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Abstract 

The growing complexity of digital learning environments presents a critical challenge in computer science, 

particularly in designing intelligent academic systems capable of delivering context-aware and personalized content. 

Traditional academic information systems often rely on literal keyword matching, failing to interpret the semantic 

intent behind user queries and ignoring historical learning behavior. This study addresses these limitations by 

proposing a hybrid semantic search and recommendation model that integrates Long Short-Term Memory (LSTM) 

networks with the Smith Waterman algorithm. The LSTM component models temporal sequences of user 

interactions, while Smith Waterman enables local semantic alignment between user queries and learning content. 

Historical query logs and user-clicked topics are transformed into semantic vectors, which are further enhanced 

through a contextual graph and semantic relation matrix. Experimental results demonstrate the model’s effectiveness, 

achieving 89% accuracy, an F1-score of 0.89, and an AUROC of 0.88 by epoch 50. The hybrid architecture 

successfully captures the evolution of user interest and semantic relevance, outperforming baseline approaches. This 

research contributes to the field of computer science by bridging natural language understanding and sequential 

modeling to improve adaptive learning technologies. The proposed model offers a scalable foundation for developing 

intelligent recommendation systems in academic platforms, fostering improved learner engagement and efficiency. 
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Matching, Smith Waterman. 

 
 

This work is an open access article and licensed under a Creative Commons Attribution-Non Commercial 

4.0 International License 

  

 

1. INTRODUCTION 

In academic information systems, the process of searching for learning materials still faces 

various obstacles that impact the effectiveness of information searches by users [1], [2], [3]. Generally, 

search systems only rely on literal keyword matching, without considering the contextual meaning of 

the terms used by users [4], [5]. This causes problems when there are differences in terms between user 

input and available material metadata, so that search results become irrelevant [6], [7]. In addition, most 

systems have not utilized user search history to understand individual learning patterns or preferences 

[8], [9], [10]. As a result, users often have to search repeatedly with different keyword variations to find 

appropriate materials [8], [11]. This inefficiency not only hinders the independent learning process but 

also reduces the quality of the user experience in accessing academic information digitally. 

Based on the problem analysis, it is necessary to develop a search system that does not only rely 

on literal keyword matching, but is also able to understand the meaning and context of user queries 

through a semantic search approach [12], [13]. This semantic search optimization allows the system to 

identify the relationship between terms even though they do not explicitly use the same words [14], [15]. 

By combining semantic search and utilizing user search history, the system can build a more 
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personalized and adaptive search profile to the needs of learners [16], [17]. This approach allows 

academic information systems to provide more relevant material recommendations, according to the 

user's learning patterns and goals [18], [19]. Through local similarity-based matching techniques such 

as the LSTM-Smith Waterman algorithm, the system can recognize similarities between phrases or 

terms in queries and material content more accurately [20], [21], [22], thereby increasing efficiency and 

accuracy in the search process and learning recommendations. 

Researcher [23] proposed a research recommendation system that combines the LDA topic 

approach and the BERT contextual representation model in the study Semantic and Explainable 

Research-Related Recommendation System Using LDA and BERT. The novelty of this system lies in 

its ability to provide recommendations that are not only semantically relevant but also explainable, 

which is very important in academic environments. Evaluations show that this system improves the 

relevance and user confidence in literature search results. However, this system has limitations in terms 

of high computational requirements and sensitivity to variations in document structure and terminology 

across fields of study. 

Researcher [24] introduced an ontology-based semantic integration model to improve prediction 

accuracy in learning analytics. Their method combines multiple user data sources and maps the 

information into a domain ontology, so that the system can provide more meaningful analytics on student 

learning behavior. Experimental results demonstrate the system's ability to predict academic 

performance and support timely intervention decisions. However, the main challenge faced is the 

complexity in developing and maintaining the ontology structure to keep it relevant to changes in 

learning materials. 

Researcher [25] developed a semantic-aware intelligent framework for e-learning 

recommendation systems that focuses on understanding the context of content through the integration 

of NLP and machine learning techniques. The novelty of this method lies in its approach that not only 

considers explicit keywords but also hidden meanings in learning materials, thus being able to provide 

more personalized recommendations. The test results showed an increase in accuracy and user 

satisfaction in the online learning experience. However, its weaknesses lie in the need for large training 

data and the challenge of overcoming semantic ambiguity in natural language. 

Thus, the main contribution of this research lies in the integration and optimization of the Smith-

Waterman algorithm with LSTM-based modeling to enhance semantic search capabilities in academic 

information systems, particularly in generating more personalized and context-aware learning material 

recommendations. The Smith-Waterman algorithm is employed for fine-grained local matching between 

user queries and educational content, allowing precise semantic alignment. Meanwhile, the LSTM 

model captures sequential patterns in learners’ historical interactions, enabling the system to understand 

contextual relevance over time. Additionally, this study emphasizes optimal parameter tuning for both 

algorithms to improve the accuracy and efficiency of the recommendation engine. This hybrid approach 

is expected to significantly advance the effectiveness of personalized learning services in academic and 

e-learning platforms. 

2. METHOD 

To address semantic ambiguity and capture user learning behavior over time, this research 

integrates two core algorithms: Smith-Waterman, used for fine-grained local alignment of semantic 

vectors, and LSTM, which models the sequential patterns in user interaction history. Smith-Waterman 

helps quantify semantic similarity between user queries and learning materials, while LSTM supports 

temporal adaptation and learning personalization. 

Based on Figure 1, the suggested methodology begins with Learner Selection, a process by which 

individual users are selected within the e-learning platform for enabling personalized recommendation. 
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The process is then followed by E-Learning System access and content fetching for Selected Content, 

followed by Content Extraction, a process by which learning content is converted for purposes of 

allowing meaningful data extraction. Through such content, Semantic Relation Types are recognized 

and applied for the construction of a Contextual Graph defining semantic relations among topic details. 

In tandem, Machine Learning Parameters are designed and LSTM Layers are built for purposes of 

temporal pattern detection. The Training process for LSTM is then applied using content semantics and 

learning behavior, with an output that is saved in the Learners Semantic Database. During this stage, a 

series of hyperparameter tuning procedures were carried out to optimize the LSTM model. This includes 

adjustments of embedding dimension, number of LSTM units, dropout rate, and learning rate, which 

were iteratively tested and validated using the semantic dataset. The goal was to balance model 

complexity and generalization capability in capturing sequential patterns of user interest. 

 

 
Figure 1. Research Stages 

2.1. Semantic Dataset 

Semantic datasets in the context of academic information systems refer to datasets that represent 

semantic relationships between user queries, learning content, and user interactions. These datasets 

include not only literal words or phrases, but also contextual information extracted from search history, 

content clicks, and topics of materials frequently accessed by users. 

 

Table 1. Semantic Dataset 

User 

ID 
Timestamp Query Clicked Topic 

Semantic 

Vector 

(Query) 

Semantic 

Vector 

(Content) 

U001 2025-05-11 

08:32:12 

"deep learning 

models" 

"Introduction to 

CNNs" 

[0.23, 0.51, 

0.19, 0.47] 

[0.25, 0.49, 

0.20, 0.45] 

U002 2025-05-11 

09:10:44 

"data 

preprocessing 

steps" 

"Data Cleaning 

Techniques" 

[0.41, 0.39, 

0.35, 0.12] 

[0.43, 0.38, 

0.36, 0.10] 

U003 2025-05-11 

10:25:03 

"gradient 

descent" 

"Optimization in 

ML" 

[0.56, 0.48, 

0.21, 0.33] 

[0.57, 0.47, 

0.22, 0.32] 

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 

U0091 2025-05-10 

11:00:27 

"natural 

language 

models" 

"RNN vs 

Transformer" 

[0.36, 0.55, 

0.40, 0.18] 

[0.35, 0.56, 

0.39, 0.19] 
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The semantic dataset illustrated in Table 1 serves as the foundational input for training and 

evaluating the proposed semantic search and recommendation model. Each entry captures a real-time 

interaction between the user and the academic system, where the query and corresponding clicked topic 

are transformed into semantic vectors using embedding techniques. These vectors are then compared 

using the Smith-Waterman algorithm, resulting in a match score that quantifies the contextual similarity 

between the query and content. This score, combined with timestamped behavior, enables the LSTM 

layers to learn temporal patterns in user interest evolution. Consequently, the dataset not only supports 

alignment and ranking but also enables adaptive learning through sequential modeling, making it 

integral to the personalized recommendation process. 

2.2. Semantic Relation Matrix 

Semantic relation is the main foundation in the semantic search system used in this study [26]. 

Semantic relation refers to the conceptual relationship between the terms used in user queries and the 

learning materials available in the system [26], [27]. To build this relationship, the system extracts 

keywords from learning content and user queries, then maps these terms into semantic representations 

using a word embedding-based approach or other semantic vector representations. Furthermore, these 

semantic relations are grouped into categories such as synonymy, hyponymy, thematic association, and 

topical order. 

In this study, semantic relation is not only used to match words literally, but also to understand 

the context of the query based on the user's interaction history. This allows the system to recognize that 

the terms "neural network" and "deep learning" have close meanings even though they are not identical 

in text. This semantic relationship information will be stored in a contextual graph, which is then used 

as a reference in the matching and recommendation process based on the Smith-Waterman and LSTM 

algorithms. To mathematically represent semantic relations, each term from the user query 𝑄 =

{𝑞1, 𝑞2, . . . , 𝑞𝑛} and the learning content 𝐷 = {𝑑1, 𝑑2, . . . , 𝑑𝑚} is embedded into a high-dimensional 

vector space using a word embedding model such as Word2Vec or GloVe. Each term is represented in 

eq (1). 

𝑞𝑖, 𝑑𝑗 ∈ 𝑅𝑑 (1) 

Based eq (1), The semantic similarity between a query term 𝑞𝑖 and a content term 𝑑𝑗 is calculated 

using cosine similarity as seen in eq (2). 

𝑠𝑖𝑚(𝑞𝑖, 𝑑𝑗) =  
𝑞𝑖 ∙ 𝑑𝑗

||𝑞𝑖|| ∙||𝑑𝑗||
 (2) 

To obtain the overall semantic relevance score between the query and a content document, we 

use a max-aggregated similarity across all pairwise combinations as seen in eq (3). 

𝑆 (𝑄, 𝐷) =  
1

𝑛
∑ max(𝑠𝑖𝑚(𝑞𝑖, 𝑑𝑗))𝑛

𝑖=1  (3) 

Eq (3) ensures that each query term is matched with its most semantically similar counterpart in 

the content, which mimics the local alignment behavior of the Smith-Waterman algorithm. To reinforce 

semantic depth, a semantic relation matrix 𝑀 ∈ 𝑅𝑛×𝑚 is constructed, where: 

𝑀𝑖𝑗 =  𝑠𝑖𝑚(𝑞𝑖, 𝑑𝑗) (4) 

This matrix serves as a foundation for local sequence alignment using Smith-Waterman, where 

similar concept patterns are aligned based on their semantic proximity rather than exact token match. 
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Additionally, the contextual weight between terms may be adjusted based on user history 𝐻, for 

example, through a temporal decay function in eq (5). 

𝑤′𝑖𝑗 =  𝑀𝑖𝑗  ∙ 𝑒−𝜆𝑡𝑖𝑗 (5) 

where 𝑡𝑖𝑗 denotes the time distance since the user last interacted with related content, and 𝜆 is a 

decay factor controlling the influence of historical context. All these semantic scores and relationships 

are encoded into a contextual graph 𝐺 =  (𝑉, 𝐸), where 𝑉 represents semantic concepts (nodes), and 𝐸 

represents contextual relationships (edges), labeled with relation types (e.g., synonym, topic sequence, 

prerequisite). This graph is then used in downstream matching and recommendation stages, providing a 

semantically rich structure that supports personalized learning material suggestions. 

2.3. Machine Learning Based on LSTM-Smith Waterman 

In this research, a hybrid approach combining LSTM-Smith Waterman algorithm is proposed to 

improve the accuracy of semantic matching and personalized learning recommendations in academic 

information systems [28]. The Smith-Waterman algorithm, originally developed for local sequence 

alignment in bioinformatics, is adapted in this context to identify the most semantically relevant 

subsequences between user queries and learning material content [28], [29]. Unlike global matching, 

local alignment allows partial but contextually significant matches to be prioritized, making it highly 

suitable for semantic search scenarios where exact matches are rare [30]. 

LSTM is utilized as a complementary deep learning method to capture the temporal dynamics 

and sequential patterns of user interaction history and query behavior [31]. The LSTM network learns 

the progression of user interests over time and generates hidden state representations that encapsulate 

contextual dependencies from past searches and clicked content [32]. The initialization and training of 

the LSTM layer, as illustrated in Figure 2, allow the system to model these sequential patterns effectively 

[33], [34]. These representations are then used to guide the Smith-Waterman scoring matrix, where 

alignment between the user’s semantic history and the content corpus is performed not only based on 

vector similarity, but also on learned importance from the LSTM. The integration of LSTM into the 

Smith-Waterman framework enhances the adaptability of the alignment by weighting the score based 

on learned semantic context. The modified scoring function in the alignment phase is defined as seen in 

eq (6). 

𝑆(𝑖, 𝑗) = max {

𝑆(𝑖 − 1, 𝑗 − 1) + 𝛼 ⋅ 𝑠𝑖𝑚(𝑞𝑖, 𝑑𝑗) + 𝛽 ⋅ ℎ𝑡
𝑆(𝑖 − 1, 𝑗) − 𝑔𝑎𝑝_𝑝𝑒𝑛𝑎𝑙𝑡𝑦
𝑆(𝑖, 𝑗 − 1) − 𝑔𝑎𝑝_𝑝𝑒𝑛𝑎𝑙𝑡𝑦

0

 (6) 

Where, 𝑠𝑖𝑚(𝑞𝑖, 𝑑𝑗) is the semantic similarity between the i-th term of the query and the j-th term 

of the document, ℎ𝑡 is the hidden state vector at time 𝑡 produced by the LSTM network representing 

contextual user history, α and 𝛽 are weighting coefficients for semantic similarity and historical 

relevance, and 𝑔𝑎𝑝_𝑝𝑒𝑛𝑎𝑙𝑡𝑦 controls the penalty for insertions or deletions. This combined model 

allows for context-aware semantic matching, where the system not only aligns query-content pairs based 

on vector similarity, but also personalizes the alignment process based on temporal learning patterns 

and user history. The ultimate goal is to provide learning material recommendations that are highly 

relevant, personalized, and semantically aligned with the user's actual learning path and preferences. 

As seen in Figure 2, the proposed architecture begins with the Learner Semantic Data Sequence, 

which consists of temporally ordered query and interaction records represented in semantic vector 

format. This sequence is fed into the initial LSTM layers, which capture the sequential and contextual 

patterns over time. The resulting hidden states—which encapsulate contextualized user interest 
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representations—are then passed into the Smith-Waterman algorithm, which performs local sequence 

alignment to identify semantically relevant patterns between the user’s history and available learning 

materials. This alignment produces a similarity score, which is subsequently used for ranking and 

generating personalized recommendations. 

 

 
Figure 2. Proposed LSTM–Smith Waterman Architecture 

3. RESULT 

This section presents the discussion and analysis of the proposed semantic search optimization 

framework integrating the LSTM and Smith-Waterman algorithms. The primary focus lies in evaluating 

how this hybrid approach enhances the understanding of user intent and improves the precision of 

learning material recommendations in academic information systems. The system processes user queries 

in the form of semantic vectors, which are derived from historical interactions and contextualized 

through LSTM layers. These hidden states, capturing sequential user intent over time, are then aligned 

with available learning content using the Smith-Waterman algorithm. This alignment is not only based 

on vector similarity but also incorporates contextual weightings learned from LSTM outputs, thereby 

achieving a deeper semantic match between user queries and the content corpus.  

To ensure optimal performance of the LSTM component within the proposed hybrid framework, 

a series of hyperparameter tuning steps were conducted. These hyperparameters directly influence the 

network’s ability to capture long-range dependencies and semantic transitions in the learner’s historical 

query data. Parameters such as the number of epochs, batch size, learning rate, optimizer type, and 

embedding dimensions were selected based on iterative experimentation and validation performance. 

The embedding layer was configured to transform each token in the semantic query into dense vector 

representations, enabling the model to learn nuanced semantic relationships. The use of the Adam 

optimizer with a moderate learning rate was chosen to accelerate convergence while preventing 

overfitting. Table 2 below summarizes the finalized hyperparameter settings used for the LSTM model 

in this research. 

After the hyperparameter initialization is carried out as explained in Table 2, the next stage is the 

model training process using the designed LSTM architecture. The training process is carried out for 50 

epochs using a semantic dataset that has been preprocessed and divided into training and validation data. 

The results of the training process are shown in Figure 3(a), which shows the accuracy curve between 

training and validation data. It can be seen that the model accuracy has increased significantly in the 

early epochs and tends to be stable approaching 0.95 for training data and around 0.90 for validation 

data after reaching convergence, indicating good generalization performance.  

Meanwhile, the model classification performance is further explained using the Receiver 

Operating Characteristic (ROC) curve shown in Figure 3(b). The ROC curve shows the relationship 

between the True Positive Rate and False Positive Rate obtained from the results of the model evaluation 
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of the validation data. Based on this curve, the model shows a fairly strong predictive ability with an 

area that moves away from the diagonal line randomly, which means that the model is able to distinguish 

between relevant and irrelevant quite well. This evaluation shows that the integration of LSTM in 

semantic recommender systems provides accurate and effective results in understanding users' historical 

patterns towards learning materials. 

 

Table 2. Hyperparameter for LSTM 

Hyperparameter Value Description 

Embedding 

Dimension 

128 Size of the vector space in which semantic 

tokens are embedded 

Number of LSTM 

Units 

64 Number of units (neurons) in each LSTM layer 

Number of Layers 2 Depth of the LSTM stack for capturing 

complex patterns 

Dropout Rate 0.3 Fraction of input units dropped to prevent 

overfitting 

Optimizer Adam Adaptive optimizer for training 

Learning Rate 0.001 Step size used by the optimizer to minimize 

loss 

Batch Size 32 Number of training samples used in one 

iteration 

Number of Epochs 50 Total number of passes through the full dataset 

during training 

Loss Function Binary Crossentropy Used for measuring error in binary 

recommendation tasks 

Activation Function Tanh (LSTM) / Sigmoid 

(output) 

Non-linear transformations in LSTM and final 

decision layer 

 

  
(a) Training Accuracy of LSTM-Smith 

Waterman 

(b) ROC of LSTM-Smith Waterman 

Figure 3. Training Phase 

 

Based on Figure 3, after obtaining promising results in both training and validation phases, the 

next step involved evaluating the model’s performance using a confusion matrix. This matrix enables 

the calculation of various performance metrics such as accuracy, precision, recall, F1-score F1, and the 

area under the receiver operating characteristic curve (AUROC). These metrics offer a comprehensive 

view of the model’s classification capability, particularly in distinguishing relevant from non-relevant 

learning materials based on user semantic queries. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒

𝑇𝑜𝑡𝑎𝑙 𝐷𝑎𝑡𝑎
 (7) 
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𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
 (8) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
 (9) 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =
2 ×𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ×𝑅𝑒𝑐𝑎𝑙𝑙
 (10) 

Based on Figure 3 explained previously, the next stage is to evaluate the model performance by 

utilizing commonly used classification metrics, namely Accuracy, Precision, Recall, and F1-Score. This 

evaluation is carried out to measure the extent to which the LSTMM model is able to predict the test 

data accurately and consistently. The metric calculation is carried out based on the True Positive (TP), 

False Positive (FP), True Negative (TN), and False Negative (FN) values obtained from the confusion 

matrix of the prediction results. 

Furthermore, based on Eq. (7) is used to measure the level of accuracy of the overall prediction. 

Eq. (8) calculates the precision value, namely the accuracy of the prediction of relevant data. Meanwhile, 

Eq. (9) is used to determine recall, namely the model's ability to recognize all data that is truly relevant. 

Finally, Eq. (10) is used to obtain the F1-Score value, which is the harmonic mean of precision and 

recall as a measure of balanced performance. The results of the calculation of the performance evaluation 

metrics are shown in Table 3. 

 

Table 3. Performance Matrix 

Training Progress AuROC Accuracy Precision Recall 
F1-

Score 
Elapsed Time 

Running in Epoch 10 0.66 0.58 0.61 0.58 0.60 08 Min 32 Sec 

Running in Epoch 20 0.68 0.67 0.68 0.68 0.68 14 Min 11 Sec 

Running in Epoch 30 0.78 0.72 0.74 0.75 0.74 18 Min 56 Sec 

Running in Epoch 40 0.81 0.80 0.81 0.82 0.81 24 Min 31 Sec 

Running in Epoch 50 

(Final) 

0.88 0.89 0.90 0.89 0.89 29 Min 44 

Sec 

 

Based on Table 3, the model shows consistent improvements across multiple epochs. Initially, at 

Epoch 10, the model achieves an AuROC of 0.66 and an accuracy of 58%, with precision and recall 

values around 0.61 and 0.58, respectively. As the training progresses, both the accuracy and the AuROC 

values increase steadily. By Epoch 20, the model demonstrates a marked improvement, with accuracy 

reaching 67% and AuROC rising to 0.68. Precision and recall values are now balanced at 0.68, 

suggesting that the model is becoming more capable of distinguishing between classes while 

maintaining a fair balance between false positives and false negatives. 

In the later epochs, the model shows significant strides in performance. By Epoch 40, the accuracy 

has improved to 80%, with both Precision and Recall climbing to 0.81 and 0.82, respectively. These 

improvements continue in the final epoch (Epoch 50), where the model achieves a high AuROC of 0.88 

and an accuracy of 89%. The precision and recall reach their peak at 0.90 and 0.89, resulting in a final 

F1-Score of 0.89. This indicates that the model has become highly effective at balancing the trade-offs 

between precision and recall, offering strong overall performance. The elapsed time for training 

gradually increases from 8 minutes and 32 seconds in the initial epoch to 29 minutes and 44 seconds at 

the final epoch, reflecting the increasing complexity of the model as it converges to optimal 

performance. 

After achieving strong performance results during the training period, further evaluation was 

conducted to assess how well the trained LSTM–Smith Waterman model handles real-world semantic 
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queries in a testing scenario. The goal of the testing phase as seen in Table 4 was to determine the 

system’s ability to provide personalized and contextually relevant learning recommendations based on 

a single input query. Several representative queries were submitted to the model, and the top-ranked 

recommendation topics were recorded along with their semantic match scores. These scores indicate the 

system’s confidence in the contextual relevance between the query and the recommended content, as 

calculated through the alignment of the integrated semantic vectors and the historical context learned by 

the LSTM layer. 

 

Table 4. Semantic Recommendation Result for Testing Input 

Test 

User ID 
Input Query 

Top Recommended 

Topic 

Semantic 

Match Score 
Remarks 

U101 "deep learning 

basics" 

"Introduction to 

CNNs" 

0.963 Strong contextual match; 

aligned with deep NN. 

U102 "data preprocessing" "Data Cleaning 

Techniques" 

0.948 Accurate; reflects early 

stage ML workflow. 

U103 "backpropagation" "Neural Network 

Optimization" 

0.932 Matched based on 

functional context. 

U104 "natural language 

models" 

"RNN vs 

Transformer" 

0.982 Correct match; captures 

semantic NLP evolution. 

U105 "image classifier" "Convolutional 

Neural Networks" 

0.951 Aligned semantically 

with image-based 

learning. 

 

To strengthen the performance analysis of the proposed model, a comparison was also conducted 

with several methods that have been developed in previous studies. This comparison includes aspects 

of accuracy, F1-score, AUROC, and the advantages and disadvantages of each approach. Table 5 below 

presents a summary of the comparison, which shows that the LSTM–Smith Waterman model provides 

superior results in the context of personalization and semantic understanding compared to other relevant 

methods. 

 

Table 5. Comparison Model with Related Research 

Study Model Performance Strengths Weaknesses 

[15] LDA + BERT 85% Explainable, high semantic 

relevance 

High computational 

cost, sensitive to 

document structure 

[16] Ontology-based 

SemanticModel 

76% Multi-source integration, 

strong behavioral analytics 

Complex to develop 

and maintain 

[17] Semantic-aware 

NLP Framework 

84% Personalized 

recommendation, high 

accuracy 

Requires large 

datasets, prone to 

semantic ambiguity 

This 

Study 

LSTM + Smith 

Waterman 

89% Captures temporal patterns, 

adaptive personalization, 

fine-grained semantic 

matching 

Longer training time 
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4. DISCUSSIONS 

This study introduces an integrated approach that combines the LSTM–Smith Waterman method 

to enhance semantic search and personalized learning recommendations in academic information 

systems. Unlike traditional keyword-based search systems, the proposed model leverages semantic 

vector embeddings and temporal learning patterns to understand the contextual intent behind user 

queries. The Smith Waterman algorithm enables fine-grained local alignment between queries and 

content by identifying the most semantically relevant subsequences, while the LSTM model captures 

the sequential behavior of users over time, enriching the semantic matching process with historical user 

preferences. 

As a best contribution, hybrid LSTM and Smith Waterman model in this study achieves the 

highest performance with an accuracy of 89%, outperforming other models such as LDA + BERT 

(85%), Ontology-based Semantic Model (76%), and Semantic-aware NLP Framework (84%). The main 

strengths of this model include its ability to capture temporal patterns, provide adaptive personalization, 

and perform fine-grained semantic matching. However, its drawback is a longer training time compared 

to the other models. Meanwhile, the previous models each have their own advantages, such as LDA + 

BERT being explainable and semantically relevant, Ontology-based Semantic Model excelling in multi-

source integration, and Semantic-aware NLP Framework offering strong personalized 

recommendations, although they also face challenges like high computational cost, development 

complexity, and large dataset requirements. 

In terms of performance, the LSTM–Smith Waterman model demonstrated consistent 

improvements throughout the training process. Accuracy increased from 0.58 in the early epochs to 0.89 

at epoch 50, with corresponding gains in AUROC (from 0.66 to 0.88) and F1-Score (reaching 0.89). 

These results indicate that the model effectively distinguishes relevant from non-relevant content and 

generalizes well across validation data. The use of hyperparameter tuning, including adjustments to the 

embedding dimension, LSTM units, learning rate, and dropout rate, further contributed to model 

stability and predictive power. Additionally, evaluation using ROC curves and confusion matrices 

validated the model’s ability to provide accurate and contextually aware recommendations. 

To further evaluate real-world applicability, several individual queries were tested against the 

trained model to observe the semantic recommendation outputs. As shown in Table 4, the system 

successfully generated contextually appropriate recommendations with high semantic match scores, 

indicating strong alignment between user intent and suggested learning content. For instance, the query 

"natural language models" returned the topic "RNN vs Transformer" with a score of 0.982, while "data 

preprocessing" led to "Data Cleaning Techniques" with a score of 0.948. These examples highlight the 

model’s capability to interpret varied semantic inputs and deliver personalized results, reinforcing its 

practical value in academic information systems. 

These findings suggest that the integration of semantic modeling and temporal learning behavior 

is not only beneficial for academic search systems, but also has broader implications for the development 

of intelligent, adaptive educational platforms. The proposed method can serve as a foundation for more 

responsive recommendation engines in various digital learning environments, enabling personalized 

content delivery at scale. Furthermore, this approach contributes to the advancement of AI-driven 

personalization strategies, supporting improved user engagement, retention, and learning outcomes in 

modern e-learning systems. 

5. CONCLUSION 

This research demonstrates that integrating semantic alignment and temporal user modeling 

through the LSTM–Smith Waterman method significantly improves the relevance and personalization 

of learning material recommendations in academic information systems. By capturing the semantic 
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meaning of queries and sequential user patterns, the proposed hybrid model outperforms traditional 

keyword-based systems in accuracy, precision, and contextual relevance. Experimental results confirm 

its ability to adapt to evolving user behavior and deliver meaningful recommendations. The key 

contribution lies in its hybrid framework that aligns user intent with educational content at both semantic 

and behavioral levels, supporting adaptive digital learning environments. However, the model has 

several limitations. It relies on sufficient historical interaction data to perform optimally, and training 

time increases considerably with data scale. Adaptation across diverse academic domains or multilingual 

settings may require further tuning. Beyond academic systems, this approach has broader implications 

for informatics, learning analytics, and AI-driven personalization. It showcases how deep sequence 

modeling combined with semantic alignment enables more precise, adaptive recommendations in 

intelligent educational systems. Future work may include integrating attention mechanisms, enabling 

real-time personalization, and deploying the model on scalable, distributed platforms to enhance 

performance and applicability. 
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