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Abstract

The complexity of decision tree structures has a direct impact on the generalization capability of classification
algorithms. This study investigates and evaluates the performance of the classical ID3 algorithm and its modified
version in the context of tree depth. The primary objective is to identify the optimal accuracy point and assess the
algorithms' robustness against overfitting. Experiments were conducted across tree depths ranging from 1 to 20, with
accuracy used as the main evaluation metric. The results indicate that both algorithms achieved peak performance at
depth 3, followed by a notable decline. While the classical ID3 algorithm exhibited a gradual decrease in accuracy,
the modified ID3 showed a sharp drop and performance stagnation between depths 11 and 20. These findings suggest
that the modified ID3 algorithm enhances sensitivity in selecting informative attributes but also increases the risk of
overfitting in the absence of structural regularization mechanisms. Therefore, the study recommends the
implementation of regularization strategies such as pruning and cross-validation to mitigate performance degradation
caused by model complexity. This research not only contributes to the theoretical understanding of how tree depth
influences classification performance but also offers practical insights for developing adaptive, stable, and accurate
decision tree-based classification systems.
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1. INTRODUCTION

The ID3 and C4.5 decision tree algorithms are widely utilized in data classification tasks. ID3
relies on information gain as the basis for selecting the most appropriate attribute at each decision node
[1], while C4.5 improves upon this mechanism by employing the gain ratio to mitigate attribute selection
bias [2] . Both algorithms provide flexibility in constructing efficient decision tree structures. In response
to the increasing demand for advanced data analysis across various domains, several derivative methods
have emerged, incorporating novel splitting criteria and intelligent search strategies. Metaheuristic-
based approaches, in particular, have demonstrated improvements in both accuracy and computational
efficiency [3], [4].

The development of decision tree algorithms has increasingly focused on managing high data
complexity. Innovations in attribute splitting strategies, combined with metaheuristic search techniques,
have enabled adaptive capabilities to identify complex and heterogeneous data patterns [5]. The
integration of these approaches facilitates the construction of models that are not only accurate but also
computationally efficient in handling large-scale and imbalanced datasets, making them highly
applicable to modern data-driven challenges.

In constructing a decision tree, ID3 employs a greedy top-down search strategy in which the
attribute with the highest information gain is selected at each step [6], [7]. This process is designed to
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generate an optimal tree structure by efficiently mapping relationships between independent variables
and the target attribute. The popularity of ID3 in rule-based classification stems from its empirical
effectiveness and its ability to process numerical data reliably [8].

However, both ID3 and C4.5 exhibit several limitations that necessitate further investigation. One
of the main drawbacks of ID3 is its tendency to favor attributes with a large number of distinct
categories, leading to biased tree construction [9]. Although C4.5 addresses this issue through an
improved splitting criterion, it does so at the cost of increased computational complexity [10]. Moreover,
both algorithms are not optimally designed to handle imbalanced data, large datasets, missing values,
and overfitting issues [11], [12]. Previous studies have shown that C4.5 can outperform ID3 under
specific conditions, particularly when the number of attributes used is held constant [10].

To address these challenges, this study proposes a modification of the Shannon entropy formula
within the ID3 framework. The proposed modification aims to reduce the bias associated with multi-
valued attributes and enhance the computational efficiency of information gain calculations on large and
imbalanced datasets [13]. By adapting the entropy computation to be more responsive to the underlying
data distribution, the modified ID3 algorithm is expected to generate more optimal and efficient decision
tree structures, thereby improving its relevance and applicability in modern data analysis scenarios.

2. METHOD

This study implements a modification of the ID3 algorithm to enhance classification effectiveness
in complex and imbalanced datasets. ID3 is widely adopted due to its capability to handle nominal
attributes and its attribute selection mechanism based on information gain [14]. However, the greedy
approach inherent in ID3 often leads the algorithm to local optima [15] , exhibits limitations in managing
large-scale datasets [16], and is prone to overfitting on training data [17].

The modification focuses on reformulating the entropy function to address challenges in attribute
selection, particularly when dealing with attributes containing numerous categorical values [18], [19].
The conventional entropy function used in ID3 is considered insufficiently efficient in reducing
information uncertainty, especially in datasets with complex structures [20], [21]. Therefore, this
research modifies both the entropy and gain calculations to optimize node generation in the decision
tree.

The methodological steps include: (1) splitting the dataset into training and testing subsets, (2)
computing the initial entropy based on class proportions in the training data, (3) calculating the
conditional entropy of each attribute based on its categorical values, (4) computing the gain for each
attribute, and (5) selecting the attribute with the highest gain as the splitting node. This process is
repeated recursively until all data instances are classified or no attributes remain.

Entropi — (5i5) « [nermotzinmandnms] Determining the entropy of
positive and negative classes

Select attribute A with & categories to
Ppartition the dataset into subsets 12 to
D

+ |: Gain(A4) — Ent(72) — Ent.a(12) ]

‘ For each subset Dj, calculate its |

size along with the number of
positive (pj) and negative (n)) class
instances

Determining the training data
and test data

of Attribute A Decision tree

U 1

Calculate the Conditional Entropy ] [ L ]

Figure. 1 Research Stages
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Figure 1 illustrates the methodological framework for computing entropy and information gain
derived from the dataset. The process begins by identifying the distribution of positive and negative
classes within the dataset. The initial step involves calculating the dataset's entropy to quantify
uncertainty based on the class proportions.

A categorical attribute is then selected to partition the dataset into several subsets, each
representing distinct attribute values and containing a portion of the original data. Conditional entropy
is computed for each subset by considering the distribution of class labels within it.

The information gain is calculated by subtracting the weighted sum of the subset entropies from
the original dataset entropy. This metric serves to identify the most informative attribute for data
partitioning, aiming to maximize class separation in the construction of the decision tree.

2.1. Modified entropy formula

The ID3 algorithm, introduced by Ross Quinlan, focuses on constructing a decision tree for a
given set of objects [23]. The choice of tests is crucial for creating a simple decision tree, and tests are
restricted to branching based on attribute values. The test selection depends on identifying the most
appropriate attribute to serve as the root of the tree. For example, objects may contain p objects from

class P and n objects from class N :

p n
(p+n) (p+n)’
2) The decision tree classifies objects and assigns them to a class based on the tree structure. The

following formula describes the entropy [13], [23]:

1) An object is assigned to class P with a probability of to class N with a probability of

=__P p, _ L
I(p.n) = p+n log, p+n  p+n log, p+n 1)

The second method for simplifying the entropy formula in equation (1) involves the following steps:

1) Using logarithmic identities [24]

In(x)
log, (x) = 75 by

With b =2

) n(55)

p
log, (_ n(2)

p+n

ln(p%)

logy (p-l-Ln) n(2)

2) Substitute into the entropy formula:

p lrl(p-rl)-n)_ n lrl(p-rll-n)
p+n  In(2) p+n  In(2)

Ent(D) = lnzz) [_pinln(pin)_pj—nln<}?:n>]

3) Combine terms within the logarithm:
p p n n
- In ( ) — In ( )
p+n p+n p+n p+n
4) Rewrite the entropy terms using the natural logarithm (In):

pin(p) + nin(n) pln(p +n) +nin(p +n)
- ptn +< p+n )

Ent(D) = —
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Simplify further:
In +nln(n
_p@) ki o
p+n
p In(p) + nin(n)
Ent(D l +
(D) = s inp -+ ) - 2L
5) Final simplified form:

Ent(D) = In(p + n) ———In(p) — nln(n)
Final result:
The simplified entropy formula, using base-2 logarithms, is:

-1 _ pin(@)+nin(n)
Ent(D) = ) [ln(p +n) i ] 3)

2.2. Modified ID3 Algorithm

The entropy formula Ent(D) is used to measure the irregularity or uncertainty [25] of a dataset D
which consists of two classes: p (the number of positive instances) and n (the number of negative
instances). This is a modification of Shannon’s entropy, integrating the natural logarithm base

standardized to base 2. The normalization factor ﬁ ensures consistency. The term In(p + n) represents

pIn(p)+nin(n)
n

the total information in the dataset, while the term contributes information based on the

class proportions.

This formula is relevant for the ID3 algorithm, which uses entropy to identify the best
attributes for constructing decision trees. It is particularly useful for datasets with imbalanced class
distributions or those requiring smoother logarithmic scaling [11], [25].

The formula remains consistent with the standard entropy formula but differs in the logarithmic
form used. Whether binary or natural logarithm (In) is applied, the final result aligns with the standard
entropy calculation.

Information Gain Formula Using Simplified Entropy [13]:

1. Calculate dataset entropy, for dataset D with p and n:

-t _ pinp)+nin(n)
Ent(D) = D [ln(p +n) i ]

Where:
o p is the number of positive instances
o nis the number of negative instances, and
p + n is the total number of instances in the dataset
Calculate conditional entropy:

Attribute A with u distinct values, the dataset D is divided into subsets D;, Dy, .., Dy

Ent,(D) = }‘=1%[ln(|Dj|) |D|ln(p]) |D|1ln(n])] €))

Where:
|Dj| is the size of subset Dj
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o pjand nj are the numbers of positive and negative instances in subset D;, respectively.
3. Calculate Information Gain

The information Gain, Gain(A) is:
Gain(A) = Ent(D) — Ent,(D) (5)

3.  RESULT

As online shopping expands, contemporary society faces a "hyper choice" era, marked by an
overwhelming variety of online marketplace offerings [26]. Effectively reaching customers with new
offers is a significant challenge for businesses. Questions arise regarding how to attract maximum
consumer attention toward new products, a concern amplified in the digital era with intense competition
and information overload [27]. In the field of digital marketing, phenomena are observed through
advertising campaigns aimed at achieving significant conversion rates. Given these dynamics, it
becomes essential to explore consumer reactions and responses to marketing initiatives. This is valuable
for understanding the mechanisms that influence engagement and decision-making processes.

In this context, the paper focuses on evaluating the impact of decision tree depth on the
classification accuracy of models using the ID3 algorithm. The dataset used, Marketing Campaign,
contains marketing campaign data with 23 attributes and 1 target label. The process begins with data
understanding, which involves collecting and analysing marketing campaign data. The data is gathered
and cleaned into a comprehensive dataset by addressing missing values and categorizing continuous
data. Potential issues within the data are identified, providing an analytical foundation for subsequent
research.

The dataset's target label represents consumer responses to marketing offers, with the variable
distribution showing 0 (did not accept the offer) for 1,906 consumers and 1 (accepted the offer) for 334
consumers.

BN Rejected
Accepted

Rejected

Accepted

Figure 2. Consumer Response Distribution

As illustrated in Figure 2, there is a significant imbalance between consumers who accepted and
those who did not accept the offer, with the proportion of non-accepting consumers being substantially
higher. This imbalance must be carefully considered in data analysis and modeling, as it directly affects
the performance of classification models. Class balancing approaches or the application of appropriate
evaluation metrics can help mitigate this issue. Further research is warranted to explore class balancing
techniques and their impact on classification accuracy.

Table 1. Metrics for ID3 and Modified ID3 with a 70:30 Data Split
1D3 Modified ID3
0 1 0 1
Precision 090 033 0.89 0.30
Recall 086 041 0.88 0.31
F1-score 0.88 037 0.88 0.30

Metric
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The evaluation of the ID3 classification model presented in Table 1, employs precision, recall,
and F1-score metrics to assess the model’s performance in predicting both positive and negative classes.
The precision for class 0 (did not accept the offer) is 0.90, indicating that 90% of all predictions
identifying consumers as not accepting the offer were correct. In contrast, for class 1 (accepted the offer),
the precision is 0.33, meaning that only 33% of predictions identifying consumers as accepting the offer
were accurate. The recall for class 0 is 0.86, indicating that approximately 86% of actual instances where
consumers did not accept the offer were correctly predicted by the model. For class 1, the recall is 0.41,
showing that 41% of the actual instances of offer acceptance were successfully identified. The F1-score
for class 0 is 0.88, reflecting a strong balance between recall and precision. However, the F1-score for
class 1 is 0.37, which highlights the relatively low values of both recall and precision, resulting in a
suboptimal overall performance for this class.

Comparison of Classification Metrics for ID3 and Modified ID3

1.0
® :‘_ *
0.8 1
0.6 4
v
S
&
0.4 1
—e— ID3-Class 0
0.2 1 ID3-Class 1
—e— Modified ID3 - Class 0
Modified ID3 - Class 1
0.0

T T -
Precision Recall Fl-score

Figure 3. Comparative Evaluation of ID3 and Modified ID3 Classification Performance Metric

Figure 3, illustrates the performance evaluation of the ID3 and Modified ID3 algorithms across
each class. The performance for class 0 remains consistently high in both algorithms, with precision and
recall values approaching 0.9. This indicates that the models are more effective in classifying consumers
who did not accept the offer compared to those who did. A slight improvement in recall and stable F1-
score for class 0 in the Modified ID3 model suggests that the modification does not compromise
accuracy for the majority class.

In contrast, class 1 performance (offer acceptance) remains relatively low under both approaches.
The Modified ID3 model shows a decline in both precision and recall for class 1. This pattern reflects a
common challenge in handling imbalanced datasets. The marginal differences in performance metrics
between the two algorithms for class 1 highlight the limited improvement achieved. Therefore, future
efforts should focus on addressing the minority class more effectively.

Overall, the model performs better in predicting consumers who did not accept the offer compared
to those who did. This is due to the class imbalance in the dataset, where the number of consumers who
did not accept the offer is significantly higher than those who did. To improve the model's performance
on the minority class (class 1), techniques such as class balancing or adjusting prediction thresholds
could be considered.

In evaluating the Modified ID3 model, the precision for the negative class is 0.89, meaning that
89% of predictions for class 0 were accurate. Conversely, the precision for class 1 is only 0.30, indicating
that only 30% of positive predictions were correct. The recall for class 0 is 0.88, showing that 88% of
actual cases of non-acceptance were identified. For class 1, the recall is 0.31, meaning that 31% of cases
of acceptance were accurately detected. The F1-score, which represents the harmonic mean of precision
and recall, highlights the balance between these two metrics. With a score of 0.88 for class 0 and 0.30
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for class 1, the model is shown to be effective in classifying non-acceptance cases but struggles with
acceptance cases.

These metrics provide valuable insights into model performance, particularly in the context of
imbalanced datasets. The lower precision and recall values for class 1 indicate difficulties in identifying
cases of offer acceptance, likely due to the smaller sample size in this class or complexity in the data
patterns. Additional strategies, such as data balancing or parameter adjustments, should be considered
to improve performance for the underrepresented class.

3.1.1. Adapting Model Concepts and Tree Depth

Decision tree algorithms simplify complex relationships between variables and targets by
dividing original variables into more meaningful groups. The entropy parameter and max_depth
(maximum tree depth) are set within a specific range to construct an optimal decision tree. The entropy
parameter is used as a criterion to evaluate the quality of each node in the decision tree. Entropy
measures impurity based on the level of information uncertainty and affects the structure and
performance of the resulting decision tree.

The max_depth parameter determines the maximum depth of the decision tree. Setting the
appropriate max_depth value is crucial to avoid overfitting. A model that is too complex and overly
tailored to training data reduces its ability to generalize to new data. By optimizing this parameter,
decision trees can be constructed to produce effective models that predict target variables based on input
variables.

Table 2. Test Results of Max_depth on Accuracy

Accucary
max_depth — 1y Modified ID3

1 0.8571 0.8571
2 0.8661 0.8661
3 0.8690 0.8690
4 0.8690 0.8542
5 0.8542 0.8408
6 0.8571 0.8289
7 0.8557 0.8199
8 0.8542 0.8140
9 0.8527 0.8095
10 0.8482 0.8065
11 0.8408 0.8021
| 12 0.8259 0.8021
13 0.8244 0.8021
14 0.8110 0.8021
15 0.8330 0.8021
16 0.8185 0.8021
17 0.8065 0.8021
18 0.8080 0.8021
19 0.8006 0.8021
20 0.7991 0.8021

Table 2 presents the analysis of the effect of the max depth parameter on the accuracy of the ID3
and Modified ID3 methods shows that increasing the max_depth from 1 to 3 improves the accuracy of
both methods. After reaching max_depth 3, the accuracy of ID3 remains stable, while Modified 1D3
shows a decrease in accuracy. Specifically, at max_depth 3, ID3 achieves an accuracy of 89.90%, while
Modified ID3 reaches 86.90%. At max_depth 4, ID3 remains at 86.90%, while Modified ID3 decreases
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to 85.42%. This decline continues until max_depth 20, where Modified ID3 stabilizes at an accuracy of
80.21%, while ID3 decreases to 79.91%.

The results indicate that after max_depth 3, ID3 maintains its accuracy, whereas Modified ID3
experiences a decline. Selecting the optimal max depth value is crucial for achieving the best
performance in the Modified ID3 method. The decrease in accuracy for Modified ID3 after max_depth
3 may be due to the increased model complexity, which can lead to overfitting when the model adjusts
too closely to the training data, resulting in poor performance on unseen test data. To address this issue,
pruning techniques or further reduction of parameters can be applied to limit the model’s complexity.

The relationship between max_depth and the accuracy of the Decision Tree Model
0.87

0.86 -

0.85 A

0.84

0.83

Accuracy

0.82

0.81 4

0.80 -

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Max Depth

Figure 4. Tree Depth vs. Accuracy for ID3

Figure. 2 shows the relationship between the max_depth (tree depth) of the decision tree model
and its accuracy. Initially, the max_depth increases from 1 to 4, with the model's accuracy significantly
improving, peaking at around 0.8690. After max_depth =4, the accuracy gradually decreases, indicating
that increasing the maximum depth does not further improve the model's performance. The highest
accuracy occurs at max_depth=4, and accuracy slowly declines until max_depth=10. The decline
becomes steeper after max depth=10, with minor fluctuations around max depth=14 and
max_depth=16. At max_depth=20, the accuracy reaches its lowest point at around highest accuracy of
86.90%. After max_depth = 3, accuracy gradually decreases, reaching stability at max_depth = 12 with
an accuracy of 80.21%. The importance of selecting the right max_depth is highlighted, and the
difference in performance between ID3 and Modified ID3 shows that the Modified ID3 algorithm is
more sensitive to model complexity than ID3. The significant drop in accuracy for Modified ID3 after
max_depth = 3 suggests that the algorithm quickly overfits as the tree depth increases, due to additional
adjustments made in Modified ID3 to handle specific features or data conditions. These adjustments can
increase the burden on the model if the max_depth parameter is not optimally set. Modified ID3 requires
more careful parameter tuning to ensure optimal performance.

Comparison of Accuracy for ID3 and Modified ID3 Algorithms Across Tree Depths

0.88

—e— ID3
0.87 Modified ID3
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0.85 4
>
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Figure 5. ID3 vs. Modified ID3 Accuracy Over Tree Depth
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Model accuracy serves as a key indicator for evaluating the performance of classification
algorithms with respect to the structural complexity of decision trees. Figure 5, illustrates the
performance trajectories of the standard ID3 and the modified ID3 algorithms across varying tree depths,
ranging from 1 to 20. In the initial stages, both algorithms exhibit a consistent increase in accuracy as
tree depth increases. The peak accuracy for both models is observed at a depth of 3, reaching 0.8690.
However, this upward trend does not persist uniformly. Notably, the modified ID3 algorithm
experiences a more pronounced performance decline than the classical ID3 variant.

The classical ID3 algorithm shows a gradual decrease in performance following the accuracy
peak, yet the fluctuations remain relatively stable and decelerate over deeper tree structures. This
indicates a degree of resilience to overfitting, even with increased model complexity. In contrast, the
modified ID3 algorithm demonstrates a stagnation in accuracy from depths 11 to 20, consistently
plateauing at 0.8021. This pattern suggests that the modifications introduced into the algorithm impose
structural constraints that limit model complexity, thereby preventing further increases or decreases in
performance.

These findings underscore the importance of balancing flexibility and regularization in the
development of tree-based classification algorithms. While the classical ID3 algorithm offers greater
exploratory capacity for decision-making, it carries a higher risk of overfitting, particularly at extreme
depths. At the same time, it may fail to capture optimal accuracy in shallower tree structures. Therefore,
algorithm selection should be aligned with the nature of the data and the specific goals of the
implementation.

Overfitting emerges as a critical concern in decision tree modeling, especially when tree depth
parameters are not optimally configured. The experimental results reveal that both ID3 and its modified
version exhibit accuracy improvements up to a certain depth—specifically around max_depth = 3 or 4.
Beyond this threshold, accuracy gradually declines, indicating that the model begins to capture noise or
non-generalizable patterns from the training data. This accuracy drop is a hallmark of classical
overfitting, where increased structural complexity leads to a diminished capacity to generalize to unseen
data.

In the case of the modified ID3 algorithm, the performance degradation is more abrupt than in the
classical version, particularly beyond max_depth = 3. This suggests that the modifications aimed at
enhancing feature sensitivity may inadvertently accelerate the onset of overfitting if not accompanied
by appropriate parameter tuning. The sharper performance decline of the modified ID3 highlights its
heightened sensitivity to model complexity. The imbalance between the structural complexity of the tree
and the data’s ability to support deeper splits emerges as a key factor that undermines the model's
generalization capability.

4. DISCUSSIONS

The experimental results consistently demonstrate that decision tree depth exerts a significant
impact on the performance of both the standard ID3 and the modified ID3 algorithms. The highest
accuracy was achieved at a depth of 3, indicating the presence of an optimal point [28], beyond which
model complexity begins to impair generalization. Beyond this point, the performance of both
algorithms declined, albeit with differing degradation patterns. The classical ID3 exhibited a gradual
and stable decline, suggesting its relative robustness to increasing structural complexity. In contrast, the
modified ID3 showed a sharp drop in accuracy, followed by a stagnation phase between depths 11 and
20. This phenomenon reflects increased sensitivity to attribute selection and heightened risk of
overfitting when complexity is not effectively controlled.

These findings underscore the critical importance of complexity control strategies in the
development of decision tree algorithms, particularly when modifications are introduced to pursue
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higher precision. An imbalance between model capacity and data structure complexity can lead to
models that perform well on training data but fail to maintain accuracy on unseen data [29]. Proper
tuning of the maximum depth parameter and the implementation of structural regularization techniques
such as pre-pruning or post-pruning become essential to ensure generalization capability. In real-world
scenarios involving imbalanced or noisy datasets, the tendency to overfit may further degrade overall
classification performance.

The observed stagnation trend in the modified ID3 accuracy suggests that the algorithm enhances
attribute selectivity without incorporating adequate limiting mechanisms. Consequently, the resulting
decision trees expand inefficiently. Integrating algorithmic modifications with adaptive cross-validation
strategies may offer a promising pathway to develop models that are not only accurate but also stable
and scalable across diverse data conditions.

5. CONCLUSION

The study reveals that decision tree depth plays a pivotal role in determining the performance of
both the standard ID3 and its modified counterpart. Both algorithms achieve optimal accuracy at a depth
of three, beyond which a significant risk of overfitting emerges, particularly in the modified ID3. While
the classical ID3 exhibits a controlled decline in performance, the modified version undergoes a rapid
degradation followed by stagnation at greater depths. This indicates that the modified ID3 increases
attribute selection sensitivity, thereby heightening susceptibility to overfitting if not accompanied by
appropriate complexity control strategies.

The successful implementation of decision tree classification algorithms depends not only on
entropy formulation or attribute selection but also on effective tree structure management and model
parameterization. Recommended practices include imposing depth constraints and applying pruning
techniques to prevent overfitting, along with the use of cross-validation to verify model performance
consistency. This research contributes to the broader understanding of how tree structure dynamics
influence generalization, providing a foundation for the development of adaptive and efficient
algorithms for real-world classification tasks.
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