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Abstract

Early cancer detection continues to be a significant challenge in clinical practice due to limitation of conventional
diagnostic technique that often takes time and error prone. This systematic review evaluates the efficacy of deep
learning (DL) architecture and datasets to improve cancer detection and diagnosis. We performed a structural analysis
on 40 high-impact research paper published in Q1 journals between 2014 and 2025, considering DL model
performance, datasets, and clinical relevance. Results indicate that fundamental architectures such as convolutional
neural networks (CNNs) and recurrent neural networks (RNNs) consistently report high diagnostic accuracy (>90%)
on radiology- and histopathology-based imaging datasets. Conversely, DL performance on non-imaging clinical data,
including electronic medical records (EMDs), is more varied. Evaluation metrics such as AUC and DICE shows the
trade-off between classification precision and segmentation accuracy. Despite their potential, DL models have
significant limitations in terms of generalization, interpretability, and integration within real-world clinical
workflows. This review highlights the need for standardized evaluation, implementation of ethical models, and multi-
modal data fusion to facilitate wider and more equitable clinical uptake of DL in cancer diagnostics.

Keywords : Cancer Detection, Clinical Applicability, Convolutional Neural Networks (CNNs), Deep Learning,
Medical Imaging, Systematic Review.
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1. INTRODUCTION

Cancer is a group of diseases caused by abnormal growth of cells in the human body. Throughout
history, cancer has been one of the deadliest diseases in history and has posed a significant threat to
human health [1]. Based on reported data, 19.3 million new cancer cases have been diagnosed and
reported that resulted in approximately 10 million deaths in 2020 [2]. The rising number of cancer
related death is also attributed for the significant decrease of death caused by stroke and coronary heart
disease in many countries [1]. Therefore, early and accurate cancer diagnosis has become a critical part
in the treatment of the disease to ensure the patients survival [3]. However, cancer diagnosis has often
been done manually using visual examination, which are often time-consuming and prone to mistakes
[4].

Deep Learning (DL) is a branch of artificial intelligence that allows computer to learn from
experience [5]. Compared to traditional Machine Learning (ML) method such as logistics regression,
DL models have the ability to scale exponentially as the volume and complexity of the data increased
[6]. In the past years it has emerged as an effective tool for cancer detection. DL model such as
Convolution Neural Network (CNN) have demonstrated its ability to identify various type of cancer
using medical imaging modalities such as MRI, CT, PET, mammography and histopathology slides [7],
[8], [9]. These models have consistently achieved high diagnostic performance, with some models
reached accuracies exceeding 90%[10], [11].
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The evolution of DL has developed beyond CNNs. Now it includes hybrid models, attention
mechanism, and transformer-based architectures to improve its performance in classification and
segmentation tasks [12], [13]. Additionally, the adoption of techniques like transfer learning, federated
learning, and explainable Al (XAI) has increased model generalizability, transparency, and clinical
trustworthiness [14], [15], [16], [17]

In recent years, there has been an increasing amount of research focused on studying the efficacy
of ML and DL in specific cancer detection such as breast [18], lung [19], skin [20], prostate [21] and
colorectal cancer [22]. However, most of these studies have concentrated on specific types of cancer
and machine learning methods. Consequently, a comprehensive and comparative synthesis across cancer
types, DL architectures, and dataset is severely need to be explored. Moreover, issues such as data
imbalance, algorithmic bias, and model interpretability remain underexplored in many clinical settings
[23].

DL applications have also expanded to non-imaging data like genomic sequences, multimodal
fusion frameworks, and electronic health records (EHRs). Although these non-image-based models are
promising, they often show variable performance because of the heterogeneity and sparsity of clinical
data [24]. Additionally, although radiology-based DL models are often validated on public datasets, few
studies look at the feasibility of deploying them in the real world or talk about how to incorporate them
into clinical workflows [25], [26].

This systematic review aims to bridge these gaps by critically evaluating 40 high-impact studies
that focus on DL-based cancer detection that published between 2014 and 2025. The review compares
findings across imaging models, DL architectures, dataset types, and performance metrics. It also
identify limitations and opportunities of each study for clinical translation. This work aims to assist
researchers, clinicians, and policymakers on how to effectively and responsibly utilize DL innovations
in cancer detection by contextualizing results across different studies.

2. METHOD

2.1. Search Strategy

The systematic reviews aim to evaluate the role and the advancement of image processing in
cancer detection. The focus of this paper is the integration of deep learning in image processing in cancer
detection. This paper will analyse existing literatures to identify the trend methods and outcome of
research in this field.

The search was started by using the website SCOPUS. In this site we used following query input
to find literature for this research: ( TITLE-ABS-KEY ( "Image Processing" AND "cancer detection" )
AND TITLE-ABS-KEY ( "machine learning" OR "deep learning" ) ) AND PUBYEAR > 2013 AND
PUBYEAR < 2026 AND ( LIMIT-TO ( DOCTYPE , "ar" ) OR LIMIT-TO ( DOCTYPE , "cp" ) OR
LIMIT-TO ( DOCTYPE, "re" )OR LIMIT-TO ( DOCTYPE, "ch" ) OR LIMIT-TO ( DOCTYPE , "bk"
)

This query aimed to find research papers, conference papers, reviews, book chapters, or book
published within the range of 2014 to 2025. The query also selectively picked literatures that involve
using machine learning and deep learning for image processing and cancer detection.

The result of the search is shown in Figure 1, 571 documents were found during the search
process. These literatures have in total received 12,681 citations. The graph in this image also
demonstrates that these studies have become increasingly influential in recent years, as shown by the
rise in the number of citations.
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Figure 1. Scopus citation overview

2.2. Inclusion and Exclusion Process

As shown in Figure 2, this study follows the Prisma model in selecting study that will be include
in this systematic review. In the first step we identified study records on the website SCOPUS with the
keyword cancer detection and deep learning. The literatures found in this search were then ranked
according to the number of citations they received. In this stage, the selected literatures had to meet a
minimum citation threshold of 13 or rank within the top 150 based on their citation count. This criterion
ensured that only the most impactful and widely recognized literatures were chosen for further analysis,
highlighting their significant contribution to the field. literatures that are inaccessible are also removed
from consideration.

After completing this step, we proceed to extract relevant data from each literature to assess their
eligibility for inclusion in the systematic review. The primary criteria for selection at this stage are that
the literatures must focus on deep learning and have been published in Q1-ranked journals. As a result
of this filtering process, 40 literatures were identified as meeting these criteria and were selected for
further analysis.

In conclusion, for this systematic review 571 documents were found conference paper and journal.
After imposing stricter criterion such as the literature must be about deep learning and be published in
QI journals, we ended up with 40 literatures. Figure 2 summarize our search method.

The literature was reviewed by all authors, and a lead author was consulted when there was
uncertainty regarding eligibility. The authors independently screened the literature by title, keywords,
abstracts, and full-text readings. The following tables summarize the data extracted from eligible
literatures.
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) Records removed removed due
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Identification }
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Figure 2. PRISMA Flow Diagram I[llustrating Study Selection for Systematic Review
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Table 1. Summarize the data extracted from eligible literatures

Deep Sensitivi  Specifici
Author Learning Dataset Type Accuracy AUC-ROC
ty ty
Model
Alietal FCEDN Dermoscopic ~ Segmentati Not Not Not stated
[27] (Fully images on: stated stated explicitly
Convolutiona 95.28%— explicitl  explicitl
1 Encoder- 98.78%, y y
Decoder Classificati
Network) + on: 91.67%
Adaptive
CNN
Aljuaid et  ResNet-18,  Histopathologi Binary: Not Not Not stated
al [28] InceptionV3 cal images 99.7% stated stated explicitly
Net, (microscopy) (ResNet),  explicitl  explicitl
ShuffleNet Multi-class: y y
(Transfer 97.81%
Learning) (ResNet)
Almotairi Modified CT scan liver Up to Up to Up to Not stated
et al [29] SegNet (3D) 94.57% 99.99%  94.52% explicitly
(based on
VGG-16)
Arif et al 3D Multi- Not stated ~ 82-94%  43-76% 0.65-0.89
[30] Convolutiona parametric explicitly  (Depend (Depend  (Depends on
1 Neural MRI (T2w, s on s on volume)
Network DWI, ADC) volume)  volume)
(CNN)
Chouhan Highway ROI patch 80.5% Not Not 0.865 (ELIEC
et al[31] network- from (SVM), stated stated hybrid)
based CNN  mammogram 80.3% explicitl  explicitl
(ELiEC) y y
Conget CNN-LSTM  Multiparametr  Not stated Not Not 98
al [32] ic MRI (T1, explicitly stated stated
T2, DCE- explicitl  explicitl
MRI, DWI) y y
Crasta et 3D-ResNet  Lung CT scan 99.2 Not Not Not stated
al [33] (LUNAL16) stated stated explicitly
explicitl  explicitl
Yy Yy
Cruz Roa CNN Histopatologi Dice=0.76 TPR= TNR = Not stated
et al [34] (CS256- whole-slide +0.20 0.87 + 0.92 + explicitly
FC256) image (WSI) 0.16 0.08
compared
with FCN
Dascalu  Inception V2 Dermoscopy  Not stated Not Not 81.4
etal [35] + 1D CNN images with explicitly stated stated
audio explicitl  explicitl
sonification y y
Goncalve  CNN + Bio- IR Breast 97.50% 96.90% 98% 0.96
s et al inspired Dataset
[36] (PSO, GA)
Han et al Faster R- Self-collected 95.2% (face 93.70%  96.80% 962
[37] CNN (clinical) region)
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Huang et Convolutiona  Oral Cancer 96.94% 91.60% Not Not stated
al [38] | Neural Images stated explicitly
Network explicitl
(CNN) y
optimized
with
Combined
Seagull
Optimization
Algorithm
(CSOA)
Kashyap Dilated Private dataset 96.30% 94.20%  95.10% Not stated
et al [39] Residual explicitly
Grooming
Kernel CNN
Kumar Deep Brain MRI 96.10% 94.50% 95% 945
Malick et Wavelet
al [40] Autoencoder
Kumbhar Multi- CAMELYON 94.30% 93.10%  95.20% 953
e et al resolution 16
[41] MIL
Lietal Multi- CAMELYON 94.3 Not Not Not stated
[42] resolution 16 stated stated explicitly
MIL explicitl  explicitl
Yy Yy
Lietal Attention INbreast 95.40% 94.80%  96.10% 958
[43] Dense-U-Net
Liu et al CNN Whole-slide Not stated Not Not 0.963 (TCGA),
[44] (Inception-  histopathology  explicitly stated stated  0.943 (BIDMC)
v3) images explicitl  explicitl
y y
Mahmoo Deep Mammogram 0.97 0.99 Not 0.99
detal Convolutiona images stated
[45] 1 Neural explicitl
Network y
(CNN/ConvN
et)
Mambou CNN (custom Infrared 988 975 1 0.99
et al [46] CNN) thermal
images
Masood  Convolutiona CT scan 933 921 942 Not stated
et al [47] 1 Neural explicitly
Network
(CNN)
Masud et Convolutiona LC25000 9633 9637 9639 Not stated
al [48] 1 Neural histopatologi
Network
(CNN multi-
channel)
Mehmoo Transfer LC25000 89 % — Not Not Not stated
detal Learning histopatologi 98.4 % stated stated
[49] (pretrained
AlexNet,
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fine-tune 4
layer)
Mohakud Convolutiona  Dermoscopic 9833 Not Not Not stated
et al [50] | Neural skin-lesion stated stated
Network + images (ISIC)
Grey Wolf
Optimization
(GWO)
Mohame U-Net Breast 9933 1 9867 Not stated
detal (segmentatio  thermogram
[51] n) + CNN 2-
kelas
(classification
)
Montaha VGG16 CBIS-DDSM 98.02 Not Not Not stated
etal [52] (fine-tuned) (mammogram stated stated
)
Munshi U-NET Wisconsin 99.99% Not Not Not stated
et al [53] (transfer Breast Cancer stated stated
learning), Dataset
CNN, (numeric) and
Random image (image
Forest, SVM  dataset name
not
mentioned)
Sathesh ~ Hybrid CNN MIAS and MIAS: MIAS: MIAS: Not stated
Raajetal  (combining DDSM 99.17%, 98%, 98.66%, explicitly
[54] radon (mammogram DDSM: DDSM: DDSM:
transform and ) 98.44% 97.91%  97.83%
mathematical
morphologica
1
segmentation
)
Schramm SLAM Whole Slide Not stated Not Not Tumor
enetal  (CNN-based, Images (WSI) stated stated  detection: 0.980
[55] off-the-shelf) (CIL: 0.975-
0.984)MSI1/dM
MR: 0.909 (CTI:
0.888—
0.929)BRAF:
0.821 (CIL:
0.786—
0.852)Eksternal
MSTI: 0.900 (CI:
0.864-0.931)
Serte etal  AlexNet + Dermoscopic ~ Not stated Not Not 83
[56] ResNet-18 + images stated stated
Gabor
Shafi et DL-assisted Lung CT Scan 94% Not Not Not stated
al [57] SVM (CNN stated stated
+ SVM)
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Shakeel Improved CT Images High (No High High Not stated
et al [58] DNN + exact (No (No
Ensemble number) exact exact
classifier number) number)
Shkloyar CNN Cystoscopy Not stated Per- 98.6% Not stated
et al [59] (CystoNet) video frame: (95%
90.9%Pe CL
r-tumor: 98.5—
95.5% 98.8%)
Song et al CNN Whole Slide 0.873— 996 843 0.986-0.996
[60] (DeepLab v3) Image (WSI) 0.976
Togacar  CNN (LeNet, Chest CT 99.51% 99.32%  99.71% Not stated
etal [61] AlexNet, scancs
VGG-16)
Yanetal AE U-net+ Breast 95.81% 80.48% Not Not stated
[62] HDC (CNN- ultrasound stated
based) image
Yoo et al LSTM EHR Not stated Not Not 866
[63] (RNN) (electronic stated stated
medical
record)
Yoo et al 41-layer Diffusion- Not stated Not Not Slice-level: 0.87
[64] ResNet CNN  weighted MRI stated stated  (CI: 0.84-0.90),
+ Random (DWI) Patient-level:
Forest 0.84 (CI: 0.76—
(stacked 0.91)
ensemble)
Zhanget  GRU (Gated Skin Lesion 0.95 0.95 0.97 Not stated
al [65] Recurrent Images
Unit) + IOPA
Zhou et 3D-CNN + DCE-MRI Not stated Not Not 0.9
al [66] MIL stated stated

2.3. Subgroup Analysis

To explore the sources of variation across studies, subgroup analyses were performed by
examining distinct methodological factors. The literature was categorized into four architectural groups
based on their modeling frameworks. Core neural network architectures, such as standard convolutional
neural networks (CNNs) and recurrent neural networks (RNNs), formed the foundational category.
Task-specific deep learning models encompassed approaches tailored to particular applications,
including semantic segmentation networks, domain-specific architectures, and object detection
frameworks. Hybrid and ensemble learning models combined diverse methodologies, spanning
ensemble techniques paired with traditional machine learning hybrids as well as integrative deep
learning architectures. Finally, feature learning and representation models focused on advanced
techniques like autoencoder-based and unsupervised models, alongside attention mechanisms and multi-
scale modeling strategies. This classification enabled a structured investigation into how architectural
choices influenced study outcomes.

To further evaluate the strengths and limitations of the data underpinning the studies, the research
was also categorized according to the types of datasets employed. The literature was organized into four
distinct groups based on data sources. The first group comprises radiology-based imaging, including
modalities such as CT scans, MRI, and mammography. The second category focuses on pathology and
microscopic imaging, covering histopathology samples and whole slide imaging techniques. The third

3625


https://jutif.if.unsoed.ac.id/
https://doi.org/10.52436/1.jutif.2025.6.5.4748

Jurnal Teknik Informatika (JUTIF) Vol. 6, No. 5, October 2025, Page. 3619-3634
P-ISSN: 2723-3863 https://jutif.if.unsoed.ac.id
E-ISSN: 2723-3871 DOI: https://doi.org/10.52436/1.jutif.2025.6.5.4748

group, surface and real-time imaging, encompasses diverse datasets like thermoscopic and skin lesion
images, infrared and thermographic imaging, ultrasound and endoscopy data, as well as oral and clinical
images captured in real-world settings. Finally, the fourth category involves non-imaging clinical data,
such as electronic health records (EHR) and structured tabular data. This classification allows for a
nuanced analysis of how dataset characteristics, from imaging specificity to data format, influence
model performance and generalizability in different clinical contexts.

To ensure a comprehensive analysis of study outcomes, the literature was additionally classified
based on the evaluation metrics employed in each research effort. This categorization aimed to
systematically assess how performance was quantified and compared across different methodologies.
The metrics were organized into four primary groups: accuracy, which measures overall correctness in
classification or prediction tasks; sensitivity, focusing on the ability to correctly identify true positive
cases, particularly critical in diagnostic applications; DICE coefficient, a specialized metric for
evaluating spatial overlap and segmentation quality in imaging tasks; and AUC (Area Under the Curve),
which reflects the robustness of classification models across varying probability thresholds. By grouping
studies according to these metrics, the analysis highlighted how different evaluation approaches
emphasize distinct aspects of model performance from broad correctness and diagnostic precision to
granular segmentation fidelity and threshold-invariant classification reliability. This framework enabled
a deeper understanding of the strengths and limitations inherent to each metric in interpreting clinical or
technical outcomes.

3.  RESULT

The author starts the research by analysing the keyword of every literature related to deep
learning-based cancer detection. VOSviewer is deployed by author to do this task. VOSviewer is a
software tool used for visualizing and analysing bibliometric network. It’s designed to help researchers
to visualize and explore patterns in large volumes of scientific literature.
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Figure 3. Literature Co-Occurance map on the role of deep learning in cancer detection

As we can see in Figure 3. that the keywords are divided into several clusters that are coloured
differently. The red cluster, on the left, contains predominantly technical terms such as deep learning,
CNN, image processing, and lung cancer. This shows the research focus on model approaches and
architectures.
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The green cluster, on the right, contains more keywords from clinical studies such as humans,
controlled study, breast tumour, and prostate cancer. This reflects that many studies also relate the
technology to real-world applications or patients. The blue cluster describes the types of images used,
such as MRI, CT, and histopathological images. And other smaller clusters, such as purple and yellow,
show specific topics such as skin tumours or other learning approaches such as k-nearest neighbour.

The size of the circles indicates the frequency of occurrence of the keywords, and the lines
between the dots show how often the words appear together. From this visualization, we can see that
deep learning is closely associated with various image processing techniques and certain types of cancer,
as well as having a close relationship with clinical evaluations such as sensitivity, specificity, and
accuracy.

The results of unweighted outcome values analysis show different results across different
literatures. The outcome values of each study, as measured by metrics such as accuracy or sensitivity,
varied significantly. This shows the performance of varying model on different type of cancer and
datasets. The scatter plot (Figure 4.) gives visual representation of this variation.
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Figure 4. Unweighted outcomes values by study

In conclusion, unweighted outcome values analysis shows inconsistency and variability of model
performance across research studies. This highlighted the need for further research into why certain
models perform better under certain conditions.

Outcomes Distribution by Model Group
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Figure 5. Outcome Distribution by Model Group
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The Outcome Distribution by Model Group analysis reveals the performance of each model varies
even among their own group (Figure 5). The boxplot depicts the range of outcome value to each model
group, showing median, inter-quartile range (IQR) and outlier value. This highlighted that some model
group such as Task-Specific Deep Learning Models and Hybrid and Ensemble Learning Models have
wide range in performance, indicating that this model group may be useful in specific type of cancer or
datasets. Conversely, other model group shows consistency with the range of outcome. However, this
group still have some outliers that indicates that while the model of this group is in consistent in general.
Some model may lag behind. In conclusion, while this outcome distribution may provide valuable
insight into reliability of each model performance. It also suggests that certain model group may offer
more stable result, while other group may still need for further improvement.

The Density Distribution of Outcome Values (Figure 6) shows a bimodal distribution with two
different peaks. One is around 90 and the other one is near 95. This indicates that the models’
performances are concentrated in two main ranges. The majority of the outcome values are clustered
between 90 and 100. This suggest that most models performed well, with high accuracy or sensitivity
scores. However, there is a noticeable spread in the lower range (around 75). This indicates that some
models showed poor performance in certain cases. This distribution plot highlights the variability in
model performance: some models shows high consistency, while others show more variation, leading
to a broader distribution. Overall, the plot suggests that while most models perform well, a few exhibit
significant variability in their results.

Density Distribution of Outcomes Values Model -
| | 30-Reshet || DNN +Ensemble
: 3D CNN : Faster R-CNN
: 3D CNN + MIL : GRU (RNN) + IOPA
| AlexMet (fine-tuned) ] Highway CHNN
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o CNMN-LSTM Multi-resolution MIL
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Figure 6. Density Distribution of Outcomes Values.

4. DISCUSSIONS

The results of this systematic review show important gaps in clinical translation while confirming
the revolutionary potential of deep learning (DL) in cancer detection. In a variety of imaging modalities,
including CT, MRI, mammography, and histopathology, deep learning models in particular,
convolutional neural networks, or CNNs have continuously demonstrated good diagnostic accuracy.
This supports earlier findings that DL outperforms conventional diagnostic techniques in pattern
detection inside intricate image-based datasets.

The outcome scatter and box plots (Figures 4 and 5) illustrate the broad range of outcome values
seen across trials, which implies that performance is still context-dependent. Interestingly, task-specific
and hybrid models showed a wider range of performance, indicating their flexibility for certain cancer
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kinds or imaging conditions. Although this adaptability is useful for specific tasks (such as multi-modal
fusion or tumour segmentation), it also generates irregularities in overall performance and
reproducibility.

Another important factor that determined the effectiveness of the model was dataset
heterogeneity. Compared to studies that used non-imaging clinical data, such as electronic health
records (EHRs), studies that used radiography and histopathology datasets found more consistent and
superior performance. The difficulties in handling both structured and unstructured tabular data, where
missing values, sparsity, and irregular formatting lower model reliability, are highlighted by the
variation in EHR-based model results. In multi-institutional environments with widely disparate data
standards, these problems are exacerbated.

Interpreting performance is made even more difficult by evaluation metrics like accuracy, AUC,
and DICE. Even while strong classification across probability thresholds is indicated by high AUC
scores, segmentation-centric tasks gain more from spatial measures such as DICE. A complex
environment where a model's perceived success may change based on task requirements is revealed by
this metric-dependent evaluation. While the majority of models cluster around high performance (90—
95%), a portion still lags, especially in non-standard datasets or niche applications, according to the
bimodal distribution of results (Figure 6).

Crucially, few studies discuss integration into clinical workflows, despite the fact that many claim
great technical performance. It is alarming that there is a disconnect between clinical utility and research
efficacy. Interpretability and generalisability continue to be significant challenges; DL models
frequently operate as "black boxes," which undermines regulatory approval and reduces clinician trust.
Furthermore, algorithmic bias and health disparities are ethical issues raised by the absence of consistent
validation across patient populations, particularly those under-represented in training datasets.

Finally, although new architectures like ensemble models, multi-resolution learning, and attention
mechanisms promise advancements, their practicality is frequently limited by the need for training data
and computing complexity. In this regard, democratising cancer diagnosis may benefit greatly from
lightweight DL models tailored for edge computing (such as portable imaging devices in low-resource
environments).

S. LIMITATIONS AND FUTURE RESEARCH

5.1. Limitations

Our study’s focus on QI journals, while ensuring quality, may exclude impactful preprints or
conference papers. Additionally, the rapid evolution of DL techniques means newer architectures (e.g.,
vision transformers) published post-2023 were not included. Nevertheless, our subgroup analysis
categorizing studies by architecture, dataset, and metrics provides a novel framework for contextualizing
performance, addressing a gap in earlier syntheses.

5.2. Future Research

Future research should prioritize enhancing the generalizability and robustness of deep learning
(DL) models to ensure reliable performance across diverse clinical settings. This involves developing
frameworks that adapt to heterogeneous datasets, such as multi-institutional medical imaging or varied
electronic health record (EHR) formats, where domain adaptation and federated learning could mitigate
performance drops in real-world scenarios. Architectural innovations, such as 3D-CNNs for volumetric
tumor analysis or lightweight networks optimized for real-time detection in endoscopy, could further
refine diagnostic precision while addressing computational inefficiencies.

Addressing data scarcity and bias remains pivotal, particularly for rare cancers or
underrepresented populations. Strategies like synthetic data generation, transfer learning from well-
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curated datasets, and ethical data curation practices could alleviate imbalances and improve model
fairness. Concurrently, integrating explainable Al (XAI) techniques such as attention maps and saliency
analysis into DL workflows is essential to demystify "black-box" decisions, fostering clinician trust and
enabling transparent diagnostics in high-stakes environments.

The integration of multi-modal data, including imaging, genomics, and EHRs, presents an
opportunity to advance personalized oncology. Holistic DL frameworks that synthesize these diverse
inputs could unlock insights into tumor heterogeneity and treatment response, paving the way for
tailored therapeutic strategies. Parallel efforts to streamline models for edge computing—such as
deploying them on portable ultrasound devices—would bridge the gap between research and bedside
application, particularly in resource-limited settings.

Finally, establishing ethical and regulatory frameworks is critical to guide the responsible
adoption of DL in healthcare. Collaborative initiatives among researchers, clinicians, and policymakers
must address challenges such as data privacy, algorithmic bias, and equitable access to ensure these
technologies benefit all patient populations equitably. By addressing these priorities, future work can
transform DL from a promising tool into a cornerstone of clinical oncology, driving earlier detection,
reducing disparities, and improving survival outcomes globally.

6. CONCLUSION

This systematic review comprehensively analyzed the role of deep learning (DL) in cancer
detection, focusing on architectural innovations, dataset diversity, and evaluation metrics. The findings
underscore DL's transformative potential in oncology, particularly through its ability to process complex
medical imaging data and deliver high diagnostic accuracy. Core neural network architectures, such as
CNNs and RNNs, demonstrated robust performance across multiple cancer types, while task-specific
and hybrid models (e.g., semantic segmentation networks, ensemble frameworks) excelled in
specialized applications like histopathology and real-time imaging. However, performance variability
was evident, influenced by factors such as dataset characteristics (e.g., radiology-based imaging vs. non-
imaging EHR data) and metric selection (e.g., DICE for segmentation vs. AUC for classification
robustness).

The analysis revealed that models trained on radiology-based imaging (CT, MRI) and pathology
datasets (whole-slide histopathology) consistently achieved high accuracy (>90%) and sensitivity
(>85%), whereas non-imaging data (EHR) lagged in performance due to inherent heterogeneity. Metrics
like AUC and DICE highlighted the trade-offs between diagnostic precision and segmentation fidelity,
emphasizing the need for context-specific evaluation. Despite these advancements, challenges persist in
clinical applicability, including generalizability across diverse populations, interpretability of "black-
box" models, and integration into routine workflows. The variability in study outcomes underscores the
necessity for standardized reporting frameworks to ensure reproducibility and equitable implementation.

The impact of this study lies in its contribution as a current, high-level synthesis of the field,
providing clarity on where deep learning excels, where it falls short, and what is needed to bridge the
gap between technological potential and clinical utility. The review identifies consistent trends,
methodological gaps, and architectural strengths that can serve as reference points for future research,
policy-making, and Al-driven clinical tool development.

Future research should focus on improving model generalizability across heterogeneous clinical
settings, enhancing transparency through explainable Al techniques, and developing lightweight,
deployable frameworks that can function in real-time or low-resource environments. Collaborations
between technical and clinical domains will be essential to translate DL innovations into practical,
equitable cancer diagnostics.
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