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Abstract 

PTC (Papillary Thyroid Carcinoma) is one subtype of thyroid cancer occurred most frequently in thyroid cancer 

cases. Although the prognosis of this cancer is typically positive, its recurrence remains a key challenge requiring 

early detection. This study proposes machine learning models to predict PTC recurrence, explicitly addressing the 

inherent class imbalance in the recurrence data. This study implemented three supervised learning algorithms, namely 

Random Forest (RF), Extreme Gradient Boost (XGB), and Support Vector Machine (SVM) with the Synthetic 

Minority Oversampling Technique (SMOTE) to balance the dataset. SMOTE was chosen for its capacity to generate 

synthetic minority class samples while minimizing information loss, thus effectively addressing class imbalance and 

improving classification outcomes. Model performance was assessed using accuracy, precision, recall (sensitivity), 

and F1-score. Among all approaches tested, RF with SMOTE demonstrated superior performance, achieving 0.98 

accuracy, perfect precision (1.0), high recall (sensitivity) (0.95), and a strong F1-score (0.97), outperforming previous 

methods including SMOTEENN-based approaches. The result of this study demonstrates SMOTE specifically 

outperforms SMOTEENN in this clinical context, likely due to better preservation of subtle prognostic indicators 

with minimal information loss. This improvement suggests SMOTE's effectiveness in preserving valuable decision 

boundary information while addressing class imbalance in PTC recurrence prediction. These findings establish RF 

with SMOTE as a robust and well-balanced approach for predicting PTC recurrence, contributing significantly to the 

development of more precise and responsive AI-driven decision support tools for thyroid cancer. 
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1. INTRODUCTION 

Among all types of thyroid malignancies, Papillary Thyroid Carcinoma (PTC) is the most 

frequently diagnosed, comprising approximately 75–85% of reported cases. It is generally slow-growing 

and often confined to a single lobe of the thyroid gland. Most patients, especially those under 45 years 

of age, have a favourable prognosis [1][2]. In certain cases, PTC may exhibit aggressive behaviour, with 

reported recurrence rates ranging from 8% to 28% [3][4]. Contributing factors to an increased risk of 

recurrence include the follicular variant of PTC, advanced patient age, and the presence of lymph node 

metastases [5]. This significant recurrence potential makes early identification of recurrence risk factors 

a major challenge. This step is crucial for improving patient quality of life and mitigating potential 

complications in the future. 

With advancements in technology, particularly in the field of machine learning (ML), new 

solutions have emerged that enable the automatic learning of complex patterns from multidimensional 

data. The application of ML in detecting PTC recurrence aims to support faster and more accurate 

clinical decision-making, allowing for early intervention while reducing the risks of overdiagnosis and 
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overtreatment. A study conducted by Jinhua Yu et al. [6] developed a Transfer Learning Radiomics 

(TLR) model based on B-mode ultrasound imaging to predict the risk of lymph node metastasis (LNM) 

in PTC patients. This study was conducted in a multi-centre, multi-machine, and multi-operator setting. 

TLR demonstrated superior performance, achieving an average Area Under the Curve (AUC) of 0.93, 

which was higher than that of traditional clinical statistical models and radiomics approaches.  

Another study [7] evaluated various ML approaches, including Support Vector Machines (SVM), 

Decision Tree (DT), Random Forest (RF), and Artificial Neural Network (ANN), to identify the 

recurrence  of differentiated thyroid cancer based on clinicopathological data. The results showed that 

the model incorporating all features achieved the best performance, with SVM reaching an AUC of 

99.71%, a recall (sensitivity) of 93.33%, and a specificity of 97.14%. A major challenge in the 

aforementioned studies was dataset imbalance. In study [6], the number of relevant LNM cases was 

significantly lower than non-LNM cases, while in study [7] only 28% of patients experienced recurrence, 

whereas the remaining 72% did not. This imbalance may affect the model’s reliability in detecting 

patterns within the minority class, which often holds critical clinical implications. 

Addressing similar challenges, Young Min Park and Byung-Joo Lee [8] evaluated five ML 

models in predicting PTC recurrence using pathology data. This research utilized the Synthetic Minority 

Oversampling Technique or SMOTE to balance the previously highly imbalanced distribution of 

recurrence and non-recurrence cases. By applying SMOTE, DT model achieved 95% of accuracy, which 

was later followed by the LightGBM and stacking models with an accuracy of 93%. Additionally, an 

AUC of 0.742 for the number of metastatic lymph nodes highlighted the significance of this variable as 

a risk indicator for recurrence. SMOTE played a crucial role in this study by enhancing the 

representation of minority cases without losing essential information [9][10]. By generating synthetic 

data similar to real cases, SMOTE enabled the model to learn risk patterns more effectively, reduced 

bias toward the majority class, and improved the model’s generalization ability. This underscores the 

importance of oversampling techniques in developing more accurate and reliable clinical prediction 

models. Another study [11] addressed the issue of class imbalance in clinical datasets using SMOTE- 

Edited Nearest Neighbours (ENN) and an Explainable Artificial Neural Network (EANN), focusing on 

the early detection of thyroid cancer. SMOTEENN combines the SMOTE technique with a noise 

elimination process based on Edited Nearest Neighbours (ENN), effectively balancing the dataset while 

removing ambiguous or misclassified samples [12]. However, ENN may aggressively remove synthetic 

or real samples considered misclassified or noisy or inconsistent with its local neighbourhood, 

potentially leading to the loss of valuable information[13][14]. Given SMOTEENN’s potential to 

aggressively remove samples, in certain rare cases or medical datasets where minority class samples 

hold critical information, relying solely on SMOTE can better preserve these valuable data points [15]. 

Therefore, this study proposes the use of the SMOTE technique to address dataset imbalance in 

PTC recurrence cases, particularly within cohort datasets. This approach aims to enhance data quality, 

enabling machine learning models to classify more accurately and fairly across all classes. The 

evaluation is conducted using various machine learning models, including RF, Extreme Gradient Boost 

(XGB), and SVM, which widely acknowledged for excelling in classification tasks. By leveraging an 

innovative combination of resampling methods and diverse classification models, this study is expected 

to provide an effective solution for handling imbalanced datasets while making a significant contribution 

to improving the accuracy of clinical diagnosis in PTC recurrence cases. To provide broader context, a 

comparative discussion of SMOTE and SMOTEENN as prior methods is included at the end of this 

paper, outlining their relevance to class imbalance issues in clinical datasets. 

https://jutif.if.unsoed.ac.id/
https://doi.org/10.52436/1.jutif.2025.6.4.4854


Jurnal Teknik Informatika (JUTIF)  Vol. 6, No. 4, Agustus 2025, Page. 2019-2034 

P-ISSN: 2723-3863  https://jutif.if.unsoed.ac.id                                       

E-ISSN: 2723-3871  DOI: https://doi.org/10.52436/1.jutif.2025.6.4.4854 

 

 

2021 

2. METHOD 

 
Figure 1. Proposed Research Workflow 

 

This study is experimental research aimed at evaluating multiple machine learning models using 

a publicly available dataset. The proposed research framework is illustrated in Figure 1. In this 

framework, the Papillary Thyroid Carcinoma (PTC) dataset undergoes an initial pre-processing stage, 

specifically data transformation using One-Hot Encoding (OHE), to ensure compatibility with 

subsequent processing steps. The dataset is then partitioned using split validation into training set and 

testing set. Afterwards, SMOTE technique is employed on the training data to handle class imbalance. 

As shown in Figure 1, the synthetic samples generated through SMOTE is then utilized to train several 

ML models, including RF, XGB, and SVM. Upon completion of the training process, the models are 

evaluated using the test data to assess their classification performance. A comprehensive discussion of 

the experimental setup and the methodologies employed in this study is provided in the following 

sections. 

2.1. Papillary Thyroid Carcinoma (PTC) Dataset 

This study utilizes a publicly available dataset on Papillary Thyroid Carcinoma (PTC) [7] which 

can be accessed Data were collected over 15 years, with a follow-up duration of no less than 10 years 

for each patient. It comprises 383 samples and includes 17 variables, categorized as follows: 5 

demographic and patient history variables, 3 clinical and physical examination variables, 3 pathological 
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variables, 4 staging variables (TNM classification), and 2 outcome variables. The outcome variables 

include the patient's response to therapy and the target label indicating PTC recurrence. Table 1 presents 

the operational definitions for each variable used in this study. 

 

Table 1. Definition of Variables in the Papillary Thyroid Carcinoma (PTC) Dataset 

Feature Name Description 

Age Age of the patient in years. 

Gender Gender of the patient (F = Female, M = Male). 

Smoking Whether the patient is currently smoking (Yes/No). 

Hx Smoking History of smoking (Yes if the patient has smoked before, No otherwise). 

Hx 

Radiotherapy 

History of undergoing radiotherapy (Yes/No). 

Thyroid 

Function 

Thyroid function status (e.g., Euthyroid, Hypothyroid). 

Physical 

Examination 

Findings from the physical examination of the thyroid gland (e.g., Single nodular 

goiter, Multinodular goiter). 

Adenopathy Presence of lymph node enlargement (Yes/No). 

Pathology Type of pathology of the thyroid tissue (e.g., Micropapillary). 

Focality Tumor focality, indicating whether the tumor is Uni-Focal or Multi-Focal. 

Risk Cancer risk classification (Low/High). 

T (Tumor Stage) Tumor size and characteristics based on TNM staging (e.g., T1a, T1b). 

N (Node 

Involvement) 

Status of lymph node involvement in TNM staging (e.g., N0, N1). 

M (Metastasis 

Status) 

Whether the cancer has spread to other organs (M0 = No metastasis, M1 = 

Metastasis present). 

Stage Overall cancer stage based on TNM classification (e.g., I, II, III, IV). 

Response Patient’s response to treatment (e.g., Excellent, Indeterminate). 

Recurred Whether the cancer has recurred after treatment (Yes/No). 

2.2. Pre-processing 

Pre-processing serves as the preliminary step in data preparation before its utilization in a machine 

learning (ML) model. The objective of pre-processing is to enhance data quality, which allow the ML 

model to learn more precisely and effectively [16]. In this study, the pre-processing stage utilizes the 

One-Hot Encoding (OHE) technique. OHE is selected due to the predominantly categorical nature of 

the PTC dataset. This method offers significant advantages in handling categorical data by preventing 

the model from incorrectly interpreting categorical values as ordinal relationships [17]. Compared to 

retaining categorical data in its raw form, OHE ensures that each category is distinctly represented, 

which strengthens the model’s pattern recognition performance [18]. OHE is a data transformation 

technique used to reform categorical variables into a binary numerical representation. This technique is 

widely applied in ML to ensure that the ML model can treat categorical data without assuming an 

inherent sequence among the categories. In OHE, each unique category of a feature is encoded as a 

binary vector with a length corresponding to the total number of unique categories in that feature. Each 

entry in the vector contains a value of 1 (true) if the sample belongs to a specific category and 0 (false) 

otherwise. Mathematically, the OHE transformation can be expressed as follows [19]: 

Given a feature 𝑋 with 𝑘 unique category variations (1): 

𝑋 = {𝑥1, 𝑥2, … , 𝑥𝑛} (1) 
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Thus, the One-Hot Encoding function can be defined as follows (2): 

𝑂𝐻𝐸(𝑥𝑖) = 𝑉𝑖 ∈ ℝ𝑘 (2) 

The OHE function in Equation (1) indicates that the vector 𝑉𝑖 resides in a 𝑘 dimensional space 

containing real numbers ℝ. The vector 𝑉𝑖 represent the elements 𝑉𝑖 = {𝑣𝑖1, 𝑣𝑖2, … , 𝑣𝑖𝑘}, where each 

element 𝑣𝑖𝑘 is defined as follows (3): 

𝑣𝑖𝑘 = {
1  (𝑡𝑟𝑢𝑒),     if 𝑥𝑖 = 𝑐𝑘

0 (𝑓𝑎𝑙𝑠𝑒),   if 𝑥𝑖 ≠ 𝑐𝑘
 (3) 

Each element is defined based on the correspondence between 𝑥𝑖 and category 𝑐𝑘. If they match, 

then 𝑣𝑖𝑘 is assigned a value of 1 (true); otherwise, it is assigned 0 (false). 

2.3. Synthetic Minority Over-sampling Technique (SMOTE) 

The majority of patients with papillary thyroid carcinoma (PTC) has a favourable prognosis. 

Consequently, the availability of recurrence data, particularly for high-risk recurrence cases, is highly 

limited. To mitigate this limitation, this study employs the Virtual Sample Generation (VSG) method, 

specifically the SMOTE, which is widely utilized to mitigate class imbalance within datasets [20][21]. 

The application of SMOTE involves generating synthetic data by linearly interpolating minority 

class samples. The determination of new synthetic data using SMOTE can be formulated using Equation 

(4) [22]. 

𝑥𝑛𝑒𝑤 = 𝑥𝑖 +  𝜆 ∙ (𝑥𝑘 − 𝑥𝑖) (4) 

From Equation (4), it can be inferred that the determination of the synthetic data 𝑥𝑛𝑒𝑤 is 

performed by utilizing a minority class sample 𝑥𝑖 and its neighbouring sample 𝑥𝑘. The neighbouring 

sample 𝑥𝑘 is identified based on k-nearest neighbours (typically 𝑘 = 5) of the minority sample 𝑥𝑖 using 

the Euclidean distance. Meanwhile, 𝜆 is a random value ranging between 0 and 1.  

2.4. Random Forest (RF) 

Random Forest (RF) is an ensemble-based ML algorithm developed by Breiman [23], widely 

used in various machine learning applications, including classification and regression. This algorithm 

constructs multiple randomly generated decision trees and combines their predictions using an ensemble 

approach to improve accuracy and reduce the risk of overfitting. 

𝐷 = {(𝑥1, 𝑦1), (𝑥2, 𝑦2), … , (𝑥𝑛, 𝑦𝑛)} (5) 

Given a dataset 𝐷 in equation (5) with 𝑥𝑛 and 𝑦𝑛, representing the features of PTC pathology, 

where 𝑛 is the number of data samples. The initial stage of random forest is generating the 𝑏 subset 

utilizing bootstrap sampling as follow (6): 

𝐷𝑏 ⊂ 𝐷 𝑤ℎ𝑒𝑟𝑒 |𝐷𝑏| = 𝑛 (6) 

Each subset 𝐷𝑏 is drawn with replacement, meaning a sample may appear multiple times in a 

single subset. Each subset then used to train one decision tree (DT) model (𝑇𝑏). 

The construction of the 𝑇𝑏 begin with splitting the subset 𝐷𝑏 based on chosen feature 𝑋𝑗 that 

provides the best separation. At each node 𝑣, the best feature 𝑋𝑗
∗ is selected by reducing impurity using 

Gini Impurity (7) or Entropy (8) [24][25]: 
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𝐺(𝑋𝑗) = 1 −  ∑ 𝑝𝑖
2 (7) 

𝐻(𝑋𝑗) =  − ∑ 𝑝𝑖 𝑙𝑜𝑔2 𝑝𝑖 (8) 

𝑝𝑖 =
𝐷𝑣

𝑖

𝐷𝑣
 (9) 

where 𝑝𝑖 in (9) represents the probability of class 𝑖, and 𝐷𝑣
𝑖  represents sample in class 𝑖 at node 𝑣. 

The best feature 𝑋𝑗
∗ for splitting node 𝑣 is selected from the one that minimizes the weighted impurity 

using equation (10). 

𝑋𝑗
∗ = arg min

𝑋𝑗

[𝐻(𝐷𝐿) + 𝐻(𝐷𝑅)] (10) 

After each decision tree 𝑇𝑏 model generated, then the final prediction can be decided based on the 

majority voting of prediction result from each 𝑇𝑏 as displayed in (11). Each 𝑇𝑏 predicts an output 𝑦̂𝑏 for 

a given input 𝑥. 

𝑦̂𝑏 =  𝑇𝑏(𝑥) (11) 

Based on these prediction result 𝑦̂𝑏 of each 𝑇𝑏, the majority voting can be expressed in (12) [26]. 

𝑦̂ = arg min
𝑦

∑ 1(𝑇𝑏(𝑥) = 𝑦)𝐵
𝑏=1  (12) 

1(𝑇𝑏(𝑥) = 𝑦) = {
1, if  𝑇𝑏(𝑥) = 𝑦

0,            otherwise 
 (13) 

Where in equation (13), 1 is an indicator function, and 𝑦̂ represents the final prediction result of 

the Random Forest, which corresponds to the predicted risk of recurrence in Papillary Thyroid 

Carcinoma (PTC). 

2.5. Extreme Gradient Boost (XGB) 

Extreme Gradient Boosting (XGB) is a model developed based on the gradient boosting approach  

[27]. It is constructed using decision trees as the foundation for its classification process. XGB operates 

by iteratively building tree models, where each subsequent model focuses on rectifying the mistakes of 

the previous one. This process is carried out by minimizing the loss function using gradient descent 

while incorporating regularization to prevent overfitting [28]. XGB is widely utilized in machine 

learning development due to its high speed, efficiency, and scalability, enabling it to deliver optimal 

performance [29]. 

In general, XGB prediction process in 𝑡 iteration can be expressed using formula (14) [28]. 

𝑦̂(𝑡) = 𝑦̂(𝑡−1) +  𝑓𝑡(𝑥) (14) 

where 𝑦̂(𝑡) represents the most recent prediction result, while 𝑦̂(𝑡−1) denotes the previous 

prediction result. The function 𝑓𝑡(𝑥) corresponds to the newly added decision tree model, which aims 

to correct the errors from the previous iteration. In each iteration, XGB enhances the decision tree model 

by optimizing the objective function (ℒ), which consists of a loss function and a regularization term.  

ℒ = ∑ 𝑙(𝑦𝑖 , 𝑦̂𝑖) + ∑ Ω(𝑓𝑡)𝑇
𝑡=1

𝑛
𝑖=1  (15) 
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From Equation (15), 𝑙(𝑦𝑖 , 𝑦̂𝑖) represents the loss function, which measure the difference between 

the predicted result 𝑦̂𝑖 and the actual result 𝑦𝑖. Meanwhile, the Ω(𝑓𝑡) is the regularization term used to 

control the complexity of the model, which is generally formulated as follow (16). 

Ω(𝑓𝑡) = 𝛾𝑇 +  
1

2
𝜆 ∑ 𝑤𝑗

2𝑇
𝑗=1  (16) 

where 𝑇 is the leaf numbers in the decision tree, 𝑤𝑗  denotes the weight of each leaf, 𝛾 is a 

penalized parameter for the number of leaves, while 𝜆 help the L2 regularization on leaf weights. This 

regularization controls overfitting and strengthens the model’s generalization performance. 

2.6. Support Vector Machine (SVM) 

Support Vector Machine (SVM) is a ML algorithm designed for handling classification and 

regression tasks. The essential principle of SVM is to determine the optimal hyperplane, which defines 

a hyperplane that maximizes the margin between two distinct data classes [30]. In a two-dimensional 

feature space, the hyperplane corresponds to a line; in higher-dimensional spaces, it generalizes to a flat 

surface that separates the classes.  

𝜔𝑇𝑥 + 𝑏 = 0 (17) 

From Equation (17), the optimal hyperplane is defined by the dot product of the weight vector 𝜔 

which defines the orientation of the decision boundary (hyperplane) and the input feature vector 𝑥 

followed by the addition of the bias 𝑏 which shifts the decision boundary. In order to ensure the data is 

separated with the maximum margin, SVM maximize the margin 𝑀 between the two classes with the 

condition in formula (18). 

𝑦𝑖(𝜔𝑇𝑥𝑖 + 𝑏) ≥ 1,   ∀𝑖 (18) 

The 𝑦𝑖 is the actual class label of the 𝑖-th data point, where 𝑦𝑖 ∈ {−1, 1} typically used in SVM 

to distinguish between two classes. Then, SVM minimize the objective function (19) to obtain bigger 

margin 𝑀.  

min
𝜔,𝑏

1

2
‖𝜔‖2 (19) 

However, in many cases, data cannot be linearly separated. To address this limitation, SVM 

employs a kernel function that lifting the data into a higher-dimensional representation [31]. Radial 

Basis Function (RBF) is one of kernel commonly used in SVM particularly in handling the non-linear 

data [32].  

𝐾(𝑥𝑖, 𝑥𝑗) = exp (−𝛾‖𝑥𝑖 − 𝑥𝑗‖
2

) (20) 

This transformation using 𝐾(𝑥𝑖 , 𝑥𝑗) in Equation (20) allows data that are not separable in their 

original space to be effectively distinguished in the new feature space. This approach enhances SVM’s 

capability to support diverse data types, including those with complex patterns, making it a powerful 

algorithm for various machine learning applications. 

2.7. Experimental Setup and Evaluation 

The experiments were conducted using Python 3.10 within the Google Collaboratory 

environment. The machine learning (ML) models utilized in this study were executed using several 

Python programming libraries: Scikit-learn (v1.1.3) for One Hot Encoding (OHE), Random Forest (RF), 
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and Support Vector Machine (SVM); XGBoost (v1.7.6) for Extreme Gradient Boosting (XGB); and 

Imbalanced-learn (v0.11.0) for the Synthetic Minority Over-Sampling Technique (SMOTE). All ML 

models were trained with default hyperparameters and a predetermined random seed of 42 to ensure 

reproducibility. Prior to modelling, the dataset was transformed using the One Hot Encoding technique, 

then divide it into training and testing datasets at an 80:20 ratio using a random split. Afterwards, the 

SMOTE was applied only to the training set to preserving the integrity of model evaluation. 

After training machine learning models (RF, XGB, and SVM) using a synthetic dataset generated 

through SMOTE to predict the recurrence risk of papillary thyroid carcinoma (PTC), the next step is to 

evaluate the model’s performance using the training data. This evaluation yields several ML 

performance metrics, including accuracy, precision, recall (sensitivity), and F1-score, which are 

generally used to examine the effectiveness of the trained ML models [33]. 

Accuracy measures the extent to which the model correctly classifies all target classes. Precision 

indicates the proportion of positive predictions that are truly positive. Recall or sensitivity quantifies the 

percentage of actual positive cases that are correctly identified by the model. Meanwhile, the F1-score 

combines precision and recall (sensitivity) to provide a balanced assessment of the model’s 

performance.  

In this study, the results of model training using the synthetic dataset generated by SMOTE are 

compared with those obtained from training the same model using the original dataset without any pre-

processing. This comparison aims to evaluate the impact of SMOTE on improving the performance of 

machine learning models, particularly in addressing class imbalance within the dataset. 

3. RESULT 

The prediction of Papillary Thyroid Carcinoma (PTC) recurrence has been conducted using a 

machine learning approach. To ensure that categorical variables are not misinterpreted as ordinal data 

by the model, the dataset was preprocessed using One-Hot Encoding (OHE). This transformation 

resulted in a refined dataset comprising 383 records and 120 features. Subsequently, the dataset was 

partitioned into two subsets (training and testing sets) based on 80:20 ratio using random split. The 

training set consists of 306 samples, with 77 samples designated as the testing set. 

The distribution of the training set consist of 89 samples from minority class, while the majority 

class has 217 samples. This represents a 41% difference between the two classes, indicating a notable 

class imbalance. To address the issue of class imbalance within the training dataset, the Synthetic 

Minority Over-sampling Technique (SMOTE) was applied. Prior to resampling, the distribution of the 

target variable was skewed, with a significantly lower number of samples in the "Yes" class (indicating 

recurrence of PTC) compared to the "No" class (non-recurrence). This imbalance poses a risk of biasing 

the classifier toward the majority class, potentially reducing its sensitivity in detecting recurrence cases.  

After the application of SMOTE, the minority class was synthetically augmented to match the 

majority class (both consist of 217 samples), resulting in a more balanced training set. Figure 2 illustrates 

the class distributions before and after the application of SMOTE. As shown, the number of samples in 

the "Yes" class increased substantially, achieving near parity with the "No" class. Therefore, the 

resampled training set comprises 434 samples, which corresponds to a 41.83% increase from the original 

training set size. This balanced distribution is expected to improve the model's ability to detect 

recurrence cases by providing a more representative learning space. 

 In this study, three supervised machine learning algorithms, namely Random Forest (RF), 

Extreme Gradient Boosting (XGB), and Support Vector Machine (SVM) were employed to perform the 

classification task for predicting the recurrence of PTC. Each model was trained and evaluated using 

both the original (imbalanced) and resampled (SMOTE-balanced) versions of the training dataset in 
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order to assess the impact of class balancing on predictive performance. All ML models were trained 

using default hyperparameters and a fixed random seed of 42 to guarantee reproducibility. 

After training, the ML models were tested using the testing set to evaluate their performance, 

particularly in predicting PTC recurrence. The performance metrics used to assess the models’ 

capabilities included accuracy, recall (sensitivity), precision, and F1-score. The evaluation results based 

on the testing set and these metrics are presented in Table 2.  

 

 
Figure 2. The Comparison of Sample Set after SMOTE application 

 

 

Table 2. Evaluation Result 
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Yes 

RF 0.97 0.98 1.00 1.00 0.89 0.95 0.94 0.97 

XGB 0.96 0.97 0.90 0.95 0.95 0.95 0.91 0.97 

SVM 0.96 0.98 1.00 1.00 0.84 0.95 0.92 0.95 
          

No 

RF 0.97 0.98 0.97 0.98 1.00 1.00 0.98 0.99 

XGB 0.96 0.97 0.98 0.98 0.97 0.98 0.97 0.98 

SVM 0.96 0.98 0.95 0.98 1.00 1.00 0.97 0.99 

 

As presented in Table 2, all models demonstrated performance result across both datasets, with 

slight improvements observed after applying SMOTE. Figure 3 presents a comparison of classification 

accuracy achieved by three ML algorithms (RF, XGB, and SVM) when applied to a dataset related to 

PTC.  
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Figure 3. The Impact of SMOTE on Classification Accuracy Across Different Models 

 

The application of SMOTE resulted in improved model performance across all algorithms. 

Specifically, the accuracy of RF increased from 0.97 to 0.98 (1.03%), XGB from 0.96 to 0.97 (1.04%), 

and SVM from 0.96 to 0.98 (2.08%). These results demonstrate that SMOTE effectively mitigates class 

imbalance in PTC data and enhances overall classification performance, with an average improvement 

of 1.38%, underscoring its utility in medical data analysis where imbalanced class distributions are 

common. 

 

 
Figure 4. Comparison of Precision performance before and after SMOTE balancing on the PTC 

dataset. 

 

Figure 4 further supports the findings by comparing the precision of the same models under both 

conditions. For the "Yes" class (recurrence class), XGB showed the highest precision improvement at 

5.56%, while RF and SVM remained constant. The average improvement across models in this class 

was 1.85%. For the "No" class, SVM improved the most at 3.16%, followed by RF at 1.03%, while 

XGB showed no change. The average precision improvement for this class was 1.40%. The substantial 
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improvement in precision of trained models after SMOTE application highlights the SMOTE 

effectiveness in enabling the model to more accurately identify true positive cases in an imbalanced 

medical dataset. 

 

 
Figure 5. Comparison of recall values demonstrating the impact of SMOTE on model sensitivity 

across classifiers. 

 

Moreover, Figure 5 highlights the comparison of recall (sensitivity) scores. The application of 

SMOTE resulted in a significant recall (sensitivity) improvement in the “Yes” class, with an average 

increase of 6.61% across models. In contrast, the “No” class recall (sensitivity) remained largely 

unchanged, with an average improvement of only 0.34%. The recall (sensitivity) results show a 

significant improvement in the "Yes" class (PTC recurrence), indicating that SMOTE effectively 

enhances data quality by balancing class distribution while preserving critical minority class 

information. Consequently, the model's ability to detect PTC recurrence improves notably, enabling 

more accurate identification of positive cases and reducing the risk of false negatives. 

Figure 6 presents the comparison of F1-scores, which balances both precision and recall. The F1-

scores for the "Yes" class (PTC recurrence) improved across all models after applying SMOTE, with 

RF increasing from 0.94 to 0.97, XGB from 0.91 to 0.97, and SVM from 0.92 to 0.95. These 

improvements indicate enhanced model performance in detecting recurrence cases, particularly in the 

minority class. For the "No" class (non-recurrence), F1-scores also increased or remained high, with RF 

rising from 0.98 to 0.99, XGB from 0.97 to 0.98, and SVM from 0.97 to 0.99. Overall, SMOTE not only 

improved recall but also contributed to a more balanced predictive performance across classes, 

particularly enhancing the detection of the minority class. The consistent upward trends in F1-scores 

further indicate that SMOTE effectively increased classifier sensitivity toward relapse cases, resulting 

in improved overall performance. 

Collectively, these findings demonstrate that SMOTE plays a significant role in improving the 

predictive capabilities of ML models, especially in addressing the imbalance class commonly appear in 

medical datasets. The enhancement in performance matrics and overall consistency make SMOTE a 

valuable preprocessing step in building reliable diagnostic tools for Papillary Thyroid Carcinoma 

classification. 
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Figure 6. F1-score trends illustrating the enhancement in model balance between precision and recall 

after SMOTE implementation. 

 

4. DISCUSSIONS 

In clinical practice, especially when predicting recurrence in Papillary Thyroid Carcinoma (PTC), 

recall plays a vital role. Missing a recurrence case could lead to delays in treatment, which may 

compromise patient outcomes. Therefore, improving recall directly supports earlier detection and 

enables timely, more accurate clinical decisions [34].  

At the same time, precision is equally important. A model with high precision helps ensure that 

patients who are not experiencing recurrence are not subjected to unnecessary diagnostic procedures or 

treatments [35]. This avoids undue stress, potential side effects, and additional healthcare costs. Striking 

the right balance between precision and recall is essential and this balance is best reflected in the F1-

score, which considers both aspects. 

In this study, applying the Synthetic Minority Over-sampling Technique (SMOTE) improved the 

models' sensitivity to the minority class without significantly compromising performance on the 

majority class. This is particularly important given the typical imbalance in medical datasets, which can 

cause models to favor the dominant class and overlook critical minority instances. 

 

Table 3. Performance Comparison with State-of-the-art 

ref. Years Proposed Method 
Performance 

Accuracy 

[11] 2022 Explainable Artificial Neural Network (EANN) and 

SMOTE Edited Nearest Neighbors (SMOTEENN) 

0.94 

[7] 2023 Support Vector Machine 0.96 

[36] 2024 Random Forest 0.97 

This Study 2025 Random Forest and SMOTE 0.98 
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From Table 3, which summarizes the results of several prior methods tested, RF with SMOTE 

demonstrated superior performance with 0.98 of accuracy compared to the previous studies. This 

improvement can be attributed to the robustness of RF in handling non-linear relationships and noisy 

data, as well as its ensemble nature, which enhances generalization. The presence of SMOTE enhanced 

the RF model’s ability to detect recurrence cases by mitigating class imbalance, thereby facilitating the 

learning of more robust and clinically meaningful decision boundaries. While [11] using EANN with 

SMOTE with Edited Nearest Neighbors (SMOTEENN) achieved an accuracy of 0.94, and subsequent 

research using Support Vector Machine [7] and standard Random Forest [36] showed incremental 

improvements with accuracies of 0.96 and 0.97 respectively. In contrast, the proposed method of this 

study achieved the highest accuracy of 0.98. This improvement over SMOTEENN-based methods 

suggests that SMOTE provides a more effective solution for addressing class imbalance in PTC 

recurrence prediction. SMOTE likely outperformed SMOTEENN in this context because the under-

sampling component of SMOTEENN may have removed valuable majority class samples that contained 

important decision boundary information [37]. Additionally, papillary thyroid carcinoma datasets 

typically contain subtle prognostic indicators with limited noise, conditions where pure over-sampling 

approaches like SMOTE excel by preserving all original data points while adding synthetic minority 

samples.  

In conclusion, Random Forest with SMOTE is recommended as the most effective model for 

detecting recurrence in PTC, offering strong and balanced performance across all key evaluation 

metrics. Clinically, this approach holds promise for integration into screening workflows and clinical 

decision support systems. Its compatibility with structured data enables feasible deployment within 

Electronic Health Record (EHR) environments, where it could provide automated risk stratification for 

recurrence. 

Nonetheless, several limitations of this study warrant consideration. The relatively limited dataset 

size (𝑛 =  383) may constrain the model’s capacity for generalization, particularly when applied to 

broader or more heterogeneous patient populations. Furthermore, the absence of external validation or 

the use of more rigorous cross-validation strategies may affect the reliability and stability of the reported 

performance metrics. Although the implementation of SMOTE effectively mitigated class imbalance, 

the introduction of synthetic samples may inadvertently increase the risk of overfitting, especially in 

smaller datasets. To address these concerns, future research should incorporate larger, multi-institutional 

datasets and implement external validation protocols to enhance the model's robustness and clinical 

applicability. Additionally, the integration of explainable artificial intelligence (XAI) approaches, such 

as SHAP (SHapley Additive exPlanations) or LIME (Local Interpretable Model-agnostic Explanations) 

is recommended to improve the interpretability of model outputs, thereby supporting transparent and 

clinically meaningful decision-making for healthcare practitioners. 

5. CONCLUSION 

The improvement of recall (sensitivity) in papillary thyroid carcinoma (PTC) recurrence 

prediction has been successfully achieved using SMOTE with several machine learning models. From 

our comprehensive evaluation results, the application of SMOTE in RF, XGB, and SVM was capable 

of significantly improving overall performance parameters. This study provides the first evidence that 

SMOTE outperforms SMOTEENN in recall performance on PTC datasets. Among these models, 

Random Forest combined with SMOTE demonstrated superior performance, achieving an accuracy of 

0.98. This represents a 4.26% improvement over EANN with SMOTEENN (0.94), a 2.08% increase 

over standard SVM (0.96), and a 1.03% improvement compared to conventional RF without SMOTE 

(0.97). Additionally, this combination yielded perfect precision (1.00), high recall (0.95), and a strong 

F1-score (0.97) in identifying recurrence cases, highlighting its effectiveness in addressing class 
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imbalance and improving predictive performance. SMOTE outperformed SMOTEENN likely because 

it preserved all original data points while effectively addressing class imbalance without removing 

potentially valuable majority class samples that contained important decision boundary information. 

These findings represent a significant advancement in developing reliable clinical decision support tools, 

potentially allowing clinicians to identify high-risk PTC patients more accurately and implement 

appropriate monitoring and intervention strategies earlier. Importantly, this study contributes to the field 

of AI in oncology by providing empirical evidence of the utility of machine learning models in 

improving risk stratification and supporting precision oncology efforts. 

Additionally, prospective validation studies across multiple institutions with diverse patient 

populations are essential to confirm the generalizability of our approach. Finally, developing an 

interpretable clinical decision support system that not only predicts recurrence but also provides 

actionable insights into patient-specific risk factors would significantly enhance the practical utility of 

this work in thyroid cancer management. 
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