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Abstract

This research focuses on predicting the life expectancy of lung cancer patients after undergoing thoracic surgery,
using a decision tree classification algorithm (C4.5) combined with adaptive synthetic sampling to handle data
imbalance. Data imbalance in the lung cancer patient dataset is a major obstacle in obtaining accurate prediction
results, especially in identifying minority classes. Data imbalance in the lung cancer patient dataset is a major obstacle
in obtaining accurate prediction results, especially in identifying minority classes. By applying ADASYN, the data
distribution becomes more even, thus improving the performance of the C4.5 model. The results showed that
combining these methods increased the prediction accuracy from 67% to 87%. In addition, the precision, recall, and
fl-score for minority classes have significantly improved, which were previously difficult to identify by the model.
Thus, combining the C4.5 algorithm and the ADASYN technique proved effective in dealing with the challenge of
data imbalance and resulted in better prediction in the case of lung cancer. This study is expected to contribute to the
field of medical classification and serve as a reference for further research on similar cases.

Keywords : Algorithm Optimization, Healthcare Al, Survival Prediction, Synthetic Sampling, Thoracic
Prognostics.
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1. INTRODUCTION

Lung cancer is currently considered one of the deadliest diseases and has been in the spotlight as
a global cause of death. Recent data shows that the disease has affected the human population more
significantly than previously estimated. Currently, lung cancer occupies the seventh position in the
mortality index, causing approximately 1.5% of total deaths worldwide [1]. According to data from the
World Health Organization (WHO), lung cancer is responsible for about 2.09 million new diagnoses
each year and causes about 1.76 million deaths. Projections for 2020 show an increase in the number of
incident cases to approximately 2.21 million [2]. Understanding and predicting the survival rate of lung
cancer patients is crucial for developing more effective treatment strategies and improving patients'
quality of life. Thoracic surgery, which involves diagnosing and treating conditions of the lungs,
esophagus, and chest organs, is central to this effort. Accurate survival predictions following thoracic
surgery not only aid in determining patient prognosis but also guide treatment planning and post-
operative care [3][4].

In medical science, predictive modeling has become a cornerstone for prognosis and treatment
planning. Machine learning algorithms, categorized into supervised, unsupervised, and reinforcement
learning, are increasingly applied in this domain. Supervised learning leverages labeled data for training
models, while unsupervised learning identifies hidden patterns in unlabeled datasets. Reinforcement
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learning, based on trial-and-error methods, enables adaptive decision-making in complex scenarios [5].
Among the various machine learning algorithms, the C4.5 algorithm is recognized for its high accuracy
in classification tasks. It builds decision trees using entropy and information gain to optimize splits,
offering interpretable and efficient rules. Studies have shown its reliability, particularly in medical
applications. For example, C4.5 achieved an accuracy of 90.835% in predicting stroke outcomes,
outperforming other methods like Naive Bayes [6][7][8]. Additionally, C4.5 was chosen over algorithms
like Random Forest or XGBoost due to its interpretability, which is crucial in medical contexts
[referensi]. While ensemble methods such as Random Forest and XGBoost often yield higher accuracy,
they are more complex and difficult to interpret, potentially limiting their use in clinical settings where
transparency is vital. Moreover, C4.5 requires fewer computational resources, making it suitable for
hospitals or medical facilities with limited infrastructure. These considerations highlight why C4.5 is a
practical and effective choice for the task of predicting lung cancer survival.

Despite advancements in machine learning, significant challenges remain, particularly in handling
imbalanced data. Medical datasets are often skewed, with outcomes like survival being
disproportionately represented compared to less frequent outcomes, such as mortality. This imbalance
biases predictive models towards the majority class, reducing their generalization capability [9][10].
The impact of this imbalance is particularly pronounced in medical decision-making contexts. For
example, during a one-year follow-up period, the number of lung cancer patients who survive is often
much higher than those who do not. This discrepancy creates challenges in accurately classifying
minority outcomes, such as post-operative mortality [11][12]. Effective strategies for addressing this
imbalance are critical for improving prediction accuracy.

To address data imbalance, researchers have explored techniques like SMOTE (Synthetic
Minority Oversampling Technique) and ADASYN (Adaptive Synthetic Sampling). ADASYN, in
particular, adaptively synthesizes data points in regions that are difficult to classify, improving model
performance. Studies have demonstrated the effectiveness of ADASYN in combination with various
machine learning algorithms, such as Random Forest and XGBoost, achieving superior classification
accuracy [13][14]. In medical contexts, ADASYN has shown promise when combined with decision
tree algorithms like C4.5. Research comparing oversampling techniques found that ADASYN paired
with C4.5 significantly improved accuracy in handling imbalanced datasets, outperforming traditional
methods [4][15]. These findings highlight the potential of this approach for lung cancer prognosis and
similar applications.

Given the challenges posed by imbalanced datasets and the need for accurate survival predictions
in lung cancer patients, this research proposes a novel integration of the interpretable C4.5 decision tree
algorithm with the Adaptive Synthetic Sampling technique (ADASYN). While prior studies have
explored various machine learning methods for survival prediction [2], most have overlooked the issue
of class imbalance [10][12] or employed simpler balancing techniques like SMOTE [13]. Moreover, the
use of interpretable models such as C4.5 remains underexplored in conjunction with adaptive sampling
methods [15]. This study addresses that gap by demonstrating how ADASYN can enhance C4.5’s
performance in identifying minority class outcomes in thoracic surgery cases. The goal is to produce
not only accurate but clinically interpretable results that support better treatment decisions and patient
care.

2. METHOD

The main objective of this study is to predict lung cancer patients' survival after thoracic surgery.
The data used is not balanced, so this study wants to know the effect of ADASYN on classification
results using C4.5. The proposed system for predicting the survival of postoperative thoracic lung cancer
patients can be seen in Figure 1.
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Figure 1. The Proposed Research Flow

2.1. Data Collection

The thoracic surgery dataset used in this study was obtained from Kaggle on June 9, 2025, based
on the UCI Machine Learning Repository [https://www.kaggle.com/datasets/sid321axn/thoraric-
surgery]. The dataset consists of 470 patient records and 16 features, including both nominal and
numerical variables such as diagnostic codes, preoperative conditions (e.g., pain, dyspnoea), and
physiological metrics (e.g., FEV1, FVC, age). The target variable, Risk1Y, represents patient survival
status one year after surgery, labeled as “T” for deceased and “F” for survived. Since the dataset is
publicly available, anonymized, and does not contain personally identifiable information, no ethical
approval was required for its use in this research.

Table 1. Thoracic Surgery Dataset's Descriptions

ID Description Category Range Values

DGN  ICD-10 code diagnostic-specific combinations for Nominal {DGNI1, DGN2, DGN4,

primary and secondary tumors as well as multiple DGNS, DGN6, DGNS,
tumors, if present DGN3}

PRE4 FVC - Forced vital capacity Numeric {1.44,6.3}

PRES FEV1 - Volume is exhaled at the end of the first ~ Numeric {0.96, 86.3}

second of forced expiration.

PRE6 Performance status - Zubrod scale Nominal  {PRZO, PRZ1, PRZ2}

PRE7 Pain before surgery Nominal {T or F}

PRES Hemoptysis before surgery Nominal {T or F}

PRE9 Dyspnoea before surgery Nominal {T or F}
PREI10 Cough before surgery Nominal {T or F}
PREI11 Weakness before surgery Nominal {T or F}
PRE14 T in clinical TNM - the size of the original tumor, = Nominal {OC11, OC12, OC13,

from smallest to largest 0OC14}
PRE17 Type 2 DM - diabetes mellitus Nominal {T or F}
PREI19 MI up to 6 months Nominal {T or F}
PRE25 PAD - peripheral arterial diseases Nominal {T or F}
PRE30 Smoking Nominal {T or F}
PRE32 Asthma Nominal {T or F}

AGE Age at surgery Numeric {21, 87}
RisklY  1-year survival period - (T)rue value if died (T, F) Nominal {T or F}
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2.2. Pre-processing Steps

The preprocessing phase in this study involved five key steps:

a. Encoding
Binary categorical variables such as “T” and “F” were converted to numerical format (1 and 0).
For categorical string features such as DGN, PRE6, and PRE14, the last character of each string
was extracted and label-encoded using scikit-learn’s LabelEncoder.

b. Column Renaming
To enhance interpretability, feature names were renamed (e.g., DGN — Diagnosis, RisklY —
Death_1yr).

c. Missing Value Handling
The dataset was checked for missing (NaN) values. No missing values were found, and all 470
records were retained.

d. Normalization
Numerical attributes such as Age, FEV1, and FVC were normalized using Min-Max scaling, based
on the following formula:

X—Xmin

(M

Xscaled = XX mim
This transformation rescaled the data into a [0, 1] range, allowing uniform contribution of all
features during model training.

e. Class Balancing
The dataset was found to be imbalanced with 396 “survived” and 74 “deceased” cases. ADASYN
(Adaptive Synthetic Sampling) was applied with k = 5 neighbors to synthetically generate new
samples for the minority class, resulting in a balanced 1:1 class distribution.

2.3. Cross validation

To evaluate the model's generalization performance and reduce the risk of overfitting, this study
employed the K-Fold Cross-Validation technique. This method partitions the dataset into K equally
sized subsets (folds). The model is trained K times, each time using a different fold as the validation set
and the remaining K — I folds for training.

In this study, 10-fold cross-validation was used, which is considered a standard balance between
bias and variance. The process ensures that every data point is used for both training and testing,
allowing for a more reliable estimate of model performance. The average performance metric (e.g.,
accuracy) across the folds is calculated using the following formula:

Accuracy,vg = (1/K) x YK, Accuracy; (2)
Where:
. K is the number of folds (in this study, K = 10),
o Accuracyj is the accuracy obtained in the it" fold.

This validation method is especially beneficial in medical classification problems involving small
or imbalanced datasets, as it maximizes data usage while minimizing the risk of biased evaluation.

2.4. CA4.5 Algorithm

The C4.5 algorithm is a decision tree algorithm developed as an enhancement of the ID3 algorithm.
It is widely used in classification tasks due to its ability to generate interpretable rules and manage both
numerical and categorical data. In medical applications, C4.5 is particularly advantageous because it
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produces decision trees that are transparent and easy to understand, making it suitable for clinical
decision-making [16].

The algorithm works by recursively selecting the most informative feature at each node based on
information gain ratio [17], an extension of the basic entropy-based information gain from ID3. The
entropy E(S) of a dataset S is calculated as:

E(S) = —Xi pilog, p; (3)

Where pi is the proportion of class i in subset S, and n is the number of classes.
The information gain of an attribute A is computed using;:

Gain(s,4) = E(S) = Zhot T E(S) )

Where Sv is the subset of S where attribute A = v, and V is the number of distinct values in
attribute A. The attribute with the highest gain ratio is selected as the splitting criterion.

In this study, the C4.5 algorithm was implemented to construct a decision tree for classifying lung
cancer patient survival based on 16 features. The tree structure highlights the most influential predictors
in patient outcomes. For instance, FEV1 and Age consistently appeared as top-level nodes in the tree,
indicating their strong contribution to survival prediction. This interpretability makes the model not only
effective but also aligned with clinical reasoning, where understanding feature influence is as critical as
prediction accuracy.

2.5. Adaptive Synthetic Sampling (ADASYN)

ADASYN (Adaptive Synthetic Sampling) is a method designed to address class imbalance in
classification datasets. Class imbalance occurs when the number of data points in one class (majority
class) is significantly larger than in another class (minority class), which can cause machine learning
models to focus more on the majority class while ignoring the minority class [18]. ADASYN aims to
enhance the representation of the minority class by generating synthetic data points, particularly in
regions that are difficult to classify, allowing the model to learn in a more balanced manner [19]. The
first step in ADASYN is to calculate the imbalance ratio between the number of data points in the
minority and majority classes. This ratio helps determine whether oversampling is necessary. If the ratio
indicates that the minority class is underrepresented, the data needs to be balanced to reduce model bias
toward the majority class. Next, ADASYN calculates the number of synthetic data points required for the
minority class based on this imbalance ratio, ensuring that the class distribution becomes more balanced.

The method then uses the K-Nearest Neighbor (KNN) algorithm to analyze the nearest neighbors
of each minority class data point. KNN computes the distance between data points (typically using
Euclidean distance) to identify underrepresented and hard-to-classify areas. These areas are given higher
priority in the synthetic data generation process by assigning greater weights, ensuring that additional
data is more relevant to the model's needs [20]. Synthetic data is created by combining the original
minority class data points with their nearest neighbors. Technically, the new data is generated using the
formula.

Synthetic Data = Original Data + (Neighbor — Original Data) X Random Factor (5)

Where the random factor is a value between 0 and 1 to ensure variation, this process generates
data that is not identical to the original but still reflects the characteristics of the minority class. With
this approach, ADASYN not only increases the quantity of the minority class data but also improves its
representation in hard-to-classify regions, enabling machine learning models better to understand
patterns in both classes [21]. The final result is a more balanced dataset, allowing the model to produce
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more accurate and fair predictions. ADASYN significantly enhances performance in classification tasks
involving highly imbalanced datasets.

2.6. Evaluation

Confusion Matrix is an evaluation tool used to measure the performance of machine learning
models in classification tasks [22]. It provides detailed insights into the model's predictions by breaking
down the number of correct and incorrect predictions for each target class. Unlike a single metric such as
accuracy, the confusion matrix offers a more comprehensive understanding of how well the model
performs for each class individually [23]. This makes it particularly useful for identifying the strengths
and weaknesses of the model, especially in datasets with imbalanced class distributions [24].

The confusion matrix consists of four key components: True Positive (TP), True Negative (TN),
False Positive (FP), and False Negative (FN). True Positive (TP) refers to the number of correctly
classified positive samples, while True Negative (TN) represents the number of correctly classified
negative samples. False Positive (FP) occurs when a negative sample is incorrectly classified as positive,
and False Negative (FN) happens when a positive sample is misclassified as negative [25]. The following
table illustrates the structure of a confusion matrix.

Table 2. Confusion Matrix Table
Predicted Class = Yes Predicted Class = No
Class=Yes  True Positive (TP)  False Negative (FN)
Class = No False Positive (FP) True Negative (TN)

Each metric provides a unique perspective on model performance:
a. Accuracy

Accuracy measures the proportion of correctly classified instances over the total number of
samples. Although widely used, it can be misleading in imbalanced datasets.

TP+TN

Accuracy = ———
y TP+TN+FP+FN

(6)

b. Precision
Precision quantifies the proportion of true positive predictions among all samples predicted as
positive. It is useful in contexts where false positives are costly, such as medical misdiagnosis.

TP
TP+FP

Precision =

(7

c. Recall (Sensitivity or True Positive Rate)
Recall measures the model’s ability to correctly identify all actual positive cases. In medical
applications, a high recall is critical to ensure that high-risk patients are not missed.

TP
TP+FN

Recall =

®)

d. F1-Score
The F1-Score is the harmonic mean of precision and recall, offering a balanced metric when both
false positives and false negatives are important.

PrecisionxRecall

F1=2x 9)

Precision+Recall
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This metric is particularly useful in imbalanced datasets, as it accounts for both types of
classification errors.

2.7. Clinical Relevance of Evaluation Metrics

In medical prognosis, each evaluation metric carries distinct clinical implications. A high recall
ensures that most high-risk patients (e.g., those likely to die post-surgery) are correctly identified,
minimizing missed diagnoses. Precision helps avoid false alarms that may lead to unnecessary medical
interventions. Fl-score balances both, making it suitable when both types of errors carry serious
consequences. Therefore, the chosen metrics not only validate the model's technical performance but also
align with real-world healthcare needs, where decision errors can directly affect patient outcomes.

3. RESULT

This section presents the results of the predictive modeling process, following the methodological
steps outlined previously. The analysis includes class balancing with ADASYN, decision tree generation
using C4.5, and comparative evaluation before and after oversampling.

3.1. Class Balancing Using ADASYN

The thoracic surgery dataset initially exhibited a significant class imbalance, with 396 instances
labeled “Survive” (Class 0) and only 74 labeled “Deceased” (Class 1). This imbalance posed a challenge
to the classification model, which tended to favor the majority class during learning. To address this,
ADASYN (Adaptive Synthetic Sampling) was applied. It synthetically generates data points for the
minority class based on the density distribution and local decision boundaries.

Class Distribution Before ADASYN Class Distribution After ADASYN

40

o 1 o 1
Class Class

Figure 2. Class Distribution Before and After Applying ADASYN

In Figure 2, the left plot shows the original imbalanced distribution, while the right plot shows the
balanced dataset after applying ADASYN. The number of "Deceased" samples is increased to match the
"Survive" class, enabling the classifier to learn from both classes equally.

While ADASYN improves data balance and model fairness, it may introduce risks such as
overfitting due to synthetic noise and potential distortion of the minority class distribution. Careful
validation using cross-validation is necessary to ensure model generalizability.

3.2. C4.5 Algorithm Result

The initial C4.5 decision tree model was trained on the imbalanced dataset, where the “Survive”
class significantly outnumbered the “Deceased” class. This class dominance caused the model to focus
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primarily on the majority class, reducing its ability to detect minority class cases, which are critical in
clinical contexts.

The generated decision tree is shown in Figure 3, where FEV1 was selected as the root node,
indicating its dominant influence in classification. The model then split further based on features like
Haemoptysis and Age. Each node in the tree provides key information including entropy, sample count,

and predicted class. The resulting tree was relatively shallow and biased, with multiple branches leading
to predictions of “Survive.”

Decision Tree Visualization (C4.5)

Figure 3. Decision Tree Visualization Using C4.5 Algorithm

However, due to the imbalance in class distribution, the model struggled to classify “Deceased”
instances. This weakness is reflected in the confusion matrix in Figure 4, which shows the model’s poor
performance on the minority class:

Confusion Matrix without ADASYN

Survive
w

S

True Label

Deceased
|
~
o

' '
Survive Deceased
Predicted Label

Figure 4. Confusion Matrix of C4.5 Model Without ADASYN

Based on this confusion matrix:

. True Positives (Survive): 6

False Negatives (Survive misclassified as Deceased): 1
False Positives (Deceased misclassified as Survive): 2
. True Negatives (Deceased): 0

The evaluation metrics for this model are:

Accuracy = —>— = g =0.67 =67% (10)

6+1+2+40
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P 6 6 0.75+0
Precision = —+—=
6+2  6+1 2

=0375=375% (11)

6 0 0.86+0
Recall = m + m = 2 =043 = 43% (12)
F1—Score = 2 % 27>0% _ g4 =40% (13)
0.375+0.43

These results clearly indicate that the model exhibited bias toward the majority class, performing
poorly on minority class detection. This limitation motivated the application of the ADASYN
oversampling technique to improve class representation and balance the decision process.

3.3. Decision Tree Result After ADASYN

To address the issue of class imbalance in the original dataset, this study applied the ADASYN
(Adaptive Synthetic Sampling) technique prior to model training. The goal was to generate synthetic data
points for the minority class ("Deceased") to ensure a more balanced learning process. Following this,
the C4.5 decision tree algorithm was retrained using the newly balanced dataset.

Decision Tree Visualization (C4.5) with ADASYN

Age <= 64.0
entropy = 0.999

samples = 60
value = [29.0, 31.0]
class = Deceased

FEV1 <= 0.122 FEV1 <= 0.138
entropy = 0.826 entropy = 0.845
samples = 27 samples = 33
value = [20, 7] value = [9, 24]
class = Survive class = Deceased

Haemoptysis <= 0.5
entropy = 1.0
samples = 12
value = [6, 6]
class = Survive

Age <= 585
entropy = 0.918
samples = 9
value = [6, 3]
class = survive
id <= 2285 FVC <=0.178
entropy = 0.811 entropy = 1.0
samples = 4 samples = 2
value = [1, 3] value = [1, 1]
class = Deceased class = Survive

Figure 5. Decision Tree Visualization Using C4.5 Algorithm and ADASYN

As shown in Figure 5, the decision tree structure changed substantially after balancing. The root
node shifted to Age < 64, indicating that Age became the most decisive feature in the new training context.
This is consistent with clinical knowledge, as age is a well-established factor influencing postoperative
outcomes in lung cancer patients. Additional splits were made using Haemoptysis < 0.5, FEV1 < 0.122,
and Tumor_Size < 2.5, suggesting these features also play a significant role in differentiating between
"Survive" and "Deceased" classes.

Each node in the tree displays entropy, number of samples, and class distribution, with several leaf
nodes showing entropy = 0, indicating pure classification results. The overall tree is deeper and more
balanced than before ADASYN, demonstrating the model’s improved ability to recognize patterns from
both classes.

The improved performance of the model is shown in the confusion matrix in Figure 6, which
evaluates the model on the balanced dataset:
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Confusion Matrix with ADASYN

True Label
survive

Deceased
i

'
Survive Deceased
predicted Label

Figure 6. Confusion Matrix of C4.5 Model With ADASYN

From the matrix, we calculate the following performance metrics:

6+7 13

Accuracy = preyerriabri 0.87 = 87%(14)
Precision = ——+ - =220 =087 =87%  (15)
Recall = ——+ - = 2222 = 0.87 = 87% (16)
F1— Score = 2 % = 0.87 = 87%(17)

3.4. Discussion of Misclassifications

Despite the overall improvement, two misclassifications remain:

. 1 false positive: a “Deceased” patient was classified as “Survive”
. 1 false negative: a “Survive” patient was classified as “Deceased”

From a clinical standpoint, false negatives are more critical, as they could result in missed
intervention opportunities for patients at risk of death. However, the reduction in false negatives from 2
to 1 after ADASYN demonstrates meaningful progress in reducing this risk. Additionally, the new tree
structure aligns more closely with domain-relevant features (Age, FEV1), suggesting improved model
interpretability and potential for medical application.

4. CONCLUSION

This study aimed to develop a predictive model for the one-year survival of lung cancer patients
following thoracic surgery, utilizing the C4.5 decision tree algorithm in combination with ADASYN to
address data imbalance. The results demonstrated that this combined approach significantly improved the
model’s performance across multiple evaluation metrics, including accuracy, precision, recall, and F1-
score.

The most notable improvement was observed after applying ADASYN, where the model’s F1-
score increased from 40% to 87%. This improvement highlights the importance of addressing data
imbalance in medical datasets, particularly when the minority class (i.e., deceased patients) represents
the more clinically critical group. The confusion matrices also showed a reduction in false negatives,
which is essential in healthcare scenarios where failing to identify high-risk patients can lead to serious
consequences.
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When compared to prior studies using the same dataset, such as the work of Setyadi et al. (2020)
with Genetic Algorithm + Naive Bayes (accuracy: 85.31%) and Prasetio & Susanti (2019) with KNN +
AdaBoost (accuracy: 85.11%), the proposed method (C4.5 + ADASYN) achieved a higher accuracy of
87%. This demonstrates that the use of interpretable models like decision trees can still outperform more
complex ensemble methods when paired with appropriate preprocessing techniques.

From the perspective of computer science and machine learning, this research contributes to the
ongoing efforts in handling imbalanced classification problems—a major challenge in data mining and
predictive analytics. The implementation of ADASYN within the clinical prediction pipeline reflects the
importance of adaptive sampling algorithms in improving the robustness and fairness of classifiers.

Furthermore, the use of C4.5 adds value through its interpretability. Unlike black-box models such
as deep learning or random forests, decision trees offer transparent logic that is essential in medical
applications, where decision support systems must be explainable to practitioners. This aligns with the
increasing emphasis on interpretable Al in both research and applied systems.

In summary, the findings of this study emphasize the dual importance of data preprocessing
(balancing) and model interpretability in building effective and trustworthy predictive systems. The
approach not only improved technical performance but also aligned with real-world clinical needs,
making it suitable for further development as part of decision support tools in thoracic oncology.
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