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Abstract 

This research focuses on predicting the life expectancy of lung cancer patients after undergoing thoracic surgery, 

using a decision tree classification algorithm (C4.5) combined with adaptive synthetic sampling to handle data 

imbalance. Data imbalance in the lung cancer patient dataset is a major obstacle in obtaining accurate prediction 

results, especially in identifying minority classes. Data imbalance in the lung cancer patient dataset is a major obstacle 

in obtaining accurate prediction results, especially in identifying minority classes. By applying ADASYN, the data 

distribution becomes more even, thus improving the performance of the C4.5 model. The results showed that 

combining these methods increased the prediction accuracy from 67% to 87%. In addition, the precision, recall, and 

f1-score for minority classes have significantly improved, which were previously difficult to identify by the model. 

Thus, combining the C4.5 algorithm and the ADASYN technique proved effective in dealing with the challenge of 

data imbalance and resulted in better prediction in the case of lung cancer. This study is expected to contribute to the 

field of medical classification and serve as a reference for further research on similar cases. 
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1. INTRODUCTION 

Lung cancer is currently considered one of the deadliest diseases and has been in the spotlight as 

a global cause of death. Recent data shows that the disease has affected the human population more 

significantly than previously estimated. Currently, lung cancer occupies the seventh position in the 

mortality index, causing approximately 1.5% of total deaths worldwide [1]. According to data from the 

World Health Organization (WHO), lung cancer is responsible for about 2.09 million new diagnoses 

each year and causes about 1.76 million deaths. Projections for 2020 show an increase in the number of 

incident cases to approximately 2.21 million [2]. Understanding and predicting the survival rate of lung 

cancer patients is crucial for developing more effective treatment strategies and improving patients' 

quality of life. Thoracic surgery, which involves diagnosing and treating conditions of the lungs, 

esophagus, and chest organs, is central to this effort. Accurate survival predictions following thoracic 

surgery not only aid in determining patient prognosis but also guide treatment planning and post-

operative care [3][4]. 

In medical science, predictive modeling has become a cornerstone for prognosis and treatment 

planning. Machine learning algorithms, categorized into supervised, unsupervised, and reinforcement 

learning, are increasingly applied in this domain. Supervised learning leverages labeled data for training 

models, while unsupervised learning identifies hidden patterns in unlabeled datasets. Reinforcement 
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learning, based on trial-and-error methods, enables adaptive decision-making in complex scenarios [5]. 

Among the various machine learning algorithms, the C4.5 algorithm is recognized for its high accuracy 

in classification tasks. It builds decision trees using entropy and information gain to optimize splits, 

offering interpretable and efficient rules. Studies have shown its reliability, particularly in medical 

applications. For example, C4.5 achieved an accuracy of 90.835% in predicting stroke outcomes, 

outperforming other methods like Naïve Bayes [6][7][8]. Additionally, C4.5 was chosen over algorithms 

like Random Forest or XGBoost due to its interpretability, which is crucial in medical contexts 

[referensi]. While ensemble methods such as Random Forest and XGBoost often yield higher accuracy, 

they are more complex and difficult to interpret, potentially limiting their use in clinical settings where 

transparency is vital. Moreover, C4.5 requires fewer computational resources, making it suitable for 

hospitals or medical facilities with limited infrastructure. These considerations highlight why C4.5 is a 

practical and effective choice for the task of predicting lung cancer survival. 

Despite advancements in machine learning, significant challenges remain, particularly in handling 

imbalanced data. Medical datasets are often skewed, with outcomes like survival being 

disproportionately represented compared to less frequent outcomes, such as mortality. This imbalance 

biases predictive models towards the majority class, reducing their generalization capability [9][10]. 

The impact of this imbalance is particularly pronounced in medical decision-making contexts. For 

example, during a one-year follow-up period, the number of lung cancer patients who survive is often 

much higher than those who do not. This discrepancy creates challenges in accurately classifying 

minority outcomes, such as post-operative mortality [11][12]. Effective strategies for addressing this 

imbalance are critical for improving prediction accuracy. 

To address data imbalance, researchers have explored techniques like SMOTE (Synthetic 

Minority Oversampling Technique) and ADASYN (Adaptive Synthetic Sampling). ADASYN, in 

particular, adaptively synthesizes data points in regions that are difficult to classify, improving model 

performance. Studies have demonstrated the effectiveness of ADASYN in combination with various 

machine learning algorithms, such as Random Forest and XGBoost, achieving superior classification 

accuracy [13][14]. In medical contexts, ADASYN has shown promise when combined with decision 

tree algorithms like C4.5. Research comparing oversampling techniques found that ADASYN paired 

with C4.5 significantly improved accuracy in handling imbalanced datasets, outperforming traditional 

methods [4][15]. These findings highlight the potential of this approach for lung cancer prognosis and 

similar applications. 

Given the challenges posed by imbalanced datasets and the need for accurate survival predictions 

in lung cancer patients, this research proposes a novel integration of the interpretable C4.5 decision tree 

algorithm with the Adaptive Synthetic Sampling technique (ADASYN). While prior studies have 

explored various machine learning methods for survival prediction [2], most have overlooked the issue 

of class imbalance [10][12] or employed simpler balancing techniques like SMOTE [13]. Moreover, the 

use of interpretable models such as C4.5 remains underexplored in conjunction with adaptive sampling 

methods [15]. This study addresses that gap by demonstrating how ADASYN can enhance C4.5’s 

performance in identifying minority class outcomes in thoracic surgery cases. The goal is to produce 

not only accurate but clinically interpretable results that support better treatment decisions and patient 

care. 

2. METHOD 

The main objective of this study is to predict lung cancer patients' survival after thoracic surgery. 

The data used is not balanced, so this study wants to know the effect of ADASYN on classification 

results using C4.5. The proposed system for predicting the survival of postoperative thoracic lung cancer 

patients can be seen in Figure 1. 
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Figure 1. The Proposed Research Flow 

2.1. Data Collection 

The thoracic surgery dataset used in this study was obtained from Kaggle on June 9, 2025, based 

on the UCI Machine Learning Repository [https://www.kaggle.com/datasets/sid321axn/thoraric-

surgery]. The dataset consists of 470 patient records and 16 features, including both nominal and 

numerical variables such as diagnostic codes, preoperative conditions (e.g., pain, dyspnoea), and 

physiological metrics (e.g., FEV1, FVC, age). The target variable, Risk1Y, represents patient survival 

status one year after surgery, labeled as “T” for deceased and “F” for survived. Since the dataset is 

publicly available, anonymized, and does not contain personally identifiable information, no ethical 

approval was required for its use in this research. 

 

Table 1. Thoracic Surgery Dataset's Descriptions 

ID Description Category Range Values 

DGN ICD-10 code diagnostic-specific combinations for 

primary and secondary tumors as well as multiple 

tumors, if present 

Nominal {DGN1, DGN2, DGN4, 

DGN5, DGN6, DGN8, 

DGN3} 

PRE4 FVC - Forced vital capacity Numeric {1.44, 6.3} 

PRE5 FEV1 - Volume is exhaled at the end of the first 

second of forced expiration. 

Numeric {0.96, 86.3} 

PRE6 Performance status - Zubrod scale Nominal {PRZ0, PRZ1, PRZ2} 

PRE7 Pain before surgery Nominal {T or F} 

PRE8 Hemoptysis before surgery Nominal {T or F} 

PRE9 Dyspnoea before surgery Nominal {T or F} 

PRE10 Cough before surgery Nominal {T or F} 

PRE11 Weakness before surgery Nominal {T or F} 

PRE14 T in clinical TNM - the size of the original tumor, 

from smallest to largest 

Nominal {OC11, OC12, OC13, 

OC14} 

PRE17 Type 2 DM - diabetes mellitus Nominal {T or F} 

PRE19 MI up to 6 months Nominal {T or F} 

PRE25 PAD - peripheral arterial diseases Nominal {T or F} 

PRE30 Smoking Nominal {T or F} 

PRE32 Asthma Nominal {T or F} 

AGE Age at surgery Numeric {21, 87} 

Risk1Y 1-year survival period - (T)rue value if died (T, F) Nominal {T or F} 
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2.2. Pre-processing Steps 

The preprocessing phase in this study involved five key steps: 

a. Encoding 

Binary categorical variables such as “T” and “F” were converted to numerical format (1 and 0). 

For categorical string features such as DGN, PRE6, and PRE14, the last character of each string 

was extracted and label-encoded using scikit-learn’s LabelEncoder. 

b. Column Renaming 

To enhance interpretability, feature names were renamed (e.g., DGN → Diagnosis, Risk1Y → 

Death_1yr). 

c. Missing Value Handling 

The dataset was checked for missing (NaN) values. No missing values were found, and all 470 

records were retained. 

d. Normalization 

Numerical attributes such as Age, FEV1, and FVC were normalized using Min-Max scaling, based 

on the following formula: 

𝑋𝑠𝑐𝑎𝑙𝑒𝑑 =
𝑋−𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥−𝑋𝑚𝑖𝑛
 (1) 

This transformation rescaled the data into a [0, 1] range, allowing uniform contribution of all 

features during model training. 

e. Class Balancing 

The dataset was found to be imbalanced with 396 “survived” and 74 “deceased” cases. ADASYN 

(Adaptive Synthetic Sampling) was applied with 𝑘 = 5 neighbors to synthetically generate new 

samples for the minority class, resulting in a balanced 1:1 class distribution. 

2.3. Cross validation 

To evaluate the model's generalization performance and reduce the risk of overfitting, this study 

employed the K-Fold Cross-Validation technique. This method partitions the dataset into K equally 

sized subsets (folds). The model is trained K times, each time using a different fold as the validation set 

and the remaining K − 1 folds for training. 

In this study, 10-fold cross-validation was used, which is considered a standard balance between 

bias and variance. The process ensures that every data point is used for both training and testing, 

allowing for a more reliable estimate of model performance. The average performance metric (e.g., 

accuracy) across the folds is calculated using the following formula: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑎𝑣𝑔 = (1/𝐾) × ∑ 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑖
𝐾
𝑖=1  (2) 

Where: 

• 𝐾 is the number of folds (in this study, 𝐾 = 10), 

• 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑖 is the accuracy obtained in the 𝑖𝑡ℎ fold. 

This validation method is especially beneficial in medical classification problems involving small 

or imbalanced datasets, as it maximizes data usage while minimizing the risk of biased evaluation. 

2.4. C4.5 Algorithm 

The C4.5 algorithm is a decision tree algorithm developed as an enhancement of the ID3 algorithm. 

It is widely used in classification tasks due to its ability to generate interpretable rules and manage both 

numerical and categorical data. In medical applications, C4.5 is particularly advantageous because it 
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produces decision trees that are transparent and easy to understand, making it suitable for clinical 

decision-making [16].  

The algorithm works by recursively selecting the most informative feature at each node based on 

information gain ratio [17], an extension of the basic entropy-based information gain from ID3. The 

entropy 𝐸(𝑆) of a dataset  𝑆  is calculated as: 

𝐸(𝑆) = − ∑ 𝑝𝑖
𝑛
𝑖=1 log2 𝑝𝑖 (3) 

Where 𝑝𝑖 is the proportion of class 𝑖 in subset 𝑆, and 𝑛 is the number of classes.  

The information gain of an attribute 𝐴 is computed using: 

𝐺𝑎𝑖𝑛(𝑆, 𝐴) = 𝐸(𝑆) − ∑
|𝑆𝑣|

|𝑆|
𝑉
𝑣=1 𝐸(𝑆𝑣) (4) 

Where 𝑆𝑣 is the subset of 𝑆 where attribute 𝐴 = 𝑣, and 𝑉 is the number of distinct values in 

attribute 𝐴. The attribute with the highest gain ratio is selected as the splitting criterion. 

In this study, the C4.5 algorithm was implemented to construct a decision tree for classifying lung 

cancer patient survival based on 16 features. The tree structure highlights the most influential predictors 

in patient outcomes. For instance, FEV1 and Age consistently appeared as top-level nodes in the tree, 

indicating their strong contribution to survival prediction. This interpretability makes the model not only 

effective but also aligned with clinical reasoning, where understanding feature influence is as critical as 

prediction accuracy. 

2.5. Adaptive Synthetic Sampling (ADASYN) 

ADASYN (Adaptive Synthetic Sampling) is a method designed to address class imbalance in 

classification datasets. Class imbalance occurs when the number of data points in one class (majority 

class) is significantly larger than in another class (minority class), which can cause machine learning 

models to focus more on the majority class while ignoring the minority class [18]. ADASYN aims to 

enhance the representation of the minority class by generating synthetic data points, particularly in 

regions that are difficult to classify, allowing the model to learn in a more balanced manner [19]. The 

first step in ADASYN is to calculate the imbalance ratio between the number of data points in the 

minority and majority classes. This ratio helps determine whether oversampling is necessary. If the ratio 

indicates that the minority class is underrepresented, the data needs to be balanced to reduce model bias 

toward the majority class. Next, ADASYN calculates the number of synthetic data points required for the 

minority class based on this imbalance ratio, ensuring that the class distribution becomes more balanced. 

The method then uses the K-Nearest Neighbor (KNN) algorithm to analyze the nearest neighbors 

of each minority class data point. KNN computes the distance between data points (typically using 

Euclidean distance) to identify underrepresented and hard-to-classify areas. These areas are given higher 

priority in the synthetic data generation process by assigning greater weights, ensuring that additional 

data is more relevant to the model's needs [20]. Synthetic data is created by combining the original 

minority class data points with their nearest neighbors. Technically, the new data is generated using the 

formula. 

𝑆𝑦𝑛𝑡ℎ𝑒𝑡𝑖𝑐 𝐷𝑎𝑡𝑎 = 𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝐷𝑎𝑡𝑎 + (𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟 − 𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝐷𝑎𝑡𝑎) × 𝑅𝑎𝑛𝑑𝑜𝑚 𝐹𝑎𝑐𝑡𝑜𝑟 (5) 

Where the random factor is a value between 0 and 1 to ensure variation, this process generates 

data that is not identical to the original but still reflects the characteristics of the minority class. With 

this approach, ADASYN not only increases the quantity of the minority class data but also improves its 

representation in hard-to-classify regions, enabling machine learning models better to understand 

patterns in both classes [21]. The final result is a more balanced dataset, allowing the model to produce 
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more accurate and fair predictions. ADASYN significantly enhances performance in classification tasks 

involving highly imbalanced datasets. 

2.6. Evaluation 

Confusion Matrix is an evaluation tool used to measure the performance of machine learning 

models in classification tasks [22]. It provides detailed insights into the model's predictions by breaking 

down the number of correct and incorrect predictions for each target class. Unlike a single metric such as 

accuracy, the confusion matrix offers a more comprehensive understanding of how well the model 

performs for each class individually [23]. This makes it particularly useful for identifying the strengths 

and weaknesses of the model, especially in datasets with imbalanced class distributions [24]. 

The confusion matrix consists of four key components: True Positive (TP), True Negative (TN), 

False Positive (FP), and False Negative (FN). True Positive (TP) refers to the number of correctly 

classified positive samples, while True Negative (TN) represents the number of correctly classified 

negative samples. False Positive (FP) occurs when a negative sample is incorrectly classified as positive, 

and False Negative (FN) happens when a positive sample is misclassified as negative [25]. The following 

table illustrates the structure of a confusion matrix. 

 

Table 2. Confusion Matrix Table 

 Predicted Class = Yes Predicted Class = No 

Class = Yes True Positive (TP) False Negative (FN) 

Class = No False Positive (FP) True Negative (TN) 

 

Each metric provides a unique perspective on model performance: 

a. Accuracy 

Accuracy measures the proportion of correctly classified instances over the total number of 

samples. Although widely used, it can be misleading in imbalanced datasets. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
  (6) 

b. Precision 

Precision quantifies the proportion of true positive predictions among all samples predicted as 

positive. It is useful in contexts where false positives are costly, such as medical misdiagnosis. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (7) 

c. Recall (Sensitivity or True Positive Rate) 

Recall measures the model’s ability to correctly identify all actual positive cases. In medical 

applications, a high recall is critical to ensure that high-risk patients are not missed. 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (8) 

d. F1-Score 

The F1-Score is the harmonic mean of precision and recall, offering a balanced metric when both 

false positives and false negatives are important. 

𝐹1 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
 (9) 
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This metric is particularly useful in imbalanced datasets, as it accounts for both types of 

classification errors. 

2.7. Clinical Relevance of Evaluation Metrics 

In medical prognosis, each evaluation metric carries distinct clinical implications. A high recall 

ensures that most high-risk patients (e.g., those likely to die post-surgery) are correctly identified, 

minimizing missed diagnoses. Precision helps avoid false alarms that may lead to unnecessary medical 

interventions. F1-score balances both, making it suitable when both types of errors carry serious 

consequences. Therefore, the chosen metrics not only validate the model's technical performance but also 

align with real-world healthcare needs, where decision errors can directly affect patient outcomes. 

3. RESULT 

This section presents the results of the predictive modeling process, following the methodological 

steps outlined previously. The analysis includes class balancing with ADASYN, decision tree generation 

using C4.5, and comparative evaluation before and after oversampling. 

3.1. Class Balancing Using ADASYN 

The thoracic surgery dataset initially exhibited a significant class imbalance, with 396 instances 

labeled “Survive” (Class 0) and only 74 labeled “Deceased” (Class 1). This imbalance posed a challenge 

to the classification model, which tended to favor the majority class during learning. To address this, 

ADASYN (Adaptive Synthetic Sampling) was applied. It synthetically generates data points for the 

minority class based on the density distribution and local decision boundaries. 

 

 
Figure 2. Class Distribution Before and After Applying ADASYN 

 

In Figure 2, the left plot shows the original imbalanced distribution, while the right plot shows the 

balanced dataset after applying ADASYN. The number of "Deceased" samples is increased to match the 

"Survive" class, enabling the classifier to learn from both classes equally. 

While ADASYN improves data balance and model fairness, it may introduce risks such as 

overfitting due to synthetic noise and potential distortion of the minority class distribution. Careful 

validation using cross-validation is necessary to ensure model generalizability. 

3.2. C4.5 Algorithm Result 

The initial C4.5 decision tree model was trained on the imbalanced dataset, where the “Survive” 

class significantly outnumbered the “Deceased” class. This class dominance caused the model to focus 
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primarily on the majority class, reducing its ability to detect minority class cases, which are critical in 

clinical contexts. 

The generated decision tree is shown in Figure 3, where FEV1 was selected as the root node, 

indicating its dominant influence in classification. The model then split further based on features like 

Haemoptysis and Age. Each node in the tree provides key information including entropy, sample count, 

and predicted class. The resulting tree was relatively shallow and biased, with multiple branches leading 

to predictions of “Survive.” 

 

 
Figure 3. Decision Tree Visualization Using C4.5 Algorithm 

 

However, due to the imbalance in class distribution, the model struggled to classify “Deceased” 

instances. This weakness is reflected in the confusion matrix in Figure 4, which shows the model’s poor 

performance on the minority class: 

 

 
Figure 4. Confusion Matrix of C4.5 Model Without ADASYN 

 

Based on this confusion matrix: 

• True Positives (Survive): 6 

• False Negatives (Survive misclassified as Deceased): 1 

• False Positives (Deceased misclassified as Survive): 2 

• True Negatives (Deceased): 0 

The evaluation metrics for this model are: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
6

6+1+2+0
=

6

9
= 0.67 = 67% (10) 
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𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
6

6+2
+

6

6+1
=

0.75+0

2
= 0.375 = 37.5% (11) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
6

6+1
+

0

0+2
=

0.86+0

2
= 0.43 = 43% (12) 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 2 ∗
0.375∗0.43

0.375+0.43
= 0.4 = 40% (13) 

These results clearly indicate that the model exhibited bias toward the majority class, performing 

poorly on minority class detection. This limitation motivated the application of the ADASYN 

oversampling technique to improve class representation and balance the decision process. 

3.3. Decision Tree Result After ADASYN 

To address the issue of class imbalance in the original dataset, this study applied the ADASYN 

(Adaptive Synthetic Sampling) technique prior to model training. The goal was to generate synthetic data 

points for the minority class ("Deceased") to ensure a more balanced learning process. Following this, 

the C4.5 decision tree algorithm was retrained using the newly balanced dataset. 

 

 
Figure 5. Decision Tree Visualization Using C4.5 Algorithm and ADASYN 

 

As shown in Figure 5, the decision tree structure changed substantially after balancing. The root 

node shifted to Age ≤ 64, indicating that Age became the most decisive feature in the new training context. 

This is consistent with clinical knowledge, as age is a well-established factor influencing postoperative 

outcomes in lung cancer patients. Additional splits were made using Haemoptysis ≤ 0.5, FEV1 ≤ 0.122, 

and Tumor_Size ≤ 2.5, suggesting these features also play a significant role in differentiating between 

"Survive" and "Deceased" classes. 

Each node in the tree displays entropy, number of samples, and class distribution, with several leaf 

nodes showing entropy = 0, indicating pure classification results. The overall tree is deeper and more 

balanced than before ADASYN, demonstrating the model’s improved ability to recognize patterns from 

both classes. 

The improved performance of the model is shown in the confusion matrix in Figure 6, which 

evaluates the model on the balanced dataset: 
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Figure 6. Confusion Matrix of C4.5 Model With ADASYN 

 

From the matrix, we calculate the following performance metrics: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
6+7

6+1+1+7
=

13

15
= 0.87 = 87%(14) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
6

6+1
+

7

7+1
=

0.86+0.88

2
= 0.87 = 87% (15) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
6

6+1
+

7

7+1
=

0.86+0.88

2
= 0.87 = 87% (16) 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 2 ∗
0.87∗0.87

0.87+0.87
= 0.87 = 87%(17) 

3.4. Discussion of Misclassifications 

Despite the overall improvement, two misclassifications remain: 

• 1 false positive: a “Deceased” patient was classified as “Survive” 

• 1 false negative: a “Survive” patient was classified as “Deceased” 

From a clinical standpoint, false negatives are more critical, as they could result in missed 

intervention opportunities for patients at risk of death. However, the reduction in false negatives from 2 

to 1 after ADASYN demonstrates meaningful progress in reducing this risk. Additionally, the new tree 

structure aligns more closely with domain-relevant features (Age, FEV1), suggesting improved model 

interpretability and potential for medical application. 

4. CONCLUSION 

This study aimed to develop a predictive model for the one-year survival of lung cancer patients 

following thoracic surgery, utilizing the C4.5 decision tree algorithm in combination with ADASYN to 

address data imbalance. The results demonstrated that this combined approach significantly improved the 

model’s performance across multiple evaluation metrics, including accuracy, precision, recall, and F1-

score. 

The most notable improvement was observed after applying ADASYN, where the model’s F1-

score increased from 40% to 87%. This improvement highlights the importance of addressing data 

imbalance in medical datasets, particularly when the minority class (i.e., deceased patients) represents 

the more clinically critical group. The confusion matrices also showed a reduction in false negatives, 

which is essential in healthcare scenarios where failing to identify high-risk patients can lead to serious 

consequences. 
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When compared to prior studies using the same dataset, such as the work of Setyadi et al. (2020) 

with Genetic Algorithm + Naive Bayes (accuracy: 85.31%) and Prasetio & Susanti (2019) with KNN + 

AdaBoost (accuracy: 85.11%), the proposed method (C4.5 + ADASYN) achieved a higher accuracy of 

87%. This demonstrates that the use of interpretable models like decision trees can still outperform more 

complex ensemble methods when paired with appropriate preprocessing techniques. 

From the perspective of computer science and machine learning, this research contributes to the 

ongoing efforts in handling imbalanced classification problems—a major challenge in data mining and 

predictive analytics. The implementation of ADASYN within the clinical prediction pipeline reflects the 

importance of adaptive sampling algorithms in improving the robustness and fairness of classifiers. 

Furthermore, the use of C4.5 adds value through its interpretability. Unlike black-box models such 

as deep learning or random forests, decision trees offer transparent logic that is essential in medical 

applications, where decision support systems must be explainable to practitioners. This aligns with the 

increasing emphasis on interpretable AI in both research and applied systems. 

In summary, the findings of this study emphasize the dual importance of data preprocessing 

(balancing) and model interpretability in building effective and trustworthy predictive systems. The 

approach not only improved technical performance but also aligned with real-world clinical needs, 

making it suitable for further development as part of decision support tools in thoracic oncology. 
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