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Abstract 

Early cancer detection continues to be a significant challenge in clinical practice due to limitation of conventional 

diagnostic technique that often takes time and error prone. This systematic review evaluates the efficacy of deep 

learning (DL) architecture and datasets to improve cancer detection and diagnosis. We performed a structural analysis 

on 40 high-impact research paper published in Q1 journals between 2014 and 2025, considering DL model 

performance, datasets, and clinical relevance. Results indicate that fundamental architectures such as convolutional 

neural networks (CNNs) and recurrent neural networks (RNNs) consistently report high diagnostic accuracy (>90%) 

on radiology- and histopathology-based imaging datasets. Conversely, DL performance on non-imaging clinical data, 

including electronic medical records (EMDs), is more varied. Evaluation metrics such as AUC and DICE shows the 

trade-off between classification precision and segmentation accuracy. Despite their potential, DL models have 

significant limitations in terms of generalization, interpretability, and integration within real-world clinical 

workflows. This review highlights the need for standardized evaluation, implementation of ethical models, and multi-

modal data fusion to facilitate wider and more equitable clinical uptake of DL in cancer diagnostics. 
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1. INTRODUCTION 

Cancer is a group of diseases caused by abnormal growth of cells in the human body. Throughout 

history, cancer has been one of the deadliest diseases in history and has posed a significant threat to 

human health [1].  Based on reported data, 19.3 million new cancer cases have been diagnosed and 

reported that resulted in approximately 10 million deaths in 2020 [2]. The rising number of cancer 

related death is also attributed for the significant decrease of death caused by stroke and coronary heart 

disease in many countries [1]. Therefore, early and accurate cancer diagnosis has become a critical part 

in the treatment of the disease to ensure the patients survival [3]. However, cancer diagnosis has often 

been done manually using visual examination, which are often time-consuming and prone to mistakes 

[4]. 

Deep Learning (DL) is a branch of artificial intelligence that allows computer to learn from 

experience [5]. Compared to traditional Machine Learning (ML) method such as logistics regression, 

DL models have the ability to scale exponentially as the volume and complexity of the data increased 

[6]. In the past years it has emerged as an effective tool for cancer detection. DL model such as 

Convolution Neural Network (CNN) have demonstrated its ability to identify various type of cancer 

using medical imaging modalities such as MRI, CT, PET, mammography and histopathology slides [7], 

[8], [9]. These models have consistently achieved high diagnostic performance, with some models 

reached accuracies exceeding 90%[10], [11]. 
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The evolution of DL has developed beyond CNNs. Now it includes hybrid models, attention 

mechanism, and transformer-based architectures to improve its performance in classification and 

segmentation tasks [12], [13]. Additionally, the adoption of techniques like transfer learning, federated 

learning, and explainable AI (XAI) has increased model generalizability, transparency, and clinical 

trustworthiness [14], [15], [16], [17] 

In recent years, there has been an increasing amount of research focused on studying the efficacy 

of ML and DL in specific cancer detection such as breast [18], lung [19], skin [20], prostate [21] and 

colorectal cancer [22]. However, most of these studies have concentrated on specific types of cancer 

and machine learning methods. Consequently, a comprehensive and comparative synthesis across cancer 

types, DL architectures, and dataset is severely need to be explored. Moreover, issues such as data 

imbalance, algorithmic bias, and model interpretability remain underexplored in many clinical settings 

[23].  

DL applications have also expanded to non-imaging data like genomic sequences, multimodal 

fusion frameworks, and electronic health records (EHRs). Although these non-image-based models are 

promising, they often show variable performance because of the heterogeneity and sparsity of clinical 

data [24]. Additionally, although radiology-based DL models are often validated on public datasets, few 

studies look at the feasibility of deploying them in the real world or talk about how to incorporate them 

into clinical workflows [25], [26]. 

This systematic review aims to bridge these gaps by critically evaluating 40 high-impact studies 

that focus on DL-based cancer detection that published between 2014 and 2025. The review compares 

findings across imaging models, DL architectures, dataset types, and performance metrics. It also 

identify limitations and opportunities of each study for clinical translation. This work aims to assist 

researchers, clinicians, and policymakers on how to effectively and responsibly utilize DL innovations 

in cancer detection by contextualizing results across different studies. 

2. METHOD 

2.1. Search Strategy 

The systematic reviews aim to evaluate the role and the advancement of image processing in 

cancer detection. The focus of this paper is the integration of deep learning in image processing in cancer 

detection. This paper will analyse existing literatures to identify the trend methods and outcome of 

research in this field. 

The search was started by using the website SCOPUS. In this site we used following query input 

to find literature for this research: ( TITLE-ABS-KEY ( "Image Processing" AND "cancer detection" ) 

AND TITLE-ABS-KEY ( "machine learning" OR "deep learning" ) ) AND PUBYEAR > 2013 AND 

PUBYEAR < 2026 AND ( LIMIT-TO ( DOCTYPE , "ar" ) OR LIMIT-TO ( DOCTYPE , "cp" ) OR 

LIMIT-TO ( DOCTYPE , "re" )OR LIMIT-TO ( DOCTYPE , "ch" ) OR LIMIT-TO ( DOCTYPE , "bk" 

) ). 

This query aimed to find research papers, conference papers, reviews, book chapters, or book 

published within the range of 2014 to 2025. The query also selectively picked literatures that involve 

using machine learning and deep learning for image processing and cancer detection. 

The result of the search is shown in Figure 1, 571 documents were found during the search 

process. These literatures have in total received 12,681 citations. The graph in this image also 

demonstrates that these studies have become increasingly influential in recent years, as shown by the 

rise in the number of citations. 
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Figure 1. Scopus citation overview 

2.2. Inclusion and Exclusion Process 

As shown in Figure 2, this study follows the Prisma model in selecting study that will be include 

in this systematic review. In the first step we identified study records on the website SCOPUS with the 

keyword cancer detection and deep learning. The literatures found in this search were then ranked 

according to the number of citations they received. In this stage, the selected literatures had to meet a 

minimum citation threshold of 13 or rank within the top 150 based on their citation count. This criterion 

ensured that only the most impactful and widely recognized literatures were chosen for further analysis, 

highlighting their significant contribution to the field. literatures that are inaccessible are also removed 

from consideration. 

After completing this step, we proceed to extract relevant data from each literature to assess their 

eligibility for inclusion in the systematic review. The primary criteria for selection at this stage are that 

the literatures must focus on deep learning and have been published in Q1-ranked journals. As a result 

of this filtering process, 40 literatures were identified as meeting these criteria and were selected for 

further analysis. 

In conclusion, for this systematic review 571 documents were found conference paper and journal. 

After imposing stricter criterion such as the literature must be about deep learning and be published in 

Q1 journals, we ended up with 40 literatures. Figure 2 summarize our search method. 

The literature was reviewed by all authors, and a lead author was consulted when there was 

uncertainty regarding eligibility. The authors independently screened the literature by title, keywords, 

abstracts, and full-text readings. The following tables summarize the data extracted from eligible 

literatures. 

 

 
Figure 2. PRISMA Flow Diagram Illustrating Study Selection for Systematic Review 
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Table 1. Summarize the data extracted from eligible literatures 

Author 

Deep 

Learning 

Model 

Dataset Type Accuracy 
Sensitivi

ty 

Specifici

ty 
AUC-ROC 

Ali et al 

[27] 

FCEDN 

(Fully 

Convolutiona

l Encoder-

Decoder 

Network) + 

Adaptive 

CNN 

Dermoscopic 

images 

Segmentati

on: 

95.28%–

98.78%, 

Classificati

on: 91.67% 

Not 

stated 

explicitl

y 

Not 

stated 

explicitl

y 

Not stated 

explicitly 

Aljuaid et 

al [28] 

ResNet-18, 

InceptionV3

Net, 

ShuffleNet 

(Transfer 

Learning) 

Histopathologi

cal images 

(microscopy) 

Binary: 

99.7% 

(ResNet), 

Multi-class: 

97.81% 

(ResNet) 

Not 

stated 

explicitl

y 

Not 

stated 

explicitl

y 

Not stated 

explicitly 

Almotairi 

et al [29] 

Modified 

SegNet 

(based on 

VGG-16) 

 

CT scan liver 

(3D) 

 

Up to 

94.57% 

Up to 

99.99% 

 

Up to 

94.52% 

Not stated 

explicitly 

Arif et al 

[30] 

3D 

Convolutiona

l Neural 

Network 

(CNN) 

Multi-

parametric 

MRI (T2w, 

DWI, ADC) 

Not stated 

explicitly 

82–94% 

(Depend

s on  

volume) 

43–76% 

(Depend

s on 

volume) 

0.65–0.89 

(Depends on 

volume) 

Chouhan 

et al[31] 

Highway 

network-

based CNN 

ROI patch 

from 

mammogram 

80.5% 

(SVM), 

80.3% 

(ELiEC) 

Not 

stated 

explicitl

y 

Not 

stated 

explicitl

y 

0.865 (ELiEC 

hybrid) 

Cong et 

al [32] 

CNN-LSTM Multiparametr

ic MRI (T1, 

T2, DCE-

MRI, DWI) 

Not stated 

explicitly 

Not 

stated 

explicitl

y 

Not 

stated 

explicitl

y 

98 

 

Crasta et 

al [33] 

3D-ResNet Lung CT scan 

(LUNA16) 

99.2 Not 

stated 

explicitl

y 

Not 

stated 

explicitl

y 

Not stated 

explicitly 

Cruz Roa 

et al [34] 

CNN 

(CS256-

FC256) 

compared 

with FCN 

Histopatologi 

whole-slide 

image (WSI) 

Dice = 0.76 

± 0.20 

TPR = 

0.87 ± 

0.16 

TNR = 

0.92 ± 

0.08 

Not stated 

explicitly 

Dascalu 

et al [35] 

Inception V2 

+ 1D CNN 

Dermoscopy 

images with 

audio 

sonification 

Not stated 

explicitly 

Not 

stated 

explicitl

y 

Not 

stated 

explicitl

y 

81.4 

Goncalve

s et al 

[36] 

CNN + Bio-

inspired 

(PSO, GA) 

IR Breast 

Dataset 

97.50% 96.90% 98% 0.96 

Han et al 

[37] 

Faster R-

CNN 

Self-collected 

(clinical) 

95.2% (face 

region) 

93.70% 96.80% 962 
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Huang et 

al [38] 

Convolutiona

l Neural 

Network 

(CNN) 

optimized 

with 

Combined 

Seagull 

Optimization 

Algorithm 

(CSOA) 

Oral Cancer 

Images 

96.94% 91.60% Not 

stated 

explicitl

y 

Not stated 

explicitly 

Kashyap 

et al [39] 

Dilated 

Residual 

Grooming 

Kernel CNN 

Private dataset 96.30% 94.20% 95.10% Not stated 

explicitly 

Kumar 

Malick et 

al [40] 

Deep 

Wavelet 

Autoencoder 

Brain MRI 96.10% 94.50% 95% 945 

Kumbhar

e et al 

[41] 

Multi-

resolution 

MIL 

CAMELYON

16 

94.30% 93.10% 95.20% 953 

Li et al 

[42] 

Multi-

resolution 

MIL 

 

CAMELYON

16 

94.3 Not 

stated 

explicitl

y 

Not 

stated 

explicitl

y 

Not stated 

explicitly 

Li et al 

[43] 

Attention 

Dense-U-Net 

INbreast 95.40% 94.80% 96.10% 958 

Liu et al 

[44] 

CNN 

(Inception-

v3) 

Whole-slide 

histopathology 

images 

Not stated 

explicitly 

Not 

stated 

explicitl

y 

Not 

stated 

explicitl

y 

0.963 (TCGA), 

0.943 (BIDMC) 

Mahmoo

d et al 

[45] 

Deep 

Convolutiona

l Neural 

Network 

(CNN/ConvN

et) 

Mammogram 

images 

0.97 0.99 Not 

stated 

explicitl

y 

0.99 

Mambou 

et al [46] 

CNN (custom 

CNN) 

Infrared 

thermal 

images 

988 975 1 0.99 

Masood 

et al [47] 

Convolutiona

l Neural 

Network 

(CNN) 

CT scan 933 921 942 Not stated 

explicitly 

Masud et 

al [48] 

Convolutiona

l Neural 

Network 

(CNN multi-

channel) 

LC25000 

histopatologi 

9633 9637 9639 Not stated 

Mehmoo

d et al 

[49] 

Transfer 

Learning 

(pretrained 

AlexNet, 

LC25000 

histopatologi 

89 % → 

98.4 % 

Not 

stated 

Not 

stated 

Not stated 
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fine-tune 4 

layer) 

Mohakud 

et al [50] 

Convolutiona

l Neural 

Network + 

Grey Wolf 

Optimization 

(GWO) 

Dermoscopic 

skin-lesion 

images (ISIC) 

9833 Not 

stated 

Not 

stated 

Not stated 

Mohame

d et al 

[51] 

U-Net 

(segmentatio

n) + CNN 2-

kelas 

(classification

) 

Breast 

thermogram 

9933 1 9867 Not stated 

Montaha 

et al [52] 

VGG16 

(fine-tuned) 

CBIS-DDSM 

(mammogram

) 

98.02 Not 

stated 

Not 

stated 

Not stated 

Munshi 

et al [53] 

U-NET 

(transfer 

learning), 

CNN, 

Random 

Forest, SVM 

Wisconsin 

Breast Cancer 

Dataset 

(numeric) and 

image (image 

dataset name 

not 

mentioned) 

99.99% Not 

stated 

Not 

stated 

Not stated 

Sathesh 

Raaj et al 

[54] 

Hybrid CNN 

(combining 

radon 

transform and 

mathematical 

morphologica

l 

segmentation

) 

MIAS and 

DDSM 

(mammogram

) 

MIAS: 

99.17%, 

DDSM: 

98.44% 

MIAS: 

98%, 

DDSM: 

97.91% 

MIAS: 

98.66%, 

DDSM: 

97.83% 

Not stated 

explicitly 

Schramm

en et al 

[55] 

SLAM 

(CNN-based, 

off-the-shelf) 

Whole Slide 

Images (WSI) 

Not stated Not 

stated 

Not 

stated 

Tumor 

detection: 0.980 

(CI: 0.975–

0.984)MSI/dM

MR: 0.909 (CI: 

0.888–

0.929)BRAF: 

0.821 (CI: 

0.786–

0.852)Eksternal 

MSI: 0.900 (CI: 

0.864–0.931) 

Serte et al 

[56] 

AlexNet + 

ResNet-18 + 

Gabor 

Dermoscopic 

images 

Not stated Not 

stated 

Not 

stated 

83 

Shafi et 

al [57] 

DL-assisted 

SVM (CNN 

+ SVM) 

Lung CT Scan 94% Not 

stated 

Not 

stated 

Not stated 
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Shakeel 

et al [58] 

Improved 

DNN + 

Ensemble 

classifier 

CT Images High (No 

exact 

number) 

High 

(No 

exact 

number) 

High 

(No 

exact 

number) 

Not stated 

Shkloyar 

et al [59] 

CNN 

(CystoNet) 

Cystoscopy 

video 

Not stated Per-

frame: 

90.9%Pe

r-tumor: 

95.5% 

98.6% 

(95% 

CI: 

98.5–

98.8%) 

Not stated 

Song et al 

[60] 

CNN 

(DeepLab v3) 

Whole Slide 

Image (WSI) 

0.873–

0.976 

996 843 0.986–0.996 

Togacar 

et al [61] 

CNN (LeNet, 

AlexNet, 

VGG-16) 

Chest CT 

scancs 

99.51% 99.32% 99.71% Not stated 

Yan et al 

[62] 

AE U-net + 

HDC (CNN-

based) 

Breast 

ultrasound 

image 

95.81% 80.48% Not 

stated 

Not stated 

Yoo et al 

[63] 

LSTM 

(RNN) 

EHR 

(electronic 

medical 

record) 

Not stated Not 

stated 

Not 

stated 

866 

Yoo et al 

[64] 

41-layer 

ResNet CNN 

+ Random 

Forest 

(stacked 

ensemble) 

Diffusion-

weighted MRI 

(DWI) 

Not stated Not 

stated 

Not 

stated 

Slice-level: 0.87 

(CI: 0.84–0.90), 

Patient-level: 

0.84 (CI: 0.76–

0.91) 

Zhang et 

al [65] 

GRU (Gated 

Recurrent 

Unit) + IOPA 

Skin Lesion 

Images 

0.95 0.95 0.97 Not stated 

Zhou et 

al [66] 

3D-CNN + 

MIL 

DCE-MRI Not stated Not 

stated 

Not 

stated 

0.9 

2.3. Subgroup Analysis 

To explore the sources of variation across studies, subgroup analyses were performed by 

examining distinct methodological factors. The literature was categorized into four architectural groups 

based on their modeling frameworks. Core neural network architectures, such as standard convolutional 

neural networks (CNNs) and recurrent neural networks (RNNs), formed the foundational category. 

Task-specific deep learning models encompassed approaches tailored to particular applications, 

including semantic segmentation networks, domain-specific architectures, and object detection 

frameworks. Hybrid and ensemble learning models combined diverse methodologies, spanning 

ensemble techniques paired with traditional machine learning hybrids as well as integrative deep 

learning architectures. Finally, feature learning and representation models focused on advanced 

techniques like autoencoder-based and unsupervised models, alongside attention mechanisms and multi-

scale modeling strategies. This classification enabled a structured investigation into how architectural 

choices influenced study outcomes. 

To further evaluate the strengths and limitations of the data underpinning the studies, the research 

was also categorized according to the types of datasets employed. The literature was organized into four 

distinct groups based on data sources. The first group comprises radiology-based imaging, including 

modalities such as CT scans, MRI, and mammography. The second category focuses on pathology and 

microscopic imaging, covering histopathology samples and whole slide imaging techniques. The third 
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group, surface and real-time imaging, encompasses diverse datasets like thermoscopic and skin lesion 

images, infrared and thermographic imaging, ultrasound and endoscopy data, as well as oral and clinical 

images captured in real-world settings. Finally, the fourth category involves non-imaging clinical data, 

such as electronic health records (EHR) and structured tabular data. This classification allows for a 

nuanced analysis of how dataset characteristics, from imaging specificity to data format, influence 

model performance and generalizability in different clinical contexts. 

To ensure a comprehensive analysis of study outcomes, the literature was additionally classified 

based on the evaluation metrics employed in each research effort. This categorization aimed to 

systematically assess how performance was quantified and compared across different methodologies. 

The metrics were organized into four primary groups: accuracy, which measures overall correctness in 

classification or prediction tasks; sensitivity, focusing on the ability to correctly identify true positive 

cases, particularly critical in diagnostic applications; DICE coefficient, a specialized metric for 

evaluating spatial overlap and segmentation quality in imaging tasks; and AUC (Area Under the Curve), 

which reflects the robustness of classification models across varying probability thresholds. By grouping 

studies according to these metrics, the analysis highlighted how different evaluation approaches 

emphasize distinct aspects of model performance from broad correctness and diagnostic precision to 

granular segmentation fidelity and threshold-invariant classification reliability. This framework enabled 

a deeper understanding of the strengths and limitations inherent to each metric in interpreting clinical or 

technical outcomes. 

3. RESULT 

The author starts the research by analysing the keyword of every literature related to deep 

learning-based cancer detection. VOSviewer is deployed by author to do this task. VOSviewer is a 

software tool used for visualizing and analysing bibliometric network. It’s designed to help researchers 

to visualize and explore patterns in large volumes of scientific literature. 

 

 
Figure 3. Literature Co-Occurance map on the role of deep learning in cancer detection 

 

As we can see in Figure 3. that the keywords are divided into several clusters that are coloured 

differently. The red cluster, on the left, contains predominantly technical terms such as deep learning, 

CNN, image processing, and lung cancer. This shows the research focus on model approaches and 

architectures. 

https://jutif.if.unsoed.ac.id/
https://doi.org/10.52436/1.jutif.2025.6.5.4748


Jurnal Teknik Informatika (JUTIF)  Vol. 6, No. 5, October 2025, Page. 3619-3634 
P-ISSN: 2723-3863  https://jutif.if.unsoed.ac.id                                       

E-ISSN: 2723-3871  DOI: https://doi.org/10.52436/1.jutif.2025.6.5.4748 

 

 

3627 

The green cluster, on the right, contains more keywords from clinical studies such as humans, 

controlled study, breast tumour, and prostate cancer. This reflects that many studies also relate the 

technology to real-world applications or patients. The blue cluster describes the types of images used, 

such as MRI, CT, and histopathological images. And other smaller clusters, such as purple and yellow, 

show specific topics such as skin tumours or other learning approaches such as k-nearest neighbour. 

The size of the circles indicates the frequency of occurrence of the keywords, and the lines 

between the dots show how often the words appear together. From this visualization, we can see that 

deep learning is closely associated with various image processing techniques and certain types of cancer, 

as well as having a close relationship with clinical evaluations such as sensitivity, specificity, and 

accuracy. 

The results of unweighted outcome values analysis show different results across different 

literatures. The outcome values of each study, as measured by metrics such as accuracy or sensitivity, 

varied significantly. This shows the performance of varying model on different type of cancer and 

datasets. The scatter plot (Figure 4.) gives visual representation of this variation. 

 

 
Figure 4. Unweighted outcomes values by study 

 

In conclusion, unweighted outcome values analysis shows inconsistency and variability of model 

performance across research studies. This highlighted the need for further research into why certain 

models perform better under certain conditions. 

 

 
Figure 5. Outcome Distribution by Model Group 
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The Outcome Distribution by Model Group analysis reveals the performance of each model varies 

even among their own group (Figure 5). The boxplot depicts the range of outcome value to each model 

group, showing median, inter-quartile range (IQR) and outlier value. This highlighted that some model 

group such as Task-Specific Deep Learning Models and Hybrid and Ensemble Learning Models have 

wide range in performance, indicating that this model group may be useful in specific type of cancer or 

datasets. Conversely, other model group shows consistency with the range of outcome. However, this 

group still have some outliers that indicates that while the model of this group is in consistent in general. 

Some model may lag behind. In conclusion, while this outcome distribution may provide valuable 

insight into reliability of each model performance. It also suggests that certain model group may offer 

more stable result, while other group may still need for further improvement. 

The Density Distribution of Outcome Values (Figure 6) shows a bimodal distribution with two 

different peaks. One is around 90 and the other one is near 95. This indicates that the models’ 

performances are concentrated in two main ranges. The majority of the outcome values are clustered 

between 90 and 100. This suggest that most models performed well, with high accuracy or sensitivity 

scores. However, there is a noticeable spread in the lower range (around 75). This indicates that some 

models showed poor performance in certain cases. This distribution plot highlights the variability in 

model performance: some models shows high consistency, while others show more variation, leading 

to a broader distribution. Overall, the plot suggests that while most models perform well, a few exhibit 

significant variability in their results. 

 

 
Figure 6. Density Distribution of Outcomes Values. 

4. DISCUSSIONS 

The results of this systematic review show important gaps in clinical translation while confirming 

the revolutionary potential of deep learning (DL) in cancer detection. In a variety of imaging modalities, 

including CT, MRI, mammography, and histopathology, deep learning models in particular, 

convolutional neural networks, or CNNs have continuously demonstrated good diagnostic accuracy. 

This supports earlier findings that DL outperforms conventional diagnostic techniques in pattern 

detection inside intricate image-based datasets. 

The outcome scatter and box plots (Figures 4 and 5) illustrate the broad range of outcome values 

seen across trials, which implies that performance is still context-dependent.  Interestingly, task-specific 

and hybrid models showed a wider range of performance, indicating their flexibility for certain cancer 
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kinds or imaging conditions.  Although this adaptability is useful for specific tasks (such as multi-modal 

fusion or tumour segmentation), it also generates irregularities in overall performance and 

reproducibility. 

Another important factor that determined the effectiveness of the model was dataset 

heterogeneity.  Compared to studies that used non-imaging clinical data, such as electronic health 

records (EHRs), studies that used radiography and histopathology datasets found more consistent and 

superior performance.  The difficulties in handling both structured and unstructured tabular data, where 

missing values, sparsity, and irregular formatting lower model reliability, are highlighted by the 

variation in EHR-based model results.  In multi-institutional environments with widely disparate data 

standards, these problems are exacerbated. 

Interpreting performance is made even more difficult by evaluation metrics like accuracy, AUC, 

and DICE.  Even while strong classification across probability thresholds is indicated by high AUC 

scores, segmentation-centric tasks gain more from spatial measures such as DICE.  A complex 

environment where a model's perceived success may change based on task requirements is revealed by 

this metric-dependent evaluation.  While the majority of models cluster around high performance (90–

95%), a portion still lags, especially in non-standard datasets or niche applications, according to the 

bimodal distribution of results (Figure 6). 

Crucially, few studies discuss integration into clinical workflows, despite the fact that many claim 

great technical performance.  It is alarming that there is a disconnect between clinical utility and research 

efficacy.  Interpretability and generalisability continue to be significant challenges; DL models 

frequently operate as "black boxes," which undermines regulatory approval and reduces clinician trust.  

Furthermore, algorithmic bias and health disparities are ethical issues raised by the absence of consistent 

validation across patient populations, particularly those under-represented in training datasets. 

Finally, although new architectures like ensemble models, multi-resolution learning, and attention 

mechanisms promise advancements, their practicality is frequently limited by the need for training data 

and computing complexity.  In this regard, democratising cancer diagnosis may benefit greatly from 

lightweight DL models tailored for edge computing (such as portable imaging devices in low-resource 

environments). 

5. LIMITATIONS AND FUTURE RESEARCH 

5.1. Limitations 

Our study’s focus on Q1 journals, while ensuring quality, may exclude impactful preprints or 

conference papers. Additionally, the rapid evolution of DL techniques means newer architectures (e.g., 

vision transformers) published post-2023 were not included. Nevertheless, our subgroup analysis 

categorizing studies by architecture, dataset, and metrics provides a novel framework for contextualizing 

performance, addressing a gap in earlier syntheses. 

5.2. Future Research 

Future research should prioritize enhancing the generalizability and robustness of deep learning 

(DL) models to ensure reliable performance across diverse clinical settings. This involves developing 

frameworks that adapt to heterogeneous datasets, such as multi-institutional medical imaging or varied 

electronic health record (EHR) formats, where domain adaptation and federated learning could mitigate 

performance drops in real-world scenarios. Architectural innovations, such as 3D-CNNs for volumetric 

tumor analysis or lightweight networks optimized for real-time detection in endoscopy, could further 

refine diagnostic precision while addressing computational inefficiencies. 

Addressing data scarcity and bias remains pivotal, particularly for rare cancers or 

underrepresented populations. Strategies like synthetic data generation, transfer learning from well-
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curated datasets, and ethical data curation practices could alleviate imbalances and improve model 

fairness. Concurrently, integrating explainable AI (XAI) techniques such as attention maps and saliency 

analysis into DL workflows is essential to demystify "black-box" decisions, fostering clinician trust and 

enabling transparent diagnostics in high-stakes environments. 

The integration of multi-modal data, including imaging, genomics, and EHRs, presents an 

opportunity to advance personalized oncology. Holistic DL frameworks that synthesize these diverse 

inputs could unlock insights into tumor heterogeneity and treatment response, paving the way for 

tailored therapeutic strategies. Parallel efforts to streamline models for edge computing—such as 

deploying them on portable ultrasound devices—would bridge the gap between research and bedside 

application, particularly in resource-limited settings. 

Finally, establishing ethical and regulatory frameworks is critical to guide the responsible 

adoption of DL in healthcare. Collaborative initiatives among researchers, clinicians, and policymakers 

must address challenges such as data privacy, algorithmic bias, and equitable access to ensure these 

technologies benefit all patient populations equitably. By addressing these priorities, future work can 

transform DL from a promising tool into a cornerstone of clinical oncology, driving earlier detection, 

reducing disparities, and improving survival outcomes globally. 

6. CONCLUSION 

This systematic review comprehensively analyzed the role of deep learning (DL) in cancer 

detection, focusing on architectural innovations, dataset diversity, and evaluation metrics. The findings 

underscore DL's transformative potential in oncology, particularly through its ability to process complex 

medical imaging data and deliver high diagnostic accuracy. Core neural network architectures, such as 

CNNs and RNNs, demonstrated robust performance across multiple cancer types, while task-specific 

and hybrid models (e.g., semantic segmentation networks, ensemble frameworks) excelled in 

specialized applications like histopathology and real-time imaging. However, performance variability 

was evident, influenced by factors such as dataset characteristics (e.g., radiology-based imaging vs. non-

imaging EHR data) and metric selection (e.g., DICE for segmentation vs. AUC for classification 

robustness). 

The analysis revealed that models trained on radiology-based imaging (CT, MRI) and pathology 

datasets (whole-slide histopathology) consistently achieved high accuracy (>90%) and sensitivity 

(>85%), whereas non-imaging data (EHR) lagged in performance due to inherent heterogeneity. Metrics 

like AUC and DICE highlighted the trade-offs between diagnostic precision and segmentation fidelity, 

emphasizing the need for context-specific evaluation. Despite these advancements, challenges persist in 

clinical applicability, including generalizability across diverse populations, interpretability of "black-

box" models, and integration into routine workflows. The variability in study outcomes underscores the 

necessity for standardized reporting frameworks to ensure reproducibility and equitable implementation. 

The impact of this study lies in its contribution as a current, high-level synthesis of the field, 

providing clarity on where deep learning excels, where it falls short, and what is needed to bridge the 

gap between technological potential and clinical utility. The review identifies consistent trends, 

methodological gaps, and architectural strengths that can serve as reference points for future research, 

policy-making, and AI-driven clinical tool development. 

Future research should focus on improving model generalizability across heterogeneous clinical 

settings, enhancing transparency through explainable AI techniques, and developing lightweight, 

deployable frameworks that can function in real-time or low-resource environments. Collaborations 

between technical and clinical domains will be essential to translate DL innovations into practical, 

equitable cancer diagnostics. 
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