇𝑃+𝐹𝑁
) (5) 

A high recall value signifies that the model is highly effective at identifying the majority of actual 

positive cases within the dataset. This means that the model has a strong ability to minimize false 

negatives, which is particularly important in scenarios where failing to detect positive instances could 

lead to significant consequences. 

2.5.4. F1-Score 

F1-Score combines precision and recall as a harmonic mean, offering a comprehensive metric 

that balances the two. A high F1-Score reflects strong performance in both precision and recall 

simultaneously. It is defined as (6). 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 =  
2 ∗ Precision ∗ Recall 

 Precision + Recall 
 (6) 

3. RESULT 

The following section reports the outcomes of the classification models evaluated on the palm oil 

seed origin task. The models were tested in three configurations: (1) using thermal images only, (2) 

combining thermal images with agricultural data, and (3) applying hyperparameter tuning to the best-

performing model. The performance of each model was evaluated using various metrics, including 

accuracy, precision, recall, and F1-score. The findings highlight how the integration of multimodal data 

enhances classification effectiveness and reveal notable performance improvements resulting from 

hyperparameter tuning. 
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3.1. Model on Thermal Image Only 

In this configuration, both ResNet50 and MobileNet models were trained and evaluated using 

thermal images alone. For the experiments, the thermal images were resized to 96×96 pixels and 

normalized before being fed into the pretrained CNN backbones (ResNet50 and MobileNet) to extract 

features. After feature extraction, the features were passed through fully connected layers with ReLU 

activation, dropout regularization, and a softmax output layer to predict the seed origin. In this 

experiment, a batch size of 32 and a learning rate of 0.0001 were used during training, with the Adam 

optimizer selected for optimization. Model performance was evaluated by monitoring accuracy and loss 

throughout both the training and validation phases, while final test accuracy was recorded to assess 

generalization capability. The results are summarized in the Table 4. 

 

Table 4. Performance Comparison of ResNet50 and MobileNet Using Thermal Images Only 

Model Epoc

h 

Batc

h 

LR Optim

izer 

Train 

Accuracy 

Train 

Loss 

Val 

Accuracy 

Val 

Loss 

Test 

Accuracy 

ResNe

t50 

30 32 0.0001 Adam 99.64% 0.0175 67.79% 1.9205 69.42% 

Mobil

eNet 

30 32 0.0001 Adam 98.20% 0.0874 64.80% 1.5887 63.22% 

 

As shown in Table 4, ResNet50 outperformed MobileNet in this configuration, likely due to its 

deeper architecture and superior ability to capture more complex features from the thermal images. In 

the thermal image-only setup, ResNet50 achieved a test accuracy of 69.42%, while MobileNet reached 

63.22%, indicating a clear performance gap. This suggests that ResNet50 is more effective in learning 

discriminative features from thermal input alone, making it a more suitable choice when using visual 

data without additional contextual information, as reflected by its precision of 73.26%, recall of 69.42%, 

and F1-score of 69.98%. The results confirm that model depth and representational power play an 

important role in achieving better classification performance when relying solely on image-based inputs. 

3.2. Model on Thermal Image and Agricultural Data 

In the next configuration, the models were extended by incorporating agricultural data alongside 

thermal images. The agricultural data, which consists of socio-economic, soil, and spectral fruit features, 

was provided as a separate input vector. These features were concatenated with the features extracted 

from the thermal images using the Concatenate layer. Thermal images were resized to 96×96 pixels and 

normalized before being fed into the pretrained CNN backbones (ResNet50 and MobileNet). The CNN 

architectures served to extract feature representations from the thermal images, which were then passed 

through a global average pooling layer to produce fixed-length feature vectors. 

The concatenation of these two distinct feature sets, thermal image features and agricultural data 

features, was done by the Concatenate layer in Keras, which combines the output from both sources into 

a single feature vector. This combined feature vector, containing both visual and tabular data, was 

subsequently processed through a series of fully connected layers utilizing ReLU activation and dropout 

for regularization, followed by a softmax output layer to perform seed origin classification. 

The models were optimized using a batch size of 32, a learning rate of 0.0001, and the Adam 

optimizer. Their performance was systematically evaluated based on metrics including training accuracy 

and loss, validation accuracy and loss, as well as final test accuracy. The results are summarized in the 

Table 5. 
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Table 5. Performance Comparison of ResNet50 and MobileNet Using Thermal Images Combined with 

Agricultural Data 

Model Epoc

h 

Batc

h 

LR Optim

izer 

Train 

Accuracy 

Train 

Loss 

Val 

Accuracy 

Val 

Loss 

Test 

Accuracy 

ResNe

t50 

30 32 0.0001 Adam 99.64% 0.0258 68.71% 1.6537 71.07% 

Mobil

eNet 

30 32 0.0001 Adam 98.49% 0.0718 71.00% 1.2699 69.70% 

 

As shown in Table 5, the integration of agricultural data resulted in performance improvements 

across both models, with ResNet50 achieving the highest test accuracy of 71.07%, along with an overall 

precision of 73.15%, recall of 71.07%, and F1-score of 71.04%. Compared to the thermal image-only 

configuration, this multimodal approach led to a clear performance gain, highlighting the significant 

contribution of agricultural features such as socio-economic, soil, and spectral fruit data. These features 

provided additional context that enriched the information extracted from thermal images, enabling the 

model to distinguish class characteristics more effectively. The results demonstrate that integrating 

agricultural data with visual inputs not only enhances classification accuracy but also improves model 

robustness and generalization. 

3.3. Hyperparameter Tuning on Best Model 

Hyperparameter tuning was applied to ResNet50, the model that demonstrated superior 

performance in both thermal image-only and multimodal configurations. A total of 12 training 

combinations were evaluated by varying batch sizes (16, 32, 64), learning rates (0.001 and 0.0001), and 

optimizers (Adam and SGD) to identify the most effective configuration. The tuning results showed that 

the Adam optimizer facilitated faster convergence within 20 to 30 epochs, while SGD required extended 

training ranging from 70 to 100 epochs to achieve comparable results. Moreover, the learning rate had 

a critical influence on training duration and model accuracy. Higher learning rates typically accelerated 

convergence, whereas lower learning rates enabled more gradual refinement, particularly when using 

SGD. 

 

Table 6. Summary of Best Hyperparameter Tuning Results for ResNet50 

Numb

er 

Epoc

h 

Batch LR Optimiz

er 

Train 

Accura

cy 

Train 

Loss 

Val 

Accura

cy 

Val 

Loss 

Test 

Accuracy 

1 20 16 0.001 Adam 99.75% 0.0126 99.92% 0.0014 100.00% 

2 30 16 0.0001 Adam 99.35% 0.0286 71.92% 1.5407 73.42% 

3 70 16 0.001 SGD 99.67% 0.0184 80.72% 0.8670 80.30% 

4 100 16 0.0001 SGD 97.59% 0.1318 65.88% 1.5598 65.70% 

5 20 32 0.001 Adam 99.22% 0.0359 99.46% 0.0207 99.17% 

6 30 32 0.0001 Adam 99.71% 0.0155 70.85% 1.6405 70.11% 

7 70 32 0.001 SGD 99.10% 0.0488 69.70% 1.4949 69.70% 

8 100 32 0.0001 SGD 96.75% 0.1785 57.23% 1.8215 54.82% 

9 20 64 0.001 Adam 99.10% 0.0386 93.11% 0.2645 92.01% 

10 30 64 0.0001 Adam 99.50% 0.0244 68.94% 1.8865 61.43% 

11 70 64 0.001 SGD 99.43% 0.0364 64.42% 1.7772 62.53% 

12 100 64 0.0001 SGD 97.74% 0.1506 51.42% 2.0675 52.20% 
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However, configurations involving excessively long training durations or poorly tuned learning 

rates introduced the risk of model instability. When the learning rate is too high, the model may exhibit 

oscillating behavior due to overly aggressive weight updates, preventing it from converging to an 

optimal solution. On the other hand, very small learning rates may cause slow learning and increase the 

risk of overfitting during prolonged training. Therefore, selecting appropriate hyperparameter values is 

crucial to ensure model stability, effective convergence, and improved generalization performance. 

Table 6 summarizes the results from the 12 combinations tested during the tuning process. 

As shown in Table 6, the best-performing model achieved outstanding results with a training 

accuracy of 99.75%, validation accuracy of 99.92%, and a perfect test accuracy of 100% using the Adam 

optimizer with a learning rate of 0.001 and a batch size of 16. This combination allowed the model to 

converge quickly, with 20 epochs providing optimal training. In contrast, the SGD optimizer, despite 

requiring more epochs (70-100), did not outperform Adam in terms of test accuracy. These results 

emphasize the importance of hyperparameter tuning, where the Adam optimizer with a learning rate of 

0.001 and batch size of 16 proved to be the most effective configuration for palm oil seed origin 

classification. The classification performance metrics of the ResNet50 model with optimal 

hyperparameters are shown in Figure 7, providing a detailed breakdown of evaluation scores including 

accuracy, precision, recall, and F1-score. 

 

 
Figure 7. Classification Performance Metrics for ResNet50 with Optimal Hyperparameters 

 

Evaluation metrics such as precision, recall, F1-score, and accuracy were employed to further 

confirm the robustness of the most effective model. As shown in Figure 7, the model achieved perfect 

scores across all metrics, with 100.00% for precision, recall, F1-score, and overall accuracy. These 

results confirm that the model not only performed well on the training and validation sets but also 

generalized exceptionally on the test set, accurately classifying all classes without error. This consistent 

and flawless performance highlights the effectiveness of the proposed architecture and the selected 

hyperparameter configuration in classifying palm oil seed origins with high reliability. 

3.4. Comparative Performance Summary 

To provide a clearer overview of model performance across different configurations, a 

comparative summary is presented in Table 7. 

As shown in Table 7, a comparative summary of model performance is presented to illustrate the 

effectiveness of different configurations. The table includes training, validation, and test accuracies for 

three experimental setups: using thermal images only, using multimodal input (thermal + agricultural 

data), and applying hyperparameter tuning to the best-performing model (ResNet50). This comparison 

clearly demonstrates that incorporating agricultural data alongside thermal imagery significantly 

improves model performance. Moreover, applying hyperparameter tuning further enhances the model’s 

learning ability and generalization, achieving a perfect test accuracy of 100% in the best configuration. 
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Table 7. Performance Comparison of Resnet50 Model Configurations 

Configu

ration 

Ep

och 

Batc

h 

LR Optim

izer 

Train 

Accuracy 

Train 

Loss 

Val 

Accuracy 

Val 

Loss 

Test 

Accuracy 

Thermal 

Only 

30 32 0.0001 Adam 99.64% 0.0175 67.79% 1.9205 69.42% 

Multimo

dal 

30 32 

 

0.0001 Adam 99.64% 0.0258 68.71% 1.6537 71.07% 

Multimo

dal + 

Tuning 

20 16 0.001 Adam 99.75% 0.0126 99.92% 0.0014 100.00% 

4. DISCUSSIONS 

In this study, integrating thermal images with agricultural data resulted in significant 

improvements in model classification performance. The ResNet50 model outperformed MobileNet in 

both configurations, including thermal image only and thermal image combined with agricultural data. 

This superiority is likely due to its deeper architecture, which allowed it to extract and learn more 

complex visual features. In contrast, MobileNet performed well in scenarios with limited computational 

resources, demonstrating its efficiency for deployment in lightweight environments despite its relatively 

lower accuracy. Similar findings were reported in prior work [23], where deeper CNNs like ResNet 

were found to be more effective for fine-grained agricultural classification tasks. 

The combination of thermal image features with supporting agricultural data, which included 

socio-economic, soil, and spectral fruit variables, delivered enriching data that boosted the model’s 

ability to make accurate classifications. This multimodal approach led to better generalization, 

especially in real-world scenarios where both image and tabular data are available and relevant to the 

classification task. Previous studies [25], have also demonstrated that fusing image data with structured 

data can significantly improve classification accuracy in plant disease detection and other agricultural 

applications. 

Hyperparameter tuning played a vital role in optimizing model performance. The configuration 

using the Adam optimizer with a learning rate of 0.001 and batch size of 16 achieved the best result. 

Compared to SGD, which required more epochs, Adam enabled faster and more stable convergence, 

highlighting the critical role of choosing suitable hyperparameters that align with the characteristics of 

the model and dataset. This finding is consistent with the results reported to a study [41], which 

demonstrated that the Adam optimizer produced better accuracy and convergence efficiency than SGD 

in training convolutional neural networks for image classification tasks. In addition, variations in the 

learning rate and number of epochs show a significant influence on the final accuracy, especially when 

agricultural features are added to the training process. 

Figure 8 shows the best accuracy and loss plots generated in this study for the ResNet50 model 

over 20 epochs using the optimal hyperparameter configuration. The accuracy graph illustrates a 

consistent upward trend during the early epochs, followed by a stable plateau that indicates the model's 

ability to learn effectively from the training data while maintaining steady performance on the validation 

set. In parallel, the loss graph displays a continuous decrease for both training and validation, reflecting 

a reduction in prediction error over time. The absence of significant fluctuations as observed in the 

accuracy and loss curves, indicating that the model achieved strong convergence without signs of 

overfitting. These patterns demonstrate that the model was able to generalize well and maintain reliable 

performance throughout the training process. 

Futhermore to optimal hyperparameter settings, the use of dropout regularization in the model 

architecture also contributed to its ability to avoid overfitting. Dropout works by temporarily disabling 
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a subset of neurons during the training process, which helps reduce over-reliance on certain features and 

promotes the development of more generalized and resilient feature representations. In this study, a 

dropout rate of 0.5 was applied after the fully connected layers, which helped maintain a balance 

between model complexity and generalization. This mechanism likely played a key role in maintaining 

training stability and ensuring that the model performed consistently well on both the training and 

validation data. The effectiveness of dropout for reducing overfitting in image classification tasks has 

also been demonstrated in recent study [42], which confirms that dropout regularization significantly 

improves generalization in deep learning models by preventing the model from over-relying on specific 

features during training. 

Although this study has shown promising results, there are several limitations that should be 

considered. One of the main challenges is the relatively small size of the dataset, which may limit the 

model’s ability to perform consistently when applied to new and more diverse data. Additionally, all 

thermal images and agricultural may not fully represent the variability encountered in real-world 

environments such as different climates, sensor devices, or geographical regions. The agricultural 

features used in this study were also limited to a predefined set. Incorporating other relevant variables 

such as weather conditions, planting schedules, or historical soil data could help the model learn more 

contextual information and improve its classification accuracy. Furthermore, this study focused only on 

two convolutional neural network architectures, ResNet50 and MobileNet, from which ResNet50 was 

identified as the best-performing model based on its superior accuracy and generalization capability. 

Future research may consider exploring more advanced or efficient architectures to further improve 

classification accuracy and model robustness. 

 

 
Figure 8. Train and Validation Accuracy and Loss Plot on Best Hyperparameter Tuning Model 

 

5. CONCLUSION 

This study demonstrated that the integration of thermal images with agricultural data can 

significantly improve the accuracy of classifying the origin of palm oil seeds. By comparing two 

convolutional neural network architectures, ResNet50 and MobileNet, the results showed that ResNet50 

consistently outperformed MobileNet in both image-only and multimodal configurations. The use of 

multimodal input, combining thermal imagery with socio-economic, soil, and spectral fruit features, 

enabled the models to capture more comprehensive patterns, leading to better generalization across 

classes. 

Hyperparameter tuning further enhanced model performance, with the best results achieved using 

the ResNet50 model configured with the Adam optimizer, a learning rate of 0.001, and a batch size of 

16. This configuration produced the highest training accuracy of 99.75%, validation accuracy of 

99.92%, and a perfect test accuracy of 100.00%, along with strong evaluation results including precision, 

recall, and F1-score of 100.00%, indicating highly reliable classification performance. The training 
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process also showed fast convergence and stable validation behavior, as visualized in the accuracy and 

loss plots. 

Overall, this research highlights the effectiveness of combining image-based and structured data 

in deep learning classification tasks, particularly in the context of palm oil agriculture. Future work may 

focus on expanding the dataset, incorporating more diverse environmental variables, and exploring 

newer or more efficient model architectures to improve scalability and generalizability in real-world 

applications. 
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