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Abstract 

The complexity of decision tree structures has a direct impact on the generalization capability of classification 

algorithms. This study investigates and evaluates the performance of the classical ID3 algorithm and its modified 

version in the context of tree depth. The primary objective is to identify the optimal accuracy point and assess the 

algorithms' robustness against overfitting. Experiments were conducted across tree depths ranging from 1 to 20, with 

accuracy used as the main evaluation metric. The results indicate that both algorithms achieved peak performance at 

depth 3, followed by a notable decline. While the classical ID3 algorithm exhibited a gradual decrease in accuracy, 

the modified ID3 showed a sharp drop and performance stagnation between depths 11 and 20. These findings suggest 

that the modified ID3 algorithm enhances sensitivity in selecting informative attributes but also increases the risk of 

overfitting in the absence of structural regularization mechanisms. Therefore, the study recommends the 

implementation of regularization strategies such as pruning and cross-validation to mitigate performance degradation 

caused by model complexity. This research not only contributes to the theoretical understanding of how tree depth 

influences classification performance but also offers practical insights for developing adaptive, stable, and accurate 

decision tree-based classification systems. 
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1. INTRODUCTION 

The ID3 and C4.5 decision tree algorithms are widely utilized in data classification tasks. ID3 

relies on information gain as the basis for selecting the most appropriate attribute at each decision node 

[1], while C4.5 improves upon this mechanism by employing the gain ratio to mitigate attribute selection 

bias [2] . Both algorithms provide flexibility in constructing efficient decision tree structures. In response 

to the increasing demand for advanced data analysis across various domains, several derivative methods 

have emerged, incorporating novel splitting criteria and intelligent search strategies. Metaheuristic-

based approaches, in particular, have demonstrated improvements in both accuracy and computational 

efficiency [3], [4]. 

The development of decision tree algorithms has increasingly focused on managing high data 

complexity. Innovations in attribute splitting strategies, combined with metaheuristic search techniques, 

have enabled adaptive capabilities to identify complex and heterogeneous data patterns [5]. The 

integration of these approaches facilitates the construction of models that are not only accurate but also 

computationally efficient in handling large-scale and imbalanced datasets, making them highly 

applicable to modern data-driven challenges. 

In constructing a decision tree, ID3 employs a greedy top-down search strategy in which the 

attribute with the highest information gain is selected at each step [6], [7]. This process is designed to 
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generate an optimal tree structure by efficiently mapping relationships between independent variables 

and the target attribute. The popularity of ID3 in rule-based classification stems from its empirical 

effectiveness and its ability to process numerical data reliably [8]. 

However, both ID3 and C4.5 exhibit several limitations that necessitate further investigation. One 

of the main drawbacks of ID3 is its tendency to favor attributes with a large number of distinct 

categories, leading to biased tree construction [9]. Although C4.5 addresses this issue through an 

improved splitting criterion, it does so at the cost of increased computational complexity [10]. Moreover, 

both algorithms are not optimally designed to handle imbalanced data, large datasets, missing values, 

and overfitting issues [11], [12]. Previous studies have shown that C4.5 can outperform ID3 under 

specific conditions, particularly when the number of attributes used is held constant [10]. 

To address these challenges, this study proposes a modification of the Shannon entropy formula 

within the ID3 framework. The proposed modification aims to reduce the bias associated with multi-

valued attributes and enhance the computational efficiency of information gain calculations on large and 

imbalanced datasets [13]. By adapting the entropy computation to be more responsive to the underlying 

data distribution, the modified ID3 algorithm is expected to generate more optimal and efficient decision 

tree structures, thereby improving its relevance and applicability in modern data analysis scenarios. 

2. METHOD 

This study implements a modification of the ID3 algorithm to enhance classification effectiveness 

in complex and imbalanced datasets. ID3 is widely adopted due to its capability to handle nominal 

attributes and its attribute selection mechanism based on information gain [14]. However, the greedy 

approach inherent in ID3 often leads the algorithm to local optima [15] , exhibits limitations in managing 

large-scale datasets [16], and is prone to overfitting on training data [17]. 

The modification focuses on reformulating the entropy function to address challenges in attribute 

selection, particularly when dealing with attributes containing numerous categorical values  [18], [19]. 

The conventional entropy function used in ID3 is considered insufficiently efficient in reducing 

information uncertainty, especially in datasets with complex structures [20], [21]. Therefore, this 

research modifies both the entropy and gain calculations to optimize node generation in the decision 

tree. 

The methodological steps include: (1) splitting the dataset into training and testing subsets, (2) 

computing the initial entropy based on class proportions in the training data, (3) calculating the 

conditional entropy of each attribute based on its categorical values, (4) computing the gain for each 

attribute, and (5) selecting the attribute with the highest gain as the splitting node. This process is 

repeated recursively until all data instances are classified or no attributes remain. 

 

 
Figure. 1 Research Stages 
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Figure 1 illustrates the methodological framework for computing entropy and information gain 

derived from the dataset. The process begins by identifying the distribution of positive and negative 

classes within the dataset. The initial step involves calculating the dataset's entropy to quantify 

uncertainty based on the class proportions. 

A categorical attribute is then selected to partition the dataset into several subsets, each 

representing distinct attribute values and containing a portion of the original data. Conditional entropy 

is computed for each subset by considering the distribution of class labels within it. 

The information gain is calculated by subtracting the weighted sum of the subset entropies from 

the original dataset entropy. This metric serves to identify the most informative attribute for data 

partitioning, aiming to maximize class separation in the construction of the decision tree. 

2.1. Modified entropy formula 

The ID3 algorithm, introduced by Ross Quinlan, focuses on constructing a decision tree for a 

given set of objects [23]. The choice of tests is crucial for creating a simple decision tree, and tests are 

restricted to branching based on attribute values. The test selection depends on identifying the most 

appropriate attribute to serve as the root of the tree. For example, objects may contain p objects from 

class P and n objects from class N : 

1) An object is assigned to class P with a probability of 
𝑝

(𝑝+𝑛)
 to class N with a probability of 

𝑛

(𝑝+𝑛)
.  

2) The decision tree classifies objects and assigns them to a class based on the tree structure. The 

following formula describes the entropy [13], [23]: 

𝐼(𝑝, 𝑛) = −
𝑝

𝑝+𝑛
log2

𝑝

𝑝+𝑛
−

𝑛

𝑝+𝑛
log2

𝑛

𝑝+𝑛
 (1) 

The second method for simplifying the entropy formula in equation (1) involves the following steps: 

1) Using logarithmic identities [24]  

log𝑏(𝑥) =
ln(𝑥)

ln(𝑏)
 (2) 

With b =2 

𝑙𝑜𝑔2 (
𝑝

𝑝+𝑛
) =

𝑙𝑛(
𝑝

𝑝+𝑛
)

𝑙𝑛(2)
  

𝑙𝑜𝑔2 (
𝑛

𝑝+𝑛
) =

𝑙𝑛(
𝑛

𝑝+𝑛
)

𝑙𝑛(2)
  

2) Substitute into the entropy formula: 

Ent(D) = −
p

p + n
.
ln (

p
p + n)

ln(2)
−

n

p + n
.
ln (

n
p + n)

ln(2)
 

𝐸𝑛𝑡(𝐷) =
1

𝑙𝑛(2)
[−

𝑝

𝑝 + 𝑛
𝑙𝑛 (

𝑝

𝑝 + 𝑛
) −

𝑛

𝑝 + 𝑛
𝑙𝑛 (

𝑛

𝑝 + 𝑛
)] 

3) Combine terms within the logarithm: 

−
𝑝

𝑝 + 𝑛
ln (

𝑝

𝑝 + 𝑛
) −

𝑛

𝑝 + 𝑛
ln (

𝑛

𝑝 + 𝑛
) 

4) Rewrite the entropy terms using the natural logarithm (ln): 

−
𝑝 𝑙𝑛(𝑝) + 𝑛 𝑙𝑛(𝑛)

𝑝 + 𝑛
+ (

𝑝 𝑙𝑛(𝑝 + 𝑛) + 𝑛 𝑙𝑛(𝑝 + 𝑛)

𝑝 + 𝑛
) 
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Simplify further: 

−
𝑝 ln(𝑝) + 𝑛 ln(𝑛)

𝑝 + 𝑛
+ ln(𝑝 + 𝑛) 

𝐸𝑛𝑡(𝐷) =
1

𝑙𝑛(2)
[𝑙𝑛(𝑝 + 𝑛) −

𝑝 𝑙𝑛(𝑝) + 𝑛 𝑙𝑛(𝑛)

𝑝 + 𝑛
] 

5) Final simplified form: 

𝐸𝑛𝑡(𝐷) = 𝑙𝑛(𝑝 + 𝑛) −
𝑝

𝑝 + 𝑛
𝑙𝑛(𝑝) −

𝑛

𝑝 + 𝑛
𝑙𝑛(𝑛) 

Final result: 

The simplified entropy formula, using base-2 logarithms, is: 

𝐸𝑛𝑡(𝐷) =
1

𝑙𝑛(2)
[𝑙𝑛(𝑝 + 𝑛) −

𝑝 𝑙𝑛(𝑝)+𝑛 𝑙𝑛(𝑛)

𝑝+𝑛
] (3) 

2.2. Modified ID3 Algorithm 

The entropy formula Ent(D) is used to measure the irregularity or uncertainty [25]  of a dataset D 

which consists of two classes: p (the number of positive instances) and n (the number of negative 

instances). This is a modification of Shannon’s entropy, integrating the natural logarithm base 

standardized to base 2. The normalization factor 
1

ln2
 ensures consistency. The term ln(𝑝 + 𝑛)  represents 

the total information in the dataset, while the term 
𝑝 ln(𝑝)+𝑛 ln(𝑛)

𝑝+𝑛
 contributes information based on the 

class proportions. 

This formula is relevant for the ID3 algorithm, which uses entropy to identify the best 

attributes for constructing decision trees. It is particularly useful for datasets with imbalanced class 

distributions or those requiring smoother logarithmic scaling [11], [25]. 

The formula remains consistent with the standard entropy formula but differs in the logarithmic 

form used. Whether binary or natural logarithm (ln) is applied, the final result aligns with the standard 

entropy calculation. 

Information Gain Formula Using Simplified Entropy [13]: 

1. Calculate dataset entropy, for dataset D with p and n: 

𝐸𝑛𝑡(𝐷) =
1

𝑙𝑛(2)
[𝑙𝑛(𝑝 + 𝑛) −

𝑝 𝑙𝑛(𝑝)+𝑛 𝑙𝑛(𝑛)

𝑝+𝑛
]   

Where: 

o p is the number of positive instances 

o n is the number of negative instances, and 

o p + n is the total number of instances in the dataset 

2. Calculate conditional entropy: 

Attribute A with u distinct values, the dataset D is divided into subsets D1, D2, .., Dn 

𝐸𝑛𝑡𝐴(𝐷) = ∑
|𝐷𝑗|

⌈𝐷⌉
[𝑙𝑛(|𝐷𝑗|) −

𝑝𝑗

|𝐷𝑗|
𝑙𝑛(𝑝𝑗) −

𝑛𝑗

|𝐷𝑗|
1 𝑙𝑛(𝑛𝑗)]

𝑢
𝑗=1   (4) 

Where: 

o |𝐷𝑗| is the size of subset Dj 
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o pj and nj are the numbers of positive and negative instances in subset Dj, respectively. 

3. Calculate Information Gain 

The information Gain, Gain(A) is: 

𝐺𝑎𝑖𝑛(𝐴) = 𝐸𝑛𝑡(𝐷) − 𝐸𝑛𝑡𝐴(𝐷) (5) 

3. RESULT 

As online shopping expands, contemporary society faces a "hyper choice" era, marked by an 

overwhelming variety of online marketplace offerings [26]. Effectively reaching customers with new 

offers is a significant challenge for businesses. Questions arise regarding how to attract maximum 

consumer attention toward new products, a concern amplified in the digital era with intense competition 

and information overload [27]. In the field of digital marketing, phenomena are observed through 

advertising campaigns aimed at achieving significant conversion rates. Given these dynamics, it 

becomes essential to explore consumer reactions and responses to marketing initiatives. This is valuable 

for understanding the mechanisms that influence engagement and decision-making processes. 

In this context, the paper focuses on evaluating the impact of decision tree depth on the 

classification accuracy of models using the ID3 algorithm. The dataset used, Marketing Campaign, 

contains marketing campaign data with 23 attributes and 1 target label. The process begins with data 

understanding, which involves collecting and analysing marketing campaign data. The data is gathered 

and cleaned into a comprehensive dataset by addressing missing values and categorizing continuous 

data. Potential issues within the data are identified, providing an analytical foundation for subsequent 

research. 

The dataset's target label represents consumer responses to marketing offers, with the variable 

distribution showing 0 (did not accept the offer) for 1,906 consumers and 1 (accepted the offer) for 334 

consumers. 

 
Figure 2. Consumer Response Distribution 

 

As illustrated in Figure 2, there is a significant imbalance between consumers who accepted and 

those who did not accept the offer, with the proportion of non-accepting consumers being substantially 

higher. This imbalance must be carefully considered in data analysis and modeling, as it directly affects 

the performance of classification models. Class balancing approaches or the application of appropriate 

evaluation metrics can help mitigate this issue. Further research is warranted to explore class balancing 

techniques and their impact on classification accuracy. 

 

Table 1. Metrics for ID3 and Modified ID3 with a 70:30 Data Split 

Metric 
ID3 Modified ID3 

0 1 0 1 

Precision 0.90 0.33 0.89 0.30 

Recall 0.86 0.41 0.88 0.31 

F1-score 0.88 0.37 0.88 0.30 
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The evaluation of the ID3 classification model presented in Table 1,  employs precision, recall, 

and F1-score metrics to assess the model’s performance in predicting both positive and negative classes. 

The precision for class 0 (did not accept the offer) is 0.90, indicating that 90% of all predictions 

identifying consumers as not accepting the offer were correct. In contrast, for class 1 (accepted the offer), 

the precision is 0.33, meaning that only 33% of predictions identifying consumers as accepting the offer 

were accurate. The recall for class 0 is 0.86, indicating that approximately 86% of actual instances where 

consumers did not accept the offer were correctly predicted by the model. For class 1, the recall is 0.41, 

showing that 41% of the actual instances of offer acceptance were successfully identified. The F1-score 

for class 0 is 0.88, reflecting a strong balance between recall and precision. However, the F1-score for 

class 1 is 0.37, which highlights the relatively low values of both recall and precision, resulting in a 

suboptimal overall performance for this class. 

 

 
Figure 3. Comparative Evaluation of ID3 and Modified ID3 Classification Performance Metric 

 

Figure 3, illustrates the performance evaluation of the ID3 and Modified ID3 algorithms across 

each class. The performance for class 0 remains consistently high in both algorithms, with precision and 

recall values approaching 0.9. This indicates that the models are more effective in classifying consumers 

who did not accept the offer compared to those who did. A slight improvement in recall and stable F1-

score for class 0 in the Modified ID3 model suggests that the modification does not compromise 

accuracy for the majority class. 

In contrast, class 1 performance (offer acceptance) remains relatively low under both approaches. 

The Modified ID3 model shows a decline in both precision and recall for class 1. This pattern reflects a 

common challenge in handling imbalanced datasets. The marginal differences in performance metrics 

between the two algorithms for class 1 highlight the limited improvement achieved. Therefore, future 

efforts should focus on addressing the minority class more effectively. 

Overall, the model performs better in predicting consumers who did not accept the offer compared 

to those who did. This is due to the class imbalance in the dataset, where the number of consumers who 

did not accept the offer is significantly higher than those who did. To improve the model's performance 

on the minority class (class 1), techniques such as class balancing or adjusting prediction thresholds 

could be considered. 

In evaluating the Modified ID3 model, the precision for the negative class is 0.89, meaning that 

89% of predictions for class 0 were accurate. Conversely, the precision for class 1 is only 0.30, indicating 

that only 30% of positive predictions were correct. The recall for class 0 is 0.88, showing that 88% of 

actual cases of non-acceptance were identified. For class 1, the recall is 0.31, meaning that 31% of cases 

of acceptance were accurately detected. The F1-score, which represents the harmonic mean of precision 

and recall, highlights the balance between these two metrics. With a score of 0.88 for class 0 and 0.30 
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for class 1, the model is shown to be effective in classifying non-acceptance cases but struggles with 

acceptance cases. 

These metrics provide valuable insights into model performance, particularly in the context of 

imbalanced datasets. The lower precision and recall values for class 1 indicate difficulties in identifying 

cases of offer acceptance, likely due to the smaller sample size in this class or complexity in the data 

patterns. Additional strategies, such as data balancing or parameter adjustments, should be considered 

to improve performance for the underrepresented class. 

3.1.1. Adapting Model Concepts and Tree Depth 

Decision tree algorithms simplify complex relationships between variables and targets by 

dividing original variables into more meaningful groups. The entropy parameter and max_depth 

(maximum tree depth) are set within a specific range to construct an optimal decision tree. The entropy 

parameter is used as a criterion to evaluate the quality of each node in the decision tree. Entropy 

measures impurity based on the level of information uncertainty and affects the structure and 

performance of the resulting decision tree. 

The max_depth parameter determines the maximum depth of the decision tree. Setting the 

appropriate max_depth value is crucial to avoid overfitting. A model that is too complex and overly 

tailored to training data reduces its ability to generalize to new data. By optimizing this parameter, 

decision trees can be constructed to produce effective models that predict target variables based on input 

variables. 

 

Table 2. Test Results of Max_depth on Accuracy 

max_depth 
Accucary 

ID3 Modified ID3 

1 0.8571 0.8571 

2 0.8661 0.8661 

3 0.8690 0.8690 

4 0.8690 0.8542 

5 0.8542 0.8408 

6 0.8571 0.8289 

7 0.8557 0.8199 

8 0.8542 0.8140 

9 0.8527 0.8095 

10 0.8482 0.8065 

11 0.8408 0.8021 

12 0.8259 0.8021 

13 0.8244 0.8021 

14 0.8110 0.8021 

15 0.8330 0.8021 

16 0.8185 0.8021 

17 0.8065 0.8021 

18 0.8080 0.8021 

19 0.8006 0.8021 

20 0.7991 0.8021 

 

Table 2 presents the analysis of the effect of the max_depth parameter on the accuracy of the ID3 

and Modified ID3 methods shows that increasing the max_depth from 1 to 3 improves the accuracy of 

both methods. After reaching max_depth 3, the accuracy of ID3 remains stable, while Modified ID3 

shows a decrease in accuracy. Specifically, at max_depth 3, ID3 achieves an accuracy of 89.90%, while 

Modified ID3 reaches 86.90%. At max_depth 4, ID3 remains at 86.90%, while Modified ID3 decreases 
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to 85.42%. This decline continues until max_depth 20, where Modified ID3 stabilizes at an accuracy of 

80.21%, while ID3 decreases to 79.91%. 

The results indicate that after max_depth 3, ID3 maintains its accuracy, whereas Modified ID3 

experiences a decline. Selecting the optimal max_depth value is crucial for achieving the best 

performance in the Modified ID3 method. The decrease in accuracy for Modified ID3 after max_depth 

3 may be due to the increased model complexity, which can lead to overfitting when the model adjusts 

too closely to the training data, resulting in poor performance on unseen test data. To address this issue, 

pruning techniques or further reduction of parameters can be applied to limit the model’s complexity.  

 

 
Figure 4. Tree Depth vs. Accuracy for ID3 

 

Figure. 2 shows the relationship between the max_depth (tree depth) of the decision tree model 

and its accuracy. Initially, the max_depth increases from 1 to 4, with the model's accuracy significantly 

improving, peaking at around 0.8690. After max_depth =4, the accuracy gradually decreases, indicating 

that increasing the maximum depth does not further improve the model's performance. The highest 

accuracy occurs at max_depth=4, and accuracy slowly declines until max_depth=10. The decline 

becomes steeper after max_depth=10, with minor fluctuations around max_depth=14 and 

max_depth=16. At max_depth=20, the accuracy reaches its lowest point at around highest accuracy of 

86.90%. After max_depth = 3, accuracy gradually decreases, reaching stability at max_depth = 12 with 

an accuracy of 80.21%. The importance of selecting the right max_depth is highlighted, and the 

difference in performance between ID3 and Modified ID3 shows that the Modified ID3 algorithm is 

more sensitive to model complexity than ID3. The significant drop in accuracy for Modified ID3 after 

max_depth = 3 suggests that the algorithm quickly overfits as the tree depth increases, due to additional 

adjustments made in Modified ID3 to handle specific features or data conditions. These adjustments can 

increase the burden on the model if the max_depth parameter is not optimally set. Modified ID3 requires 

more careful parameter tuning to ensure optimal performance. 

 

 
Figure 5. ID3 vs. Modified ID3 Accuracy Over Tree Depth 
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Model accuracy serves as a key indicator for evaluating the performance of classification 

algorithms with respect to the structural complexity of decision trees. Figure 5, illustrates the 

performance trajectories of the standard ID3 and the modified ID3 algorithms across varying tree depths, 

ranging from 1 to 20. In the initial stages, both algorithms exhibit a consistent increase in accuracy as 

tree depth increases. The peak accuracy for both models is observed at a depth of 3, reaching 0.8690. 

However, this upward trend does not persist uniformly. Notably, the modified ID3 algorithm 

experiences a more pronounced performance decline than the classical ID3 variant. 

The classical ID3 algorithm shows a gradual decrease in performance following the accuracy 

peak, yet the fluctuations remain relatively stable and decelerate over deeper tree structures. This 

indicates a degree of resilience to overfitting, even with increased model complexity. In contrast, the 

modified ID3 algorithm demonstrates a stagnation in accuracy from depths 11 to 20, consistently 

plateauing at 0.8021. This pattern suggests that the modifications introduced into the algorithm impose 

structural constraints that limit model complexity, thereby preventing further increases or decreases in 

performance. 

These findings underscore the importance of balancing flexibility and regularization in the 

development of tree-based classification algorithms. While the classical ID3 algorithm offers greater 

exploratory capacity for decision-making, it carries a higher risk of overfitting, particularly at extreme 

depths. At the same time, it may fail to capture optimal accuracy in shallower tree structures. Therefore, 

algorithm selection should be aligned with the nature of the data and the specific goals of the 

implementation. 

Overfitting emerges as a critical concern in decision tree modeling, especially when tree depth 

parameters are not optimally configured. The experimental results reveal that both ID3 and its modified 

version exhibit accuracy improvements up to a certain depth—specifically around max_depth = 3 or 4. 

Beyond this threshold, accuracy gradually declines, indicating that the model begins to capture noise or 

non-generalizable patterns from the training data. This accuracy drop is a hallmark of classical 

overfitting, where increased structural complexity leads to a diminished capacity to generalize to unseen 

data. 

In the case of the modified ID3 algorithm, the performance degradation is more abrupt than in the 

classical version, particularly beyond max_depth = 3. This suggests that the modifications aimed at 

enhancing feature sensitivity may inadvertently accelerate the onset of overfitting if not accompanied 

by appropriate parameter tuning. The sharper performance decline of the modified ID3 highlights its 

heightened sensitivity to model complexity. The imbalance between the structural complexity of the tree 

and the data’s ability to support deeper splits emerges as a key factor that undermines the model's 

generalization capability. 

4. DISCUSSIONS 

The experimental results consistently demonstrate that decision tree depth exerts a significant 

impact on the performance of both the standard ID3 and the modified ID3 algorithms. The highest 

accuracy was achieved at a depth of 3, indicating the presence of an optimal point [28], beyond which 

model complexity begins to impair generalization. Beyond this point, the performance of both 

algorithms declined, albeit with differing degradation patterns. The classical ID3 exhibited a gradual 

and stable decline, suggesting its relative robustness to increasing structural complexity. In contrast, the 

modified ID3 showed a sharp drop in accuracy, followed by a stagnation phase between depths 11 and 

20. This phenomenon reflects increased sensitivity to attribute selection and heightened risk of 

overfitting when complexity is not effectively controlled. 

These findings underscore the critical importance of complexity control strategies in the 

development of decision tree algorithms, particularly when modifications are introduced to pursue 
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higher precision. An imbalance between model capacity and data structure complexity can lead to 

models that perform well on training data but fail to maintain accuracy on unseen data [29]. Proper 

tuning of the maximum depth parameter and the implementation of structural regularization techniques 

such as pre-pruning or post-pruning become essential to ensure generalization capability. In real-world 

scenarios involving imbalanced or noisy datasets, the tendency to overfit may further degrade overall 

classification performance. 

The observed stagnation trend in the modified ID3 accuracy suggests that the algorithm enhances 

attribute selectivity without incorporating adequate limiting mechanisms. Consequently, the resulting 

decision trees expand inefficiently. Integrating algorithmic modifications with adaptive cross-validation 

strategies may offer a promising pathway to develop models that are not only accurate but also stable 

and scalable across diverse data conditions. 

5. CONCLUSION 

The study reveals that decision tree depth plays a pivotal role in determining the performance of 

both the standard ID3 and its modified counterpart. Both algorithms achieve optimal accuracy at a depth 

of three, beyond which a significant risk of overfitting emerges, particularly in the modified ID3. While 

the classical ID3 exhibits a controlled decline in performance, the modified version undergoes a rapid 

degradation followed by stagnation at greater depths. This indicates that the modified ID3 increases 

attribute selection sensitivity, thereby heightening susceptibility to overfitting if not accompanied by 

appropriate complexity control strategies. 

The successful implementation of decision tree classification algorithms depends not only on 

entropy formulation or attribute selection but also on effective tree structure management and model 

parameterization. Recommended practices include imposing depth constraints and applying pruning 

techniques to prevent overfitting, along with the use of cross-validation to verify model performance 

consistency. This research contributes to the broader understanding of how tree structure dynamics 

influence generalization, providing a foundation for the development of adaptive and efficient 

algorithms for real-world classification tasks. 
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