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Abstract 

Parkinson's disease is a neurodegenerative condition identified by the decline of neurons that produce dopamine, 

causing motor symptoms such as tremors and muscle stiffness. Early diagnosis is challenging as there is no definitive 

laboratory test. This study aims to improve the accuracy of Parkinson's diagnosis using voice recordings with machine 

learning algorithms, such as AdaBoost, LightGBM, and CatBoost. The dataset used is Parkinson's Disease Detection 

from Kaggle, consisting of 195 records with 22 attributes. The data was normalized with Min-Max normalization, 

and class imbalance was resolved with ADASYN. Results show that ADASYN-LightGBM and ADASYN-CatBoost 

have the best performance with 96.92% accuracy, 97.10% precision, 96.92% recall, and 96.92% F1 score. This 

improvement suggests that combining boosting methods and data balancing techniques can improve the accuracy of 

Parkinson's diagnosis. These results demonstrate the effectiveness of ADASYN in addressing data imbalance and 

improving the performance of boosting algorithms for medical classification problems. The findings contribute to 

the development of intelligent diagnostic systems in the field of medical informatics and computer science. These 

findings are essential for developing more accurate and efficient diagnostic tools, supporting early diagnosis and 

better management of Parkinson's disease. 
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1. INTRODUCTION 

Parkinson's disease stands as a predominant neurodegenerative condition, distinguished by the 

progressive loss of dopamine-producing neurons, which are crucial for regulating body movements [1], 

[2]. This decline leads to the hallmark motor symptoms associated with the disease, such as 

bradykinesia, muscle stiffness, tremors, and postural instability [3], [4]. Beyond these, individuals may 

also encounter non-motor symptoms, including sleep disturbances, dementia, and sensory disruptions 

[5]. Given its prevalence, especially among older adults, and the challenges it presents in diagnosis and 

management, Parkinson's disease represents a significant area of concern within the medical community 

[6]. 

The diagnosis of Parkinson's traditionally relies on clinical evaluations, focusing on neurological 

history and motor function assessments. The absence of definitive laboratory tests makes early diagnosis 

challenging, underscoring the necessity for innovative diagnostic approaches [7]. However, the limited 

availability of large and diverse datasets for Parkinson's diagnosis poses challenges in developing robust 

and generalizable models. In this context, using voice recordings is a promising non-invasive diagnostic 

tool. When coupled with machine learning algorithms, specifically boosting methods, these recordings 
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offer a practical preliminary screening option [8], [9]. The effectiveness of boosting methods in complex 

classification tasks has been well documented, illustrating their potential to enhance diagnostic accuracy 

[10]. 

Boosting methods, by design, aim to facilitate the accuracy of learning algorithms prone to 

overfitting. They achieve this by integrating multiple weak learners to form a robust algorithm capable 

of effective classification and prediction across various domains, including medical diagnostics [11], 

[12]. Among the numerous variants, Adaboost, LightGBM, and CatBoost have been identified as 

particularly potent, demonstrating superior performance in medical applications and remote sensing data 

classification [13]. Recent studies have shown promising results in applying these individual boosting 

methods to various medical diagnostic tasks [14], [15]. Nevertheless, the reliance on small datasets, such 

as the one used in this study with only 195 records, limits the broader applicability and generalizability 

of these methods. In a comparative analysis of six Ensemble Learning methods, XGBoost and 

LightGBM outperformed others, particularly with hyperspectral datasets. At the same time, XGBoost 

and RF (Random Forest) showed remarkable accuracy in PolSAR data classification, achieving 84.62% 

and 81.94% [8], respectively. This highlights the advanced capability of boosting methods like XGBoost 

and LightGBM to handle complex data scenarios. Further exploration of boosting methods on larger 

and more representative datasets is critical to validate their scalability and effectiveness. 

However, the performance of these methods can be significantly influenced by the balance of the 

dataset used. In the realm of machine learning, imbalanced datasets commonly skew predictions towards 

the majority class, detrimentally affecting the accuracy for minority classes [16]–[18]. This challenge 

necessitates applying data balancing techniques, such as Adaptive Synthetic Sampling (ADASYN), 

which aims to equilibrate class distribution, enhancing the model's learning and predictive capabilities. 

While ADASYN has been successfully applied to various classification problems [19], [20], limited 

research has explored the comprehensive comparison of AdaBoost, LightGBM, and CatBoost combined 

with ADASYN specifically for Parkinson's disease classification using voice data [21]. Given this 

backdrop, the research aims to scrutinize and compare the efficacy of Adaboost, LightGBM, and 

CatBoost in classifying Parkinson's disease data, utilizing ADASYN for data balancing [22]. This study 

aims to evaluate the performance of AdaBoost, LightGBM, and CatBoost in classifying Parkinson's 

disease using voice data, particularly when balanced using ADASYN, and to determine the most 

effective combination for accurate diagnosis. This endeavor seeks not only to contribute new insights 

into the application of machine learning in early disease detection and diagnosis but also to pave the 

way for developing more precise and efficient diagnostic tools [23], [24]. The urgency for such 

advancements is underscored by the ongoing challenges in Parkinson's disease management and the 

potential impact of early, accurate diagnosis on improving patient outcomes [25]. 

2. METHOD 

 
Figure 1. Flow of Research 
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In this research, the data to be used will first go through a pre-processing stage, such as 

normalizing the data so that the distribution is the same for each column, separating the information into 

two (training data and test data), and utilizing 10-fold validation because it has the power to handle 

overfitting a model [26]. The last stage is to implement the data against the model to be used and evaluate 

it. Good research needs systematic stages. The stages of this study are shown in Figure 1. 

2.1. Data Collection 

This research uses the Parkinson's Disease Detection dataset downloaded from Kaggle. This 

dataset includes one target class to be predicted. It is available at the following link: 

https://www.kaggle.com/datasets/debasisdotcom/parkinson-disease-detection/data [27]. This 

Parkinson's Disease Detection dataset has 195 data records with 22 independent and one dependent 

attribute. Details concerning every characteristic for every attribute are displayed in Table 1. 

 

Table 1. Dataset's Information 

Features Descriptions 

name The ASCII subject identifier and recording number 

MDVP: Fo(Hz) voice's mean fundamental frequency 

MDVP: Fhi(Hz) Voice's maximum fundamental frequency 

MDVP: Flo(Hz) Voice's minimum fundamental frequency 

MDVP: Jitter(%) 

Different metrics for basic frequency variability 

MDVP:Jitter(Abs) 

MDVP: RAP 

MDVP: PPQ 

Jitter: DDP 

MDVP: Shimmer 

Different amplitude variability metrics 

MDVP: Shimmer(dB) 

Shimmer: APQ3 

Shimmer: APQ5 

MDVP: APQ 

Shimmer: DDA 

NHR 
Noise to tonal components ratio in speech 

HNR 

status Subject's health status: (1) Parkinson's, (0) healthy 

RPDE Nonlinear dynamical complexity metrics 

DFA Exponent of fractal scaling for the signal 

spread1 
Nonlinear indicators of underlying frequency fluctuation 

spread2 

D2 Nonlinear dynamical complexity metrics 

PPE Measures of fundamental frequency variations that are nonlinear 

 

In determining subject status, the dependent variable in this study, it is essential to consider all 

available independent variables or features. This is due to the complexity and variety of symptoms 

associated with Parkinson's Disease. The features in question provide varying information about an 

individual's voice characteristics that may be associated with Parkinson's condition. 

For example, some features such as MDVP: Fo(Hz) (Average vocal fundamental frequency), 

MDVP: Jitter(%) (Various measures of variation in fundamental frequency), and NHR (Ratio of noise 

to tonal components in the voice) can provide insight into changes in vocal frequency and voice stability 
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that may have a relationship with the progression of the disease. On the other hand, features such as 

RPDE (Nonlinear dynamic complexity measurement) and DFA (Signal fractal expression) can reveal 

the complexity of the voice signal, which may be related to the characteristics of Parkinson's disease. 

By incorporating all these features into the model, we allow the model to explore and understand 

the complex patterns and subtypes of Parkinson's Disease that may be present in the data. We need to 

take all these features into account to ensure we get all the essential information required to classify the 

status of the subjects accurately. Thus, the comprehensive use of all independent variables allows for 

the construction of models that are more effective in distinguishing the health status of subjects who 

have Parkinson's disease or are healthy, as can be seen in Figure 2. 

 

 
Figure 2. Class of Datasets 

 

The independent variable “status” used in this study refers to the category or condition of the 

research subject. In this context, two statuses were observed: “Healthy Controls” (0) and “Parkinson 

Patients” (1). “Healthy Controls” refers to subjects who do not have Parkinson's disease, while 

“Parkinson Patients” refers to subjects diagnosed with Parkinson's disease. In this case, 48 subjects fell 

into the “Healthy Controls” category, and 147 subjects fell into the “Parkinson's Patients” category. The 

number of subjects in each category gives an idea of the population distribution observed in the study 

and allows for comparative analysis between the two groups. 

2.2. Min-Max Normalization 

Each data has different value characteristics. This is the case with the dataset used, which has 

variables with values in various ranges. This will impact the AI model because AI models work better 

if the data range is the same [28]. One way to equalize the range is to normalize the data. Min-Max 

Normalization was chosen for this study due to its simplicity and effectiveness in rescaling data to a 

range between 0 and 1, making it compatible with machine learning algorithms that are sensitive to scale 

differences. The normalization process also aims to minimize the memory used. Normalized data will 

have the same range between 0 and 1 [29]. However, the specific impact of Min-Max Normalization on 

model performance has not been evaluated against alternative methods, such as Z-score normalization, 

which could be explored in future studies. The following is the formula for the data normalization 

process, which uses the Min-Max normalization calculation [30]. 

𝑍 =  
𝑥−min (𝑥)

max(𝑥)−min (𝑥)
 (1) 

Where Z is the Min-Max normalization result, x is the original value, min(x) is the minimum 

value of the calculated attribute, and max(x) is the maximum value of the computed attribute. 
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2.3. Cross Validation 

The normalization process can improve the performance of an AI model. Still, another method 

can also enhance the performance of an AI model, which is choosing the best proportion of data for 

training and test data [31]. Previous studies have argued that proportions such as 90:10 [32], 80:20 [33], 

and 70:30 [34] are the best proportions for each model used in the study. It would be very time-

consuming to compare them one by one. Therefore, we must use a method to decide which proportion 

is best for the AI model. One method that we can use is cross-validation. 

Cross-validation is a method in which the initial dataset is divided into two parts: a subset for 

training and a subset for validation. The model is then trained using the training subset and tested on the 

validation subset [7]. The K-fold Cross-Validation method splits the dataset into K similar subsets or 

folds [8]. Here is an overview of this process. 

 

 
Figure 3. Cross-Validation Process 

 

Figure 3 shows that each fold is partitioned for training and testing in K iterations. At each 

iteration, one fold is used for testing, while the other K-1 folds are used for model training. The most 

common K values are 5 and 10, but the results are sensitive to too-small K values. However, the 

computational process will increase when the K value is too significant. Model accuracy is calculated 

by taking the average accuracy achieved at each iteration. 

2.4. Adaptive Synthetic Sampling 

AI models will work optimally from several aspects, as mentioned earlier. However, one process 

also determines the model's performance: data with unbalanced labels [35]. It affects the AI model, 

which will predict the data inaccurately because it is covered by more labeled data [36]. The data 

visualization from this study shows that the labels between those affected by Parkinson's disease and 

those not affected are more representative of those affected by Parkinson's disease. This may assume 

that the model will always predict new data to be affected by Parkinson's disease. This answer is not 

desirable because it could be that the patient is not affected by the disease but is diagnosed with it. 

Therefore, we can solve the problem of unbalanced data by using the oversampling method. 

There are two ways to overcome this, namely, oversampling and undersampling. The 

oversampling method here is chosen to balance the data that is not affected by the disease with at least 

the same amount as the data affected by the disease. The oversampling method has also been proven to 

improve the accuracy of an AI model. Adaptive synthetic sampling (ADASYN) is a well-known method 

for oversampling [37]. ADASYN was developed to adaptively generate synthetic samples in minority 

classes with high classification difficulty. As such, ADASYN focuses on improving the representation 

of minority classes by generating synthetic samples in regions that are underrepresented by those classes. 

This approach allows the classification model to pay more attention to cases that are difficult to predict 
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[9]. ADASYN can be executed using two methods: reducing the bias caused by unbalanced classes or 

shifting the classification decision boundaries. The steps that illustrate how the ADASYN algorithm 

works have been presented in previous research [10]. The steps have six processes: calculating the level 

of data imbalance, calculating the amount of synthesized data, calculating the distance between the data, 

normalizing the distribution data, summing the synthesized data, and calculating the sample data. 

2.5. AdaBoost 

AdaBoost (Adaptive Boosting) is one boosting algorithm in the ensemble learning category that 

introduces a series of simple predictive models, such as weak decision trees, which are then adaptively 

combined to form a strong predictive model [12]. AdaBoost assigns a different weight to each training 

sample in each iteration based on the model's previous performance in predicting that sample, allowing 

for greater emphasis on complex samples. These adjusted weights train the next model, explicitly 

focusing on previously misclassified samples. The final weights of each model are used to combine the 

predictions of all the model components. AdaBoost and its variations have been successfully applied in 

various domains due to their strong theoretical basis, accurate prediction capabilities, and simplicity, 

making them easy to use and implement. Several classifiers (weak classifiers) are trained on the same 

training set, and these weak classifiers are then combined to generate a stronger final classifier (strong 

classifier), which is the central notion of the technique [11]. The steps of the AdaBoost algorithm have 

been described in previous research [13]. 

2.6. LightGBM 

LightGBM (Light Gradient Boosting Machine) is a boosting algorithm developed by Microsoft 

Research. It implements gradient boosting that is specifically designed to provide extremely fast and 

efficient performance. LightGBM uses an ensemble learning approach that builds a robust set of 

predictive models by combining predictions from relatively simple decision tree models [17]. One of 

the advantages of LightGBM is its ability to handle massive datasets quickly and its efficiency in 

processing categorical data. LightGBM is also known for its ability to handle overfitting and exemplary 

performance in various machine-learning tasks [16]. 

The general formulas used in LightGBM may include those associated with gradient boosting, 

such as those used in the AdaBoost algorithm. However, since LightGBM uses a somewhat different 

approach to the traditional gradient boosting method, the specific formulas associated with this 

algorithm may differ [18]. Possible formulas associated with LightGBM include optimization steps, 

gradient calculations to minimize the loss function, and special techniques used in the model training 

process. In LightGBM, histogram-based algorithms and tree growth strategies with maximum depth 

constraints are applied to improve training efficiency and reduce memory usage. The histogram-based 

algorithm in the decision tree is shown in Figure 4 [22]. It can be seen that the continuous eigenvalues 

are converted into discrete values that are grouped into S small bins. After passing the initialization 

stage, the required statistics, such as the number of gradients and samples in each bin, are accumulated 

in the histogram. The optimal segment can be determined based on the histogram's discrete values. 

 

 
Figure 4.LightGBM Process 
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LightGBM distinguishes itself from other tree-boosting algorithms with a leaf-wise tree growth 

approach that selects the most optimal split, unlike other tree-boosting algorithms that tend to split the 

tree in depth or alignment (level-wise tree growth), as shown in Figure 5. When growing on the same 

leaf in LightGBM, the leaf-wise approach can reduce losses and yield better accuracy than the level-

wise approach and other boosting algorithms. However, it should be noted that the leaf-wise approach 

tends to be more prone to overfitting. 

 

 
Figure 5. Leaf-Wise Tree Growth 

2.7. CatBoost 

A boosting technique is used by the open-source machine-learning package CatBoost. This 

algorithm performs better when dealing with categorical features. In addition, to lessen the chance of 

overfitting, CatBoost can handle classification features more logically and effectively [23]. CatBoost 

has better performance and shorter running time than XGBoost and LightGBM algorithms. CatBoost 

differs from other gradient boosting algorithms; it uses ordered boosting, an effective way to solve the 

target leakage issue with the gradient boosting algorithm [24]. CatBoost uses a symmetric tree 

commonly called an Oblivious Decision Tree (ODT) as a weak learner. Symmetric trees are balanced, 

not prone to overfitting, and can significantly speed up test execution time. CatBoost forms a group of 

ODTs with full binary trees. The resulting tree structure is always symmetric, and the same splitting 

criteria are used on the same tree layers. Symmetrical trees can predict about ten times faster than 

asymmetric trees [22]. 

2.8. Evaluation 

The success of an AI model that has been built can predict new data well and has high accuracy, 

which is the primary goal of this research. So, we need to evaluate the AI model that has been built. 

Model evaluation depends on what problem is being solved and whether the data used is classification, 

regression, or clustering data. In this research, the problem being solved is the classification of data. So, 

the AI model evaluation process can use calculations such as accuracy, precision, and recall through 

confusion matrix calculations. 

The confusion matrix is an evaluation method used in classification to evaluate the performance 

of a model by comparing the predicted class produced by the model with the actual class of the data 

[38], [39]. A confusion matrix provides a more detailed picture of the performance of a classification 

model than a single metric, such as accuracy, because it considers the model's ability to classify each 

class separately. In the context of Parkinson’s disease classification, the confusion matrix metrics have 

real-world implications. For instance, True Positive (TP) indicates correctly identified patients with 

Parkinson's, while False Negative (FN) represents missed diagnoses, which could delay necessary 
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treatment. Similarly, False Positive (FP) refers to patients incorrectly diagnosed as having Parkinson's, 

potentially causing unnecessary stress and medical expenses. This makes the confusion matrix a useful 

evaluation tool for understanding the weaknesses and strengths of classification models [40]. The 

confusion matrix consists of four cells: True Positive (TP), True Negative (TN), False Positive (FP), 

and False Negative (FN), whose assumptions can be seen in Table 2. 

 

Table 2. Confusion Matrix 

Actual Class 
Predicted Class 

Class = Yes Class = No 

Class = Yes True Positive (TP) False Negative 

(FN) 

Class = No False Positive (FP) True Negative (TN) 

 

TP represents the number of samples correctly classified as positive, TN is correctly classified as 

negative, FP is incorrectly classified as positive, and FN is incorrectly classified as negative. As 

explained earlier, we will calculate accuracy (Equation 2), precision (Equation 3), recall (Equation 4), 

and F1-Score (Equation 5) as a reference to decide whether our model is robust or not to the data we 

use. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 (2) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (3) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (4) 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 2 ∗
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
 (5) 

3. RESULT 

3.1. Experimental Environment 

The material used in this research is the Parkinson's Disease Detection dataset from Kaggle. This 

dataset has 195 data records with 22 independent and one dependent attribute. Not only that, this 

research also uses Google Colab and Python version 3.10 as the leading platform for data processing 

and analysis. Google Colab provides an integrated environment with the necessary Python libraries, 

easy collaboration, and access to higher computing resources, which significantly supports this research. 

3.2. ADASYN Process 

Before applying ADASYN, a check was made on the class balance of the dataset. The results 

showed a significant imbalance, where the minority class had a much smaller number of samples than 

the majority class. To address this issue, the ADASYN method was applied to add synthetic samples to 

the minority class to balance the number with the majority class. The application of ADASYN helps to 

ensure that the machine learning model has a better chance of learning fairly and effectively from both 

classes. The results before and after applying the data balancing method are presented in the figure 

below, which compares the sample quantity between the majority and minority classes before and after 

the application of ADASYN. 
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Figure 6. Class Distribution After Oversampling 

 

Based on Figure 6, the data before balancing were 48 records for healthy status and 147 records 

for positive status. When balancing is done, it becomes 146 records for healthy and 147 for Parkinson's 

patient status. 

3.3. Model Performances 

In this study, we compared the performance of three different classification models, namely 

AdaBoost, LightGBM, and CatBoost, in classifying Parkinson's disease data. We analyze two scenarios: 

using raw data and using data that has been processed with the ADASYN technique to address class 

imbalance. The evaluation uses several metrics: accuracy, precision, recall, and F1 score. The following 

are the overall results of the trials carried out, which can be seen in Table 3. 

 

Table 3. Results of Models 

Model Accuracy Precision Recall F1 Score 

AdaBoost 89.74% 89.53% 89.74% 89.59% 

LightGBM 95.38% 95.34% 95.38% 95.33% 

CatBoost 93.33% 93.30% 93.33% 93.15% 

AdaBoost + ADASYN 94.52% 94.73% 94.52% 94.52% 

LightGBM + ADASYN 96.92% 97.10% 96.92% 96.92% 

CatBoost + ADASYN 96.92% 97.10% 96.92% 96.92% 

 

In the scenario without ADASYN, LightGBM shows the best performance with 95.38% accuracy, 

95.34% precision, 95.38% recall, and 95.33% F1 score. CatBoost ranked second with 93.33% accuracy, 

93.30% precision, 93.33% recall, and 93.15% F1 score. Meanwhile, AdaBoost has the lowest 

performance with an accuracy of 89.74%, a precision of 89.53%, a recall of 89.74%, and an F1 score of 

89.59%. When using ADASYN to handle class imbalance, performance improvement was observed in 

all models. LightGBM and CatBoost achieved the same performance with 96.92% accuracy, 97.10% 

precision, 96.92% recall, 96.92%, and F1-Score. Meanwhile, AdaBoost experienced a significant 

increase in accuracy of 94.52%, precision of 94.73%, recall of 94.52%, and F1-score of 94.52%. 

AdaBoost demonstrated the most critical performance improvement (4.78% increase in accuracy) when 

combined with ADASYN, suggesting that this ensemble method benefits significantly from balanced 

training data by reducing bias toward the majority class and improving its ability to classify minority 

samples correctly. 
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The identical performance results between LightGBM+ADASYN and CatBoost+ADASYN 

(96.92% accuracy, 97.10% precision, 96.92% recall, and 96.92% F1-Score) can be attributed to several 

factors: both algorithms utilize similar gradient boosting frameworks with tree-based learners, the 

ADASYN balancing technique creates an optimal data distribution that allows both models to reach 

their performance ceiling on this dataset size, and the relatively small dataset (195 records) may limit 

the ability to distinguish between the fine-grained differences in these advanced boosting algorithms. 

 

 
Figure 7. ROC Curve of LightGBM Algorithm 

 

 
Figure 8. ROC Curve of Catboost Algorithm 

 

Figures 7 and 8 show that using the ADASYN (Adaptive Synthetic Sampling) method 

significantly improves the AUC results on both machine learning algorithm model performances, 

namely LightGBM and CatBoost. As illustrated in Figure 7, in the model using LightGBM, there is an 

improvement from an AUC of 0.927 without ADASYN to 0.969 after using ADASYN. This indicates 

that the addition of synthetic data generated by ADASYN effectively assists the model in classifying 

unbalanced data, thus improving the model's ability to separate different classes. Similarly, Figure 8 

demonstrates that the results of the model using CatBoost also showed significant improvement. The 

AUC without ADASYN was 0.886, while after using ADASYN, the AUC increased to 0.969. This 

confirms that the use of ADASYN effectively improved the ability of the CatBoost model to handle 

class imbalance, thereby improving the model's overall performance in performing classification. The 

ROC curves in both Figure 7 and Figure 8 clearly show the superior performance of ADASYN-enhanced 

models, with curves positioned closer to the top-left corner, indicating better true positive rates at lower 

false positive rates. Thus, the results show that using ADASYN as a resampling method makes an 
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essential contribution to improving model performance on classification problems with imbalanced data, 

using both LightGBM and CatBoost. 

4. DISCUSSIONS 

In this discussion section, it is worth emphasizing that the results show that using the ADASYN 

(Adaptive Synthetic Sampling) technique combined with machine learning algorithms such as 

LightGBM and CatBoost has significantly improved classification performance. The test results in Table 

3 show that the model reinforced with ADASYN exhibits higher accuracy than the non-reinforced 

model. In particular, the ADASYN-LightGBM and ADASYN-CatBoost models achieved an accuracy 

of 96.92%, demonstrating the ADASYN technique's effectiveness in handling class imbalance in the 

dataset. This study contributes to the field of computer science and medical informatics by 

demonstrating the effectiveness of ensemble learning combined with synthetic oversampling techniques 

in addressing critical challenges in automated disease classification systems. 

 

Table 4. Comparison Models 

References Method Results 

Senturk [41] SVM 90.76% 

CART 93.84% 

ANN 91.54% 

Kadam and Jadhav [42] DNN 92.19% 

FESA-DNN 93.84% 

Al-Fatlawi et al. [43] DBN 94.00% 

Benba et al. [44] LOSO-SVM 87.50% 

Proposed Method ADASYN-LightGBM 96.92% 

ADASYN-CatBoost 96.92% 

 

As presented in Table 4, our proposed methods (ADASYN-LightGBM and ADASYN-CatBoost 

with 96.92% accuracy) outperformed several previous studies conducted on Parkinson's disease 

classification. In addition, the comparison to prior studies presented in Table 4 shows that the approach 

proposed in this article can compete with current methods in data classification. Specifically, Table 4 

demonstrates that our approach surpassed Senturk's SVM (90.76%), CART (93.84%), and ANN 

(91.54%) methods, as well as Kadam and Jadhav's DNN (92.19%) and FESA-DNN (93.84%) 

approaches. Furthermore, our results exceeded Al-Fatlawi et al.'s DBN method (94.00%) and Benba et 

al.'s LOSO-SVM approach (87.50%). Compared with previous studies using various algorithms such as 

SVM, CART, ANN, DNN, FESA-DNN, DBN, and LOSO-SVM, the results of the proposed approach 

show significant performance improvement. However, it is essential to note that these comparisons in 

Table 4 involve different datasets and experimental conditions, which may limit the direct comparability 

of results. For more robust validation, future studies should evaluate these methods on standardized 

benchmark datasets to ensure fair comparison. This shows that the combination of ADASYN with 

machine learning algorithms such as LightGBM and CatBoost has the potential to be an attractive option 

in addressing the class imbalance problem on classification datasets. 

From a computer science perspective, this research advances the field by providing empirical 

evidence for the synergistic effects of data balancing techniques and ensemble methods in medical 

classification tasks. The findings contribute to the development of intelligent diagnostic systems and 

provide practical insights for implementing machine learning solutions in healthcare informatics. 

However, although the results obtained show a significant performance improvement, some 

aspects still need to be considered and improved in the future. For example, further analysis needs to be 
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conducted regarding the stability and scalability of the proposed approach, as well as its potential 

applicability to larger and more diverse datasets. Thus, further research can focus on developing and 

refining this method to increase its usefulness in various real-world applications. 

5. CONCLUSION 

Analysis of the results shows that the application of ADASYN to the proposed boosting methods 

significantly improves classification performance. The findings contribute to computer science by 

providing empirical evidence that combining ensemble learning algorithms with synthetic oversampling 

techniques can effectively address class imbalance challenges in medical diagnostic systems. Applying 

the ADASYN technique improved the model's ability to handle class imbalance, reflected in improved 

accuracy, precision, recall, F1 score, and AUC. This demonstrates the effectiveness of ADASYN in 

mitigating the challenges posed by imbalanced datasets, particularly in the classification of Parkinson's 

disease. This study advances the field of medical informatics and computer science by demonstrating 

that the integration of ADASYN with gradient boosting methods (LightGBM and CatBoost) can achieve 

superior diagnostic accuracy (96.92%), providing practical insights for developing intelligent healthcare 

systems and automated diagnostic tools. 

LightGBM and CatBoost achieved optimal performance when combined with ADASYN, while 

AdaBoost showed the most significant improvement through class balancing. These results establish a 

foundation for the future development of machine learning-based diagnostic systems in healthcare 

applications. Despite these promising results, the study's reliance on a small dataset (195 records) limits 

the generalizability of the findings. Future research should focus on validation with larger, more diverse 

datasets, exploration of advanced hyperparameter optimization techniques, and investigation of 

alternative data balancing methods to enhance diagnostic accuracy and system robustness further. 
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