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Abstract 

Electrocoagulation is an effective and environmentally friendly technology for treating wastewater by removing 

contaminants such as turbidity, heavy metals, and organic compounds. Accurately predicting turbidity removal time 

is essential for optimizing treatment performance and operational efficiency. However, this is challenging due to 

complex, nonlinear relationships between multiple parameters including current, voltage, electrode configuration, 

conductivity, and turbidity removal rate. This study aims to develop a predictive framework by comparing six 

supervised regression models, namely Linear Regression, Polynomial Regression, Random Forest, Support Vector 

Regression (SVR), XGBoost, and Long Short-Term Memory (LSTM), using key electrocoagulation parameters. 

After extensive data preprocessing, a dataset of 281 samples was used for training and validation. Among them, 

Random Forest achieved the best performance (R² = 0.876, RMSE = 601.15). A data-driven information system is 

proposed to integrate these predictive capabilities for real-time monitoring and control. By improving turbidity 

prediction accuracy, the system enables the sustainable utilization of water as a valuable asset, even in its wastewater 

form. The approach enhances decision-making by providing intelligent feedback for process optimization. This 

research contributes to the advancement of intelligent, sustainable wastewater treatment systems by integrating 

machine learning prediction models with practical process control applications in informatics.  

 

Keywords : Electrocoagulation Turbidity Removal, Random Forest, Wastewater Treatment, Water Resource 

Asset. 
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1. INTRODUCTION 

Water is a fundamental asset in industrial production, playing a vital role in operations such as 

washing, cooling, transporting raw materials, and serving as a solvent or processing medium, and is 

therefore considered a supporting asset that directly supports manufacturing efficiency and output [1], 

[2]. Because this process depends on water to support the operational activities, the availability and 

quality of water directly impacts its operational efficiency and sustainability. However, the use of water 

in industrial processes inevitably generates wastewater, which contains a variety of pollutants that must 

be removed before the water can be reused or safely discharged [3]. Once water has been utilized and 

mixed with various process materials, it is often regarded as a non-productive asset that must be 

discarded; however, its disposal must adhere to strict environmental regulations and compliance 

standards to prevent ecological harm [4]. 

Unfortunately, the disposal process is often overlooked as merely a waste elimination step [5]. 

Untreated or inadequately treated wastewater can damage ecosystems, pollute water sources, and pose 
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health risks. Proper treatment is essential not only for operations but also as an environmental obligation. 

Discharges must meet international water and wastewater management regulations, which, like local 

laws, require environmental impact assessments before projects that could harm ecosystems. 

Among the most common pollutants found in industrial wastewater are Chemical Oxygen Demand 

(COD), which indicates the presence of organic compounds; Total Phosphorus (TP), often originating 

from detergents or biological waste; Nitrite (NO₂⁻), a product of nitrogen transformations; Ammonia 

Nitrogen (NH₃-N), a byproduct of protein and urea decomposition; benzene, toluene, ethyl benzene, and 

xylenes, commonly known as BTEX, along with polyaromatic hydrocarbons (PAHs); alkylphenols (APs) 

[6]; and Total Suspended Solids (TSS) [7], which include fine particulate matter [8], [9]. These 

contaminants are particularly prevalent in wastewater generated by food and beverage processing 

industries, livestock and slaughterhouse operations, industrial activities, textile, and even domestic 

wastewater treatment plants [10], [11], [12].Without effective treatment, these pollutants can contribute 

to eutrophication, oxygen depletion, and long-term aquatic degradation [13]. 

One of the promising technologies for addressing such complex wastewater compositions is 

electrocoagulation (EC) [14]. Electrocoagulation involves the in-situ generation of coagulant species via 

the dissolution of sacrificial electrodes (typically aluminum or iron) under an electric current. 

Electrocoagulation has emerged as a promising technology for the treatment of wastewater due to its 

efficiency in removing contaminants such as turbidity, heavy metals, and organic matter [15] and even 

oil or diesel from drilling fluids wastewater [16], [17]. These coagulants destabilize and aggregate 

suspended, colloidal, and dissolved contaminants, enabling their removal through sedimentation or 

flotation. Compared to conventional chemical coagulation and other conventional methods, EC 

destabilizes, and aggregates suspended, colloidal, and dissolved contaminants for removal via 

sedimentation or flotation, uses fewer chemicals, requires less space, is easier to operate, and removes a 

broad range of pollutants. While future integration with other separation techniques is anticipated [18], 

[19], [20], focusing on standalone EC remains essential for assessing operational efficiency [21]. 

Despite its advantages, electrocoagulation performance is influenced by a multitude of factors, 

including electrode type, current density, pH, inter-electrode spacing, and processing time [22]. Among 

these, Purification time or turbidity removal time, defined as the duration required for effective 

contaminant separation, is a key metric that influences both treatment efficiency and energy consumption 

[23] [24]. Traditionally, the determination of clarification time relies on empirical approaches or 

repetitive laboratory trials, which are resource-intensive and impractical for dynamic real-time 

applications. 

In industrial settings, wastewater volume and composition often vary with production cycles, time 

of day, or operational loads. Using a fixed EC configuration, such as constant voltage, current, or 

electrode count, can reduce efficiency. High-power setups may waste energy or over-treat during low-

load periods, while under high-load conditions, they may fail to achieve adequate purification level [25]. 

This mismatch between operational configuration and wastewater characteristics presents a clear 

decision-making challenge for process engineers. 

Electrocoagulation (EC) has increasingly gained attention as an effective and environmentally 

friendly technique for water and wastewater purification. Recent research has largely focused on 

treatment performance and the underlying mechanisms of EC, as well as the integration of EC with other 

processes to address emerging pollutants [26]. However, there remains a limited exploration of how 

machine learning can be leveraged to support the operational management of EC systems. There are only 

limited studies that have applied machine learning for water turbidity removal using EC or similar 

methods (see Table 1). Several parameters influencing the EC process include current/voltage, electrolyte 

concentration, inter-electrode distance, electrolysis time and electrode combinations (Fe–Fe and Al–Al); 

the best results are achieved by optimizing the combination of these factor [27], [28]. Most prior works, 
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such as those by Jery et al [29] and Khan et al ) [30], focused on predicting pollutant removal efficiency 

using ML but did not address temporal aspects like purification time. 

To address this, there is a growing need for the development of data-driven decision support 

systems (DSS) that can intelligently recommend EC process settings based on real-time or predicted 

wastewater profiles. In this context, machine learning (ML) offers a robust framework for building 

predictive models that can estimate turbidity removal time under various input conditions. The turbidity 

removal time can be assessed by tracking the reduction in turbidity levels, typically from a highly turbid 

state (above 95%) to a significantly clearer state (below 2%), indicating that the water has reached an 

acceptable level of cleanliness. Such models can be embedded into a DSS to guide operators in selecting 

optimal EC parameters—such as voltage, current, or electrode count—ensuring that treatment is adaptive, 

cost-effective, and energy-efficient. By aligning the treatment configuration with the actual 

characteristics of incoming wastewater, this approach supports more sustainable and responsive process 

control.  

This study aims to develops and evaluates six machine learning models including Linear 

Regression, Polynomial Regression, Random Forest, Support Vector Regression, XGBoost, and LSTM 

to predict turbidity removal time using key electrocoagulation parameters. Unlike previous studies that 

focused on pollutant removal efficiency such as COD, nitrogen, or phosphate, this study uniquely targets 

turbidity removal time as a predictive variable. By shifting the focus toward the time dimension of 

turbidity reduction, this work offers new insights into process optimization and dynamic control of 

electrocoagulation. This novel contribution enhances real-time operational decision-making and supports 

the development of data-driven information systems for sustainable wastewater treatment. A summary 

of the state of the art, highlighting this study’s position relative to previous work, is provided in Table 1. 

 

Table 1. Research State of The Art 

Author Technology 
Predicted 

Variable 
Input Variable Model 

Evaluation 

Result 

Jery et al 

(2023) 

[29] 

Electrocoag

ulation 

(EC) 

COD removal 

(%) 

Current density, pH, 

COD conc., electrode 

area, NaCl conc., 

time 

Artificial 

Neural 

Network 

MAE = 1.12%, 

R² = 0.99 

Khan et al 

(2024) 

[30] 

Sequencing 

Batch 

Reactor 

(SBR) 

Nutrient 

removal 

efficiency 

(SND, total 

nitrogen) 

Wastewater 

concentration, HRT, 

mixing ratios 

CatBoost 

(Machine 

Learning) 

SND efficiency 

69%, total 

nitrogen removal 

66%, nutrient 

removal 88–98%, 

COD removal 

93% 

Zakoor et 

al (2023) 

[31] 

EC 

combined 

with MBR 

Nitrate (NO3-) 

removal, 

Phosphate 

(PO4 3-) 

removal 

Temperature, pH, 

DO, initial 

concentrations of 

NO3- and PO4 3- 

Artificial 

Neural 

Network 

(ANN) 

Removal 

efficiency: 98.1% 

(PO4 3-); ANN 

model accuracy: 

98.1% (PO4 3-) 

This 

research 

Electrocoag

ulation 

(EC) 

Turbidity 

removal time 

Current, voltage, 

number of electrodes, 

electrode spacing, 

conductivity, 

turbidity removal rate 

Various 

Machine 

Learning 

Discussed at next 

section 
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2. METHOD 

Electrocoagulation is an advanced wastewater treatment process that utilizes electrical current to 

remove contaminants from water. In this process, metal electrodes commonly aluminum are submerged 

in wastewater and connected to a power supply. When electric current passes through the electrodes, 

metal ions are released into the solution, which then react with pollutants such as suspended solids, 

colloidal particles, and dissolved substances. These reactions cause the pollutants to coagulate into larger 

aggregates, or flocs, which can be easily separated from the water by sedimentation or flotation. 

Electrocoagulation is considered an effective, environmentally friendly technique due to its ability to 

treat a wide range of pollutants without adding chemical coagulants, and it offers advantages like 

reduced sludge production and simplified operation.  

2.1. System Architecture 

The system architecture developed in this study is illustrated in Figure 1. The setup includes an 

electrocoagulation (EC) treatment box, which receives input in the form of wastewater. Within this box, 

several electrodes are installed with specific spacing configurations to facilitate the electrocoagulation 

process. A turbidity sensor is integrated into the system to measure the turbidity level of the wastewater 

throughout the treatment. The measurement results are stored and transmitted to a cloud server, enabling 

remote data storage and monitoring. 

Several experimental trials were conducted using wastewater samples with high turbidity levels 

(above 95%) and treated until low turbidity levels (below 2%) were achieved. Each trial involved 

varying key process parameters, including current, voltage, number of electrodes, and the distance 

between electrodes. Turbidity levels were recorded at fixed time intervals (e.g., every 1 or 5 minutes), 

and all measurement data were compiled to form a structured dataset for model training and evaluation. 

 

 
Figure 1. Electrocoagulation Architecture 

 

An example of the physical implementation of the system can be seen in Figure 2. 
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Figure 2. Electrocoagulation System 

2.2. Research Methodology 

The dataset used in this study was obtained through direct measurement using a self-constructed 

experimental setup, as shown in Figure 2. The measurement parameters used as input variables for the 

model include current, voltage, number of electrodes, spacing between electrodes, and conductivity. The 

monitored output parameters consist of time logging and turbidity level. Based on these measurements, 

turbidity removal (%) is calculated as the difference between the initial turbidity level and the turbidity 

level at a given time point. Furthermore, the turbidity removal time is determined as the duration 

required for the wastewater to transition from a high turbidity state (cloudy condition) to a low turbidity 

state (clear condition). This time-based performance metric serves as the target variable in the predictive 

modeling process. Examples of turbid (high turbidity level) and clear water (low turbidity level) 

conditions can be seen in Figure 3. 

 

 
Figure 3. An Example of Wastewater before and after treatment 
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The research methodology framework is illustrated in Figure 4, presenting a clear overview of 

the key stages in data processing, model development, and evaluation. The workflow consists of two 

main phases: training and testing. In the training phase, the dataset is first subjected to data 

preprocessing to clean and prepare the data for analysis. Following this, various machine learning 

algorithms are applied to train predictive models. Hyperparameter tuning is performed to optimize 

model performance and ensure the best possible fit to the training data. The outcome of this phase is a 

finalized trained model ready for evaluation. During the testing phase, the trained model is applied to 

a separate, previously unseen dataset (test data) to generate predictions. These predictions are then 

compared with the actual observed values (ground truth) in the test data to assess model accuracy and 

reliability. 

 

 
Figure 4. Research Method 

 

During the preprocessing stage, the raw dataset was first loaded, and relevant features were 

selected, including electrocoagulation process parameters and turbidity removal percentage. Null values 

in the collected data were identified and handled using deletion. The input features were then 

standardized using a StandardScaler to normalize the data distribution and ensure that all variables 

contribute equally to the model training. 

The input variables in this study consist of six features derived from electrocoagulation process 

parameters, which include: Average Current (A), Voltage (V), Number of Electrodes, Electrode Spacing 

(mm), Conductivity, and Turbidity Removal (%). These features are used to predict the output variable, 

which is the required reaction time (in seconds) for the electrocoagulation process. 

A total of six regression models were implemented and compared: Linear Regression, Polynomial 

Regression (degree=2), Random Forest, Support Vector Regression (SVR), XGBoost, and Long Short-

Term Memory (LSTM) neural network. The dataset was standardized and split into training and testing 

sets to ensure fair model evaluation. Predictions from all models were also tested on new input scenarios 

to assess their performance in real-world cases. 

The selection of these six models was based on their diverse learning characteristics: Linear and 

Polynomial Regression represent traditional statistical approaches; Random Forest and XGBoost offer 

tree-based ensemble learning known for robustness and interpretability; SVR provides strong 

generalization for small- to medium-sized datasets; and LSTM captures sequential patterns useful for 

time-dependent observations such as turbidity reduction over time. 

Model performance is evaluated using standard regression metrics, including R² (coefficient of 

determination), Mean Squared Error (MSE), Mean Absolute Error (MAE), Root Mean Squared Error 

(RMSE), and Pearson correlation coefficient. The mathematical formulations for R², RMSE, MAE and 

Pearson correlation are provided in Equations (1), (2), (3) and (4), respectively, where 𝑦𝑖
𝑡𝑟𝑢𝑒 denotes the 

actual value, 𝑦𝑖
𝑝𝑟𝑒𝑑

 is the predicted value,  𝑦̅𝑖
𝑡𝑟𝑢𝑒 is the mean of actual values, 𝑦̅𝑖

𝑝𝑟𝑒𝑑
 is the mean of 

predicted values, and n is the total number of observations. 
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𝑅2 = 1 −
∑ (𝑦𝑖

𝑡𝑟𝑢𝑒−𝑦𝑖
𝑝𝑟𝑒𝑑

)2𝑛
𝑖=1

∑ (𝑦𝑖
𝑡𝑟𝑢𝑒−𝑦̅𝑖

𝑝𝑟𝑒𝑑̅̅ ̅̅ ̅̅ ̅̅
)2𝑛

𝑖=1

 (1) 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑦𝑖

𝑡𝑟𝑢𝑒 − 𝑦𝑖
𝑝𝑟𝑒𝑑

)2𝑛
𝑖=1  (2) 

𝑀𝐴𝐸 =
1

𝑛
∑ |𝑦𝑖

𝑡𝑟𝑢𝑒 − 𝑦𝑖
𝑝𝑟𝑒𝑑

|𝑛
𝑖=1  (3) 

𝑟 =
∑ (𝑦𝑖

𝑝𝑟𝑒𝑑
−𝑦̅𝑖

𝑝𝑟𝑒𝑑
)(𝑦𝑖

𝑡𝑟𝑢𝑒−𝑦̅𝑖
𝑡𝑟𝑢𝑒)𝑛

𝑖=1

√∑ (𝑦
𝑖
𝑝𝑟𝑒𝑑

−𝑦̅
𝑖
𝑝𝑟𝑒𝑑

)2𝑛
𝑖=1 .√∑ (𝑦𝑖

𝑡𝑟𝑢𝑒−𝑦̅𝑖
𝑡𝑟𝑢𝑒)2𝑛

𝑖=1

 (4) 

3. RESULT 

The findings of this study are organized into three parts: data exploration, model performance 

comparison, and analysis of the best-performing model. The initial analysis focuses on understanding 

the dataset structure, parameter distribution, and their relationship with turbidity removal time 

3.1. Dataset 

The initial dataset contained 49,856 entries, which was reduced to 281 after data cleaning and 

preprocessing. Preprocessing included handling missing values, deleting null values, detecting 

anomalies, encoding categorical variables into numerical codes, and standardizing input features using 

StandardScaler. After preprocessing, data aggregation was conducted by grouping and averaging 

relevant measurements to obtain representative values for each experiment. This significant reduction 

was due to differences in sampling intervals: while most sensor data were recorded every minute, 

turbidity measurements were taken only every five minutes. To maintain consistency and ensure 

complete feature representation for each data point, only rows with full measurements—including 

turbidity—were retained. These steps ensured the dataset was clean, consistent, and suitable for model 

training. An example of the processed dataset is shown in Table 2. 

 

Table 2. Example of Dataset 

Time 

(sec) 

Average 

current 

(A) 

Volt 

(V) 

No. of 

electrode 

Spacing 

electrode 

(mm) 

pH 
Conduct-

ivity 

Initial 

Turbidity 

Current 

Turbidity 

Turbidity 

removal 

(%) 

0 1.251 10 6 20 7.143 367.469 75.39 75.39 0 

296 1.251 10 6 20 7.275 362.781 75.39 61.38 18.58337 

588 1.251 10 6 20 7.406 355.094 75.39 53.53 28.99589 

878 1.251 10 6 20 7.477 346.75 75.39 50.31 33.26701 

1177 1.251 10 6 20 7.566 337.656 75.39 49.59 34.22205 

1467 1.251 10 6 20 7.665 332.312 75.39 45.23 40.00531 

1758 1.251 10 6 20 7.758 323.781 75.39 32.95 56.29394 

2049 1.251 10 6 20 7.857 315.438 75.39 26.98 64.21276 

2340 1.251 10 6 20 7.944 310 75.39 24.76 67.15745 

2616 1.251 10 6 20 8.015 298.188 75.39 15.27 79.74532 

2879 1.251 10 6 20 8.082 293.312 75.39 11.01 85.39594 

3171 1.251 10 6 20 8.144 288.438 75.39 8.88 88.22125 

3459 1.251 10 6 20 8.204 284.219 75.39 2.45 96.75023 

3753 1.251 10 6 20 8.253 277.656 75.39 1.65 97.81138 
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3.2. Data Exploration 

In this section, data exploration is conducted to understand the relationships among the input 

variables for the electrocoagulation process. The analysis begins with a correlation matrix to examine 

interrelationships between features such as Average Current, Voltage, Number of Electrodes, Electrode 

Spacing, Conductivity, and Turbidity Removal. The full correlation matrix is presented in Figure 5. 

 

 
Figure 5. Correlation Matrix of Electrocoagulation Features 

 

When aiming to predict "Time (second)", the correlation analysis provides valuable insights into 

the relationships between this target variable and the input features. "Turbidity removal (%)" exhibits 

the strongest positive correlation with "Time (second)" (0.50), suggesting that longer treatment durations 

tend to result in greater turbidity removal. Additionally, "Spacing in between electrode (mm)" shows a 

moderate positive correlation (0.52), indicating that larger electrode spacing may generally require 

longer operational times. On the other hand, "No. of electrode" has a moderate negative correlation (-

0.49), implying that systems with more electrodes might achieve the desired outcome in a shorter time. 

Similarly, "Average current (A)" is moderately negatively correlated with time (-0.53), suggesting that 

higher current may accelerate the process. "Voltage" and "Conductivity" show weaker negative 

correlations (-0.15 and -0.13, respectively), indicating they may have less direct influence on the 

prediction of time. Overall, these patterns highlight the key features that could be most influential in 

modeling and predicting the required operational time in the electrocoagulation process. 

The distribution of the input variables is presented in Figure 6, which provides a comprehensive 

overview of all variables. We can observe a variety of distribution shapes across the features. The 

provided histograms display the frequency distribution of each selected variable. "Average current (A)" 

and "No. of electrode" exhibit bimodal distributions, with peaks at lower and higher values, suggesting 

two distinct operating regimes or settings. "Voltage" also shows a bimodal distribution, heavily 

concentrated at 10V and 25V. "Spacing in between electrode (mm)" is highly skewed to the left, with a 

large number of observations at smaller spacing and a smaller peak around 90mm. "Conductivity" 

appears to have a relatively normal distribution but is slightly skewed to the left, with most values 
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clustered around 350 µS/cm. "Turbidity removal (%)" has a somewhat uniform distribution, with 

frequencies spread across various percentages, indicating a wide range of removal efficiencies. 

 
Figure 6. Distribution Histograms of Key Electrocoagulation Features 

3.3. Model Development and Evaluation 

The dataset was split into 80% for training and 20% for testing. Several machine learning 

algorithms were applied to predict the electrocoagulation reaction time based on six input features. The 

performance of each model is summarized in Table 3. 

 

Table 3. Model Accuracy 

Model R2 MSE MAE RMSE Correlation 

Linear Regression 0.665143 972856.2 739.7013 986.3347 0.818570709 

Polynomial Regression 0.862191 400375.2 472.4686 632.7521 0.929968619 

XGBoost 0.864684 393132.5 438.1191 627.0028 0.93132205 

Random Forest 0.875614 361377.4 467.87 601.1467 0.937571542 

SVM -0.06361 3090081 1267.273 1757.863 0.772176785 

LSTM -0.64171 4769636 1561.186 2183.95 0.637716002 

 

Table 3 presents the performance metrics of various machine learning models used to predict 

"Time (second)" in the electrocoagulation process. Among the models evaluated, the Random Forest 

model achieved the best performance, with the highest R² value of 0.8756, indicating strong predictive 

power. It also recorded the lowest RMSE (601.15) and a high correlation (0.9376) between predicted 

and actual values. 

The XGBoost and Polynomial Regression models followed closely, with R² values of 0.8647 and 

0.8622, respectively, and similarly low errors, suggesting that these models are also well-suited for 

capturing complex patterns in the data. In contrast, the Support Vector Machine (SVM) and LSTM 

models performed poorly, with negative R² values (indicating worse performance than simply predicting 

the mean), and significantly higher error metrics. This suggests that these models may not be appropriate 

for this particular prediction task, possibly due to insufficient data or poor model tuning. 
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4. DISCUSSIONS 

This section discusses key findings, including model performance implications, strengths and 

limitations of the approaches, and their relevance to predicting electrocoagulation duration. It also 

highlights how these results can inform future research and practical applications in wastewater 

treatment optimization 

4.1. Discussion 

The Random Forest model outperformed other algorithms, achieving the highest R² value (0.876) 

and lowest error metrics (RMSE = 601.15). This superior performance can be attributed to Random 

Forest’s ability to capture complex nonlinear relationships and interactions among features without 

overfitting. The model’s robustness to noise and capacity to handle multicollinearity among input 

variables further contributed to its accuracy. These characteristics make Random Forest particularly 

suitable for electrocoagulation process data, where nonlinear effects and parameter interdependencies 

are common. 

The XGBoost and Polynomial Regression (degree 2) models also delivered strong results, with 

R² values close to Random Forest and relatively low error rates. XGBoost’s gradient boosting 

framework allows it to iteratively refine predictions, improving model generalization on unseen data. 

Polynomial Regression, although simpler, demonstrated that introducing nonlinear terms helped capture 

curvature in the relationship between input features and reaction time. However, its performance was 

slightly inferior to ensemble-based models, likely due to limited flexibility in modeling complex 

interactions. 

Conversely, Support Vector Regression (SVR) and Long Short-Term Memory (LSTM) networks 

underperformed considerably, with negative R² values and high error metrics. The poor SVR results 

might stem from insufficient hyperparameter tuning or its limitations in handling noisy or highly 

variable datasets. LSTM’s low performance could be due to the relatively small size of the final cleaned 

dataset (281 entries), which is inadequate for training deep learning models that require extensive data 

for learning temporal dependencies and complex patterns. 

The correlation analysis provided valuable insights into feature relevance. The moderate positive 

correlation of electrode spacing and turbidity removal percentage with reaction time indicates their 

direct impact on process duration, while negative correlations of current and number of electrodes 

suggest these parameters can accelerate treatment. These findings align with established 

electrocoagulation theory, reinforcing the importance of process optimization based on operating 

parameters. 

Compared to previous studies such as Jery et al [29], Khan et al [30], and Zakoor et al [31] which 

focused on predicting pollutant removal efficiencies like COD, nitrogen, or phosphate, this study 

provides a novel contribution by targeting turbidity removal time. While prior research achieved high 

R² values using ANN or gradient boosting for removal percentages, none addressed the time dimension 

in electrocoagulation treatment. This work fills that gap by offering a time-based prediction framework 

that enhances operational decision-making and real-time adaptability. 

From a practical perspective, deploying the Random Forest model within a data-driven 

information system can enable real-time prediction of turbidity removal time, facilitating dynamic 

process control and optimization in wastewater treatment plants. From a computer science and 

informatics standpoint, this integration demonstrates the potential of machine learning for real-time 

decision support in cyber-physical systems, contributing to the advancement of intelligent 

environmental monitoring infrastructures. 

However, several limitations should be noted. First, the dataset size after cleaning was relatively 

small, which may reduce the model’s ability to generalize. Second, the current study focuses on a 
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specific electrocoagulation setup and wastewater profile; as such, the model's applicability to different 

wastewater types, flow conditions, or electrode configurations has not been validated. These factors may 

limit the scalability and robustness of the model across broader industrial settings Future work should 

explore expanding the dataset with more diverse operational conditions and incorporating additional 

relevant parameters such as temperature and pH. Moreover, integrating real-time sensor data and 

feedback loops could enhance model adaptability and accuracy in live systems. 

4.2. Implication of the Study and Decision Support System Development 

This study presents important practical and theoretical contributions. Practically, the ability to 

predict turbidity removal time with good accuracy enables wastewater treatment operators to optimize 

electrocoagulation processes, improving efficiency, reducing energy use, and lowering operational 

costs. The integration of machine learning models like Random Forest into a data-driven system 

provides valuable, real-time decision support for better process control and system reliability. 

Importantly, the developed predictive model offers a foundational tool for basic prediction 

scenarios. Given known input variables such as voltage, current, and flow rate, the model can estimate 

the required purification time accurately. This predictive capacity allows operators to anticipate 

processing durations and better plan operational workflows. An example of a simple application 

implementing this prediction is illustrated in Figure 7, demonstrating how real-time input data can 

translate into actionable process time estimates. 

 

 
Figure 7. Basic Electrocoagulation DSS Application for predict Turbidity Removal Time 

 

In a more advanced context, integrating the model into a live wastewater treatment control system 

could enable adaptive process management. By linking the system with sensors measuring real-time 

flow rate and water quality parameters, the electrocoagulation system can dynamically adjust voltage 

and current levels. This adaptive mechanism ensures that processing time aligns with the varying flow 

rates entering the system, thereby optimizing treatment speed without compromising quality. Such 

feedback-driven control can significantly improve energy efficiency and process stability, ultimately 

supporting the development of smarter, more sustainable wastewater treatment infrastructures. As a 
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practical illustration, a simple Decision Support System (DSS) application can be used to adjust voltage, 

current, and other parameters in real time based on the dynamic flow rate entering the system, enabling 

responsive and efficient process control, as shown in Figure 8. It can be observed from the application 

example that energy efficiency is achieved by allowing current and voltage to vary dynamically rather 

than remain constant, adapting to the changes in incoming wastewater flow rate. 

 

 
Figure 8. Adaptive System to Control Parameter for Electrocoagulation 

 

 

 
Figure 9. Adaptive Control System for Wastewater Treatment system 
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The proposed control system architecture for future development is illustrated in Figure 9. As 

shown in the figure, the system is capable of detecting or measuring the current wastewater capacity and 

flow speed. Based on these inputs, the system can predict the required processing time (e.g., x minutes) 

to completely treat the incoming wastewater. Leveraging machine learning models with adaptive control 

logic, the system can then determine the optimal voltage and current levels needed for the 

electrocoagulation process. As a result, the adaptive control block dynamically adjusts the electrical 

parameters in real-time, ensuring efficient operation that matches the current load and flow 

characteristics. 

This research advances waste discharge asset management by showing how real process data can 

support predictive modeling. The approach is adaptable, scalable, and enables integration of 

electrocoagulation with machine learning-based control for more precise, energy-efficient, and 

sustainable treatment systems. Overall, the findings from this study not only demonstrate the feasibility 

of predicting turbidity removal time using machine learning, but also lay the groundwork for future 

adaptive wastewater treatment systems.  

5. CONCLUSION 

This study successfully developed and evaluated multiple machine learning models to predict the 

turbidity removal time in electrocoagulation wastewater treatment processes. Among the models tested, 

the Random Forest algorithm demonstrated the best performance, offering high accuracy and reliability 

in prediction. The research highlights the potential of data-driven approaches to optimize wastewater 

treatment by enabling precise process control and operational efficiency. This study demonstrates the 

feasibility of integrating ensemble learning models with intelligent decision systems in the context of 

environmental informatics, contributing to the advancement of predictive process control in wastewater 

management. By treating water not merely as waste but as a reusable asset, this research reinforces the 

strategic importance of water in sustainable industrial operations. The findings also provide a solid 

foundation for future work on automated control systems and the broader application of machine 

learning in environmental engineering. Future directions may include multi-objective optimization that 

balances energy efficiency and treatment speed, real-time integration with sensor data, and deployment 

in diverse wastewater treatment settings to assess scalability and generalizability. Overall, this study 

contributes valuable insights toward sustainable and intelligent wastewater treatment management. 
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