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Abstract 

Grape leaf diseases pose a major threat to vineyard productivity, making early and accurate detection essential for 

modern grape plantation management. Despite advancements in computer vision, challenges remain in differentiating 

diseases with visually similar symptoms. This study addresses that gap by developing a grape leaf disease 

classification system using a fine-tuned deep learning model based on the InceptionV3 architecture. Three training 

scenarios were conducted with fixed parameters batch size of 32 and learning rate of 0.001while varying the number 

of epochs (25, 50, and 75). Results showed a consistent improvement in classification accuracy with increased 

training epochs, reaching 98.64%, 98.78%, and 99.09% respectively. Confusion matrix analysis revealed that most 

misclassifications occurred between visually similar diseases such as Black Rot and ESCA, but error rates declined 

as the number of epochs increased. Rather than merely applying transfer learning, this research highlights the impact 

of systematic tuning specifically epoch count optimization in enhancing model accuracy for difficult to distinguish 

disease classes. These findings underscore the urgency of developing high performance, automated disease detection 

tools to support precision agriculture and sustainable crop health monitoring.  
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1. INTRODUCTION 

Grapes are fruit plants with high economic value and are widely cultivated worldwide, especially 

in the Mediterranean region. The global grape industry has a tremendous market value, exceeding 189 

billion USD [1]. Grapes are not only consumed as fresh fruit, but are also processed into various products 

such as drinks and sweet foods. However, like other plants, grapes are susceptible to multiple diseases 

that require immediate treatment. 

Diseases in grape plants can cause significant economic losses [2]. Studies have shown that grape 

diseases can result in yield losses of between 10% and 30% [3]. In the worst cases, losses due to disease 

can even reach 80% of the total harvest [1]. Some common diseases that attack grape plants include 

black rot, ESCA, leaf blight, powdery mildew, and downy mildew [4]. 

Rapid and accurate detection and diagnosis of grapevine diseases are essential for effective 

vineyard management [5]. Traditional grapevine disease identification methods generally rely on human 

visual observation [6], [7]. This approach has several drawbacks. It is time-consuming, requires expert 

personnel, and is prone to subjective errors [8]. Consequently, delays in disease identification and 

control measures often occur. These limitations drive the urgent need for automated systems capable of 

rapid and accurate detection and classification of grapevine leaf diseases. 
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In recent years, deep learning methods, especially Convolutional Neural Networks (CNN), have 

been widely applied in agriculture [9], [10], [11], [12], [13], [14]. Various variants of CNN-based 

methods have been developed to identify and monitor plant diseases [15]. The adaptation of CNN 

models for specific agricultural problems remains an active and innovative area of research. Ji et al [2] 

and Liu et al [15] specifically focused on grape leaf disease, achieving accuracies of 98.57% and 

97.22%, respectively, by modifying the basic CNN architecture. Significant progress was also seen in 

other commodities. For instance, Zhang et al [16] adapted AlexNet for cucumber disease identification 

(94.65%), while Thet et al [17] modified VGG16 to achieve 98.4% accuracy for five leaf disease classes. 

These findings strengthen the hypothesis that transfer learning from pre-trained CNN models can 

overcome data limitations [18]. Recent studies have further demonstrated the potential of fine-tuned 

transfer learning models such as InceptionV3 and EfficientNetB0 in classifying grapevine leaf diseases 

with high accuracy (92%–99.02 %) [8], [19], [20], [21]. These models have enabled early detection and 

improved disease management strategies, further validating their role in modern agriculture. 

On the other hand, the InceptionV3 architecture introduced by Szegedy et al [22] is one of the 

CNN models in the GoogLeNet family that offers a balance between network depth, computational 

efficiency, and classification performance. InceptionV3 has been proven effective in various everyday 

image classification tasks and has been widely used in transfer learning applications in multiple domains 

[23], [24], [25], including medical and agricultural fields [26], [27], [28], [29]. The transfer learning 

strategy allows pre-trained weights from large datasets (such as ImageNet) to speed up the training 

process and improve accuracy on smaller, specific datasets. 

Although the transfer learning approach with CNN has been widely applied to plant disease 

classification, studies that specifically apply fine-tuning to InceptionV3 for grape leaf disease are still 

relatively limited. Most studies only use pre-trained models as feature extractors without further 

adjustments to the model parameters. In fact, fine-tuning the upper layers of the network enables the 

model to adapt to the target dataset more effectively. This adjustment can improve both accuracy and 

generalization performance. However, limitations remain in model generalization to varied datasets and 

environmental conditions, as highlighted by Das et al. [30] and Tamilmani and Khan [31]. 

Computational cost also remains a concern when scaling to large datasets. These practical concerns 

highlight the need for efficient and robust training strategies. 

Based on the literature review, a research gap has been identified in applying deep learning 

techniques, particularly advanced architectures such as InceptionV3, for detecting and classifying grape 

leaf diseases. To address this gap, the present study proposes a novel contribution by implementing a 

transfer learning approach based on the InceptionV3 architecture, optimized through fine-tuning 

techniques to improve classification accuracy. InceptionV3 was selected due to its ability to extract 

multiscale features efficiently through its modular design. This research is expected to broaden the 

application of InceptionV3 in plant disease classification and offer a more accurate and computationally 

efficient solution for grape leaf disease detection. To the best of our knowledge, this study is the first to 

systematically investigate the impact of fine-tuning epoch variations on the performance of InceptionV3 

for grape leaf disease classification. This research is expected to broaden the application of InceptionV3 

in plant disease classification. It also offers a more accurate and computationally efficient solution for 

grape leaf disease detection. Furthermore, this work contributes to the conversation on responsible AI 

in agriculture by acknowledging ethical considerations such as data bias, privacy, and the impact on 

traditional farming practices [32], [33]. Ultimately, the findings are expected to support enhanced 

productivity and sustainability in the grape plantation industry. 
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2. METHOD 

This research was conducted through four main stages, as shown in Figure 1. The first stage is 

data collection, where the dataset used was obtained from the Kaggle platform. The dataset contains a 

collection of grape leaf images categorized into several classes. 

The next stage is data pre-processing. At this stage, a series of processes are carried out to ensure 

that the data is in optimal condition before being used in model training. Pre-processing activities include 

normalizing pixel values into a scale of [0,1] to speed up the convergence process and data augmentation 

in the form of rotation, flipping, and zooming to increase the diversity of training data and prevent 

overfitting. This process aims to strengthen the model's generalization to image variations in the real 

world. 

The third stage is the utilization of pre-trained models. In this context, the InceptionV3 

architecture, which has been pre-trained on a large-scale dataset such as ImageNet, is used. The transfer 

learning approach allows the utilization of visual features learned by the model, so that training on a 

specific dataset (grape leaf images) can be done more efficiently and accurately, even with limited data. 

The pre-trained model is selected and adjusted to the dataset's characteristics, and adjustments to the 

output layer according to the number of target classes. 

 

 

Figure 1. Research Stage 

       

The final stage is the model performance evaluation, which is carried out using metrics such as 

accuracy, precision, recall, and F1-score, which are extracted from the confusion matrix. This evaluation 

assesses the model's generalization ability to test data and detect potential bias or class imbalance. The 

evaluation results are the basis for determining the approach's effectiveness and the potential for further 

development. 

2.1. Data Collection 

The initial stage in this study is data collection. In this study, the data used are images of grape 

leaves labeled according to their health conditions and the type of disease that attacks them. The dataset 

is supervised and consists of four classes: black rot, ESCA (black measles), leaf blight, and healthy 
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leaves. This dataset was obtained from the Kaggle site via the link 

(https://www.kaggle.com/datasets/rm1000/grape-disease-dataset-original ) uploaded by Mandal and 

Gouda [34]. This dataset was chosen because it has good image quality and has been widely used in 

plant disease classification research. The number of images in each class is presented in the following 

Table 1. 

 

Table 1. Grape Disease Dataset. 

Class Name Training Testing Total 

Black Rot 1888 472 2360 

ESCE 1920 480 2409 

Leaf Blight 1722 430 2152 

Healthy 1692 423 2115 

 

To provide a visual representation of the data used, Figure 2 are sample images from each class. 

 

 
Figure 2. Sample of Grape Leaf. 

2.2. Data Pre-processing 

After all the grape leaf image data has been successfully collected, the next stage is data pre-

processing to ensure that the data is in optimal condition for use by the deep learning model. This stage 

begins with the resizing process, which is changing all images to a uniform size, for example, 224 × 224 

pixels, to match the standard input of the pre-trained model architecture. Furthermore, the image pixel 

values are normalized into the [0,1] range by dividing the RGB values by 255. This step is essential to 

speed up the convergence process during model training and maintain learning stability. 

To increase data variability and enhance the model’s generalization capability, several data 

augmentation techniques are applied, including random rotation, horizontal flipping, zoom, and 

brightness adjustment. These augmentations are applied only to the training subset to minimize the risk 

of overfitting, especially when the dataset size is relatively small. 

The dataset is divided into three main subsets: training, validation, and testing. The training and 

validation subsets are generated using stratified splitting, implemented through the ImageDataGenerator 

class from the Keras library. A validation split of 10% (validation_split=0.1) is used to ensure that the 

class distribution remains balanced between the training and validation sets. The subsets are created 

internally using the flow_from_directory() method by specifying the subset='training' and 

subset='validation' parameters. Meanwhile, the test set is stored in a separate directory and loaded using 

a dedicated ImageDataGenerator instance with only rescaling (no augmentation applied). Additionally, 

shuffle=False is used to preserve the order of samples, which is important for accurate performance 

evaluation and comparison with ground truth labels. 

https://jutif.if.unsoed.ac.id/
https://doi.org/10.52436/1.jutif.2025.6.5.4717
https://www.kaggle.com/datasets/rm1000/grape-disease-dataset-original


Jurnal Teknik Informatika (JUTIF)  Vol. 6, No. 5, October 2025, Page. 3683-3696 
P-ISSN: 2723-3863  https://jutif.if.unsoed.ac.id                                       

E-ISSN: 2723-3871  DOI: https://doi.org/10.52436/1.jutif.2025.6.5.4717 

 

 

3687 

2.3. Pre-trained Model 

This study uses a transfer learning approach using the InceptionV3 architecture pre-trained on the 

ImageNet dataset. The base model is initialized with the include_top=False parameter to remove the 

default classification part and retain the convolution layer as a feature extractor. All layers in the base 

model are frozen so that the learned weights are not updated during the training process, so that the 

general features that have been discovered are maintained. 

A unique classification head has been added to adapt the model to the targeted classification task. 

First, a 2D Global Average Pooling layer is applied to reduce the spatial dimension of the output features 

to a one-dimensional vector of size 2048. Dropout follows this layer with a deletion rate 0.5 to reduce 

the risk of overfitting by randomly deactivating some neurons during training. 

Next, a Dense layer with 256 units and a ReLU activation function is added to build a more 

specific feature representation for the classification task. Finally, the output layer is a Dense layer with 

four units, and a softmax activation function is used to generate probability predictions for the four target 

classes. 

During the fine-tuning phase, several hyperparameters were optimized, including setting the 

initial learning rate to 0.001 using the Adam optimizer. A learning rate scheduler was implemented 

using ReduceLROnPlateau to reduce the learning rate when the validation loss plateaued. Early 

stopping with a patience of 10 epochs was also employed to prevent overfitting. The model was trained 

with a batch size of 32 and a maximum of 75 epochs. Callbacks such as ModelCheckpoint were 

used to save the best-performing model based on validation accuracy. The complete structure of the 

customized InceptionV3 model architecture is shown in Figure 3, which illustrates the image processing 

flow from input to generating class predictions. 

       

 
Figure 3. Proposed Method. 

 

2.4. Evaluation 

After the model training process is completed, the next step is to evaluate the model's performance 

using test data that has never been involved in the training or validation process. This evaluation aims 

to measure the model's generalization ability to new data and identify potential weaknesses in 

classification performance. Several evaluation metrics used in this study include accuracy, representing 

the proportion of correct predictions compared to all projections made. 
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In addition, precision, recall, and F1-score are also calculated using the following mathematical 

Equations (1), (2), (3), and (4). 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
     (1) 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
     (2) 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃+𝐹𝑃

𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁
    (3) 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 2 ∗
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
   (4) 

Where TP = True Positive, FP = False Positive, and FN = False Negative. 

 

Precision measures how accurate the optimistic predictions produced by the model are, while 

recall describes how much the model can capture all actual positive samples. The F1-score, being the 

harmonic mean of precision and recall, provides a more balanced picture of model performance, 

particularly in the presence of class imbalance. 

In addition to these metrics, a confusion matrix is also used to visualize the distribution of 

predictions between classes, including the number of correct predictions (true positives and true 

negatives) and misclassifications (false positives and false negatives). The confusion matrix is 

implemented using the confusion_matrix function from sklearn.metrics. Analysis of the confusion 

matrix provides more detailed insights into which classes are most often misclassified, so that it can be 

used as a basis for efforts to improve model performance in subsequent iterations. 

3. RESULT 

In this study, training and testing of image classification models were carried out using three 

scenarios based on the number of epochs, namely 25, 50, and 75. Other parameters used remained 

constant: the batch size of 32, the optimizer using Adam, and the learning rate of 0.001. Model 

performance was evaluated by analyzing the accuracy and loss graphs at the training stage and the 

confusion matrix analysis at the testing stage. 

3.1. Training Process 

The model training process was carried out with three different scenarios based on the number of 

epochs, namely 25, 50, and 75 epochs. The training parameters used for these three scenarios were a 

batch size of 32, an optimizer using Adam, and a learning rate of 0.001. 

In the first scenario (25 epochs), the training accuracy showed a gradual increase from the initial 

epoch and approached 95% by the final epoch, while the validation accuracy fluctuated around 97% as 

shown in Figure 4. The training and validation loss values also decreased overall, although the validation 

loss experienced slight fluctuations, indicating some instability in generalization. This suggests that the 

model began learning relevant features but had not yet reached optimal stability. 

In the second scenario (epoch 50) shown in Figure 5, the graph shows a more consistent increase 

in training accuracy compared to the first scenario. Training accuracy is close to 96%, and validation 

accuracy is around 97%. The training and validation loss values also experience a more significant 

decrease compared to the previous scenario, indicating better model performance. This suggests the 

model has started to generalize better to unseen data and is capturing more relevant feature patterns, 

especially in complex disease classes. 
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Figure 4.  Training, Validation Accuracy, Training Loss, And Validation Loss With Epoch 25. 

 

 

Figure 5. Training, Validation Accuracy, Training Loss, And Validation Loss With Epoch 50. 
 

Meanwhile, Figure 6 is the third scenario (epoch 75, shown in Figure 6), the graph shows a more 

stable increase in training and validation accuracy. The training accuracy is above 96%, while the 

validation accuracy reaches a range of more than 97%. The loss values in training and validation 

experienced a sharper decline, with better stability compared to the previous scenario. This shows that 

the model has learned the data more effectively as the number of epoch increases. This trend implies 

that increasing epochs have enabled the model to extract more discriminative features, which are 

particularly useful in distinguishing visually similar classes. 

 

 
Figure 6. Training, Validation Accuracy, Training Loss, And Validation Loss With Epoch 75 

3.2. Testing Process 

This study evaluates the performance of the classification model using three different scenarios 

based on the number of epochs, namely 25, 50, and 75 epochs, with a batch size parameter of 32 and a 

learning rate of 0.001. Performance evaluation is carried out using a confusion matrix on the test data. 

The model testing results at the 25 epoch configuration are illustrated by the confusion matrix in 

Figure 7. Overall, the model was able to classify most of the test data correctly, although notable 

misclassifications occurred in certain classes. The Black Rot class was accurately identified in 458 

instances, with 14 samples misclassified as ESCA. Conversely, the ESCA class experienced a higher 

https://jutif.if.unsoed.ac.id/
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rate of misclassification, with 32 samples incorrectly predicted as Black Rot, while 448 were correctly 

classified. The Leaf Blight class demonstrated excellent performance, achieving perfect classification 

with all 423 samples correctly predicted. The Healthy class also performed well, with 427 correct 

predictions and only 3 samples misclassified as Black Rot. These results suggest that at an early training 

stage (25 epochs), the model still struggles to differentiate between visually similar classes, particularly 

Black Rot and ESCA, which both exhibit necrotic spots and leaf discoloration patterns that may confuse 

the model’s convolutional filters. This indicates that with a limited number of training cycles, the feature 

representations learned by the model are not yet sufficiently discriminative. In contrast, the strong 

classification performance in the Leaf Blight and Healthy classes implies that the distinguishing visual 

features of these categories are more easily captured even with shallow training. Overall, although the 

classification results at 25 epochs are promising, increasing the number of training epochs is necessary 

to reduce inter-class confusion and improve the model’s generalization capability. 

The model’s performance in the testing phase with a training configuration of 50 epochs is 

depicted in the confusion matrix in Figure 8. Compared to the previous scenario with 25 epochs, the 

results show an overall improvement in classification accuracy and a reduction in misclassifications. 

For the Black Rot class, the model correctly classified 456 instances, with 16 samples misclassified as 

ESCA. Conversely, for the ESCA class, 454 samples were correctly identified, while 25 were 

misclassified as Black Rot, and 1 instance was incorrectly labeled as Healthy. The Leaf Blight class 

maintained its strong performance, achieving 100% accuracy with all 423 instances correctly classified, 

indicating that the features of this class continue to be reliably captured by the model. The Healthy class 

also exhibited near-perfect classification, with 428 correct predictions and only 1 sample misclassified 

as Black Rot, and 1 as ESCA. 

These results suggest that increasing the number of training epochs enhances the model’s ability 

to generalize and discriminate between visually similar classes. The notable reduction in 

misclassifications between Black Rot and ESCA although still present indicates the model is learning 

more refined and discriminative features with extended training. Additionally, the model’s robustness 

across Leaf Blight and Healthy classes demonstrates its consistency in recognizing distinct visual 

characteristics. Overall, the 50 epoch configuration reflects a positive progression in classification 

performance, reducing inter-class confusion and further strengthening the model’s reliability on unseen 

data. 

 

 

Figure 7. Confusion Matrix with Epoch 25. 
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Figure 8. Confusion Matrix with Epoch 50. 

 

 
Figure 9. Confusion Matrix with Epoch 75. 

 

The confusion matrix for the model trained with 75 epochs, shown in Figure 9, indicates the best 

overall performance among all tested configurations. The classification results show a notable reduction 

in misclassifications, particularly between the visually similar Black Rot and ESCA classes. For the 

Black Rot class, the model correctly identified 460 samples, with only 11 misclassified as ESCA and 1 

as Healthy. Conversely, the ESCA class achieved 459 correct predictions, with 20 misclassified as Black 

Rot and 1 instance incorrectly identified as Leaf Blight. 

The Leaf Blight class maintained perfect classification performance, with all 423 samples 

correctly predicted and zero errors, as in the previous scenarios. The Healthy class also achieved flawless 

classification, with 430 correct predictions and no misclassifications representing an improvement over 

earlier epochs. 

These results demonstrate that increasing the number of epochs to 75 significantly improves the 

model’s learning stability and feature discrimination, particularly in distinguishing between challenging 

class pairs such as Black Rot and ESCA. The continued accuracy of the Leaf Blight and Healthy classes 

further highlights the robustness and generalization capacity of the model. The overall distribution of 

correct predictions, along with the minimal misclassification rate, reinforces the finding that 75 epochs 

https://jutif.if.unsoed.ac.id/
https://doi.org/10.52436/1.jutif.2025.6.5.4717


Jurnal Teknik Informatika (JUTIF)  Vol. 6, No. 5, October 2025, Page. 3683-3696 
P-ISSN: 2723-3863  https://jutif.if.unsoed.ac.id                                       

E-ISSN: 2723-3871  DOI: https://doi.org/10.52436/1.jutif.2025.6.5.4717 

 

 

3692 

represent the optimal training duration in this study, offering a well-balanced trade-off between 

accuracy, generalization, and computational efficiency. 

To provide a clear comparison of model performance across different training configurations, an 

aggregated metric table is presented in Table 2. 

From the results in Table 2, it can be concluded that increased epochs contribute significantly to 

better classification performance. In particular, 75 epochs provided the highest and most consistent 

accuracy, precision, recall, and F1-score. 

 

Table 2. Overall Result Of Proposed Method. 

Epoch Precision Recall Accuracy F1-score 

25 97,47 97,42 98,64 97,42 

50 97,56 97,56 98,78 97,56 

75 98,26 98,27 99,09 98,26 

 

4. DISCUSSIONS 

The results of the model performance evaluation on three configurations of the number of epochs 

25, 50, and 75 show a trend of increasing performance as the number of training cycles increases, as 

presented in Table 2. All evaluation metrics, namely precision, recall, accuracy, and F1-score, show 

consistent improvements with the best results achieved at the 75th epoch. 

At the 25th epoch, the model recorded a precision of 97.47%, a recall of 97.42%, an accuracy of 

98.64%, and an F1-score of 97.42%. These metrics indicate that in the early stages of training, the model 

can classify with a relatively low error rate. When the number of epochs was increased to 50, there was 

a slight but consistent improvement in all metrics, namely, precision and recall increased to 97.56%, 

while accuracy increased to 98.78%. This shows that adding training cycles strengthens the model's 

generalization ability. 

Optimal performance was achieved at epoch 75, with precision and recall values of 98.26% and 

98.27%, respectively, accuracy of 99.09%, and F1-score of 98.26%. These values reflect the stability 

and depth of the model's understanding of data patterns without indicating significant overfitting. The 

balance between precision and recall values also shows that the model cannot only minimize positive 

prediction errors, but is also quite sensitive in detecting all instances of the target class. This is reinforced 

by the high F1-score value, which indicates that the trade-off between precision and recall has been 

achieved optimally. 

Overall, the gradual improvement in all validation metrics proves that the longer training process 

improves accuracy and consistency of model performance. Considering the aspects of accuracy, 

stability, and efficiency, it can be concluded that the training configuration with 75 epochs is the most 

optimal parameter to be applied in this study. 

The model's performance in this study shows significant advantages compared to previous 

approaches in digital image-based leaf disease classification. Previous studies have proposed various 

strategies to improve classification accuracy, but with varying methods and complexities. 

In recent years, a wide range of deep learning approaches have been explored for grapevine leaf 

disease classification. These include both conventional CNN architectures and hybrid models that 

integrate clustering, feature engineering, and ensemble techniques. For example, Kaur and Devendran 

[35] developed a semi-automatic system for detecting grape leaf diseases by combining K-Means 

clustering optimized using Grey Wolf Optimization (GWO), and hybrid feature extraction consisting of 

Law’s Mask, GLCM, LBP, and Gabor features. The model was classified using an ensemble classifier 

and recorded an accuracy of 95.69%. A similar approach was taken by Javidan et al  [36], who also used 
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the K-Means clustering method combined with a machine learning algorithm, resulting in an accuracy 

of 98.97%. Meanwhile, Ishengoma and Lyimo [37] used a Convolutional Neural Network (CNN) for 

feature extraction and a Random Forest for classification. In their experiments, features extracted from 

the VGG-16 and InceptionV3 architectures gave the highest accuracy of 95.34%. The combined fine-

tuning-based model has also been tested in the literature. Ji et al [2] introduced a united model approach 

by combining ResNet50 and InceptionV3 as a fine-tuning technique, which achieved an accuracy of 

98.57%. Furthermore, Canghai et al [6] introduced GC-Mobilenet, which combines the MobileNet 

architecture with the Ghost convolution algorithm, and achieved an accuracy of 98.63%. 

In parallel, modern deep CNN architectures have also been benchmarked extensively. 

EfficientNetB0, for example, has demonstrated superior accuracy in several studies, reaching up to 

99.02% [21], consistently outperforming InceptionV3 in various tasks [8], [38]. EfficientNetB5 and B7 

have also shown strong results (96.07% and 96.39%), though B0 is often preferred for its efficiency 

[19]. VGG16, though widely applied, often trails behind, achieving 96.29% [39], while ResNet50 and 

its deeper variants like ResNet152V2 offer improved generalization and reach up to 97.06% [20], [39], 

[40]. DenseNet121 has demonstrated exceptional accuracy (99.12%), and MobileNetV2 has also 

performed well, achieving 99% while remaining suitable for lightweight applications [41], [42]. 

Compared with those studies, the model in this study shows the highest accuracy of 99.09% on a 

75-epoch configuration, accompanied by high and balanced precision, recall, and F1-score values. The 

advantages of this model lie in the efficiency of the architecture and the stability of performance as the 

epoch increases, without requiring the integration of optimization algorithms or complex hybrid models. 

Thus, this study's approach produces more accurate classification performance than previous models 

and offers a more straightforward, efficient, and reproducible solution for image-based plant disease 

detection systems. 

From an application standpoint, the proposed model can be adapted for real-time deployment in 

mobile-based diagnostic systems or integrated into drone-based platforms for vineyard monitoring. The 

relatively lightweight nature of InceptionV3 and its compatibility with transfer learning pipelines make 

it well-suited for scalable, real-time plant health monitoring systems in precision agriculture. 

5. CONCLUSION 

This study has successfully developed and evaluated a deep learning-based classification model 

using three different training scenarios based on the number of epochs, namely 25, 50, and 75 epochs. 

With a batch size configuration of 32 and a learning rate of 0.001, the model shows a consistent increase 

in performance as the number of epochs increases. From the evaluation results using a confusion matrix, 

an accuracy of 98.64% was obtained at 25 epochs, 98.78% at 50 epochs, and 99.09% at 75 epochs. 

Adding epochs has improved the model's generalization ability to test data. The most common 

misclassification errors occurred between the Black Rot and ESCA classes, but these errors decreased 

significantly at higher epochs. The higher the number of epochs, the better the precision, recall, 

accuracy, and F1-score results. The configuration with 75 epochs provided the best performance, with 

an accuracy value reaching 99.09% and a perfect balance between metrics, without showing symptoms 

of overfitting. These findings indicate that training the model for a sufficient number of cycles 

contributes significantly to the stability and accuracy of the classification. Therefore, 75 epochs are 

recommended as the optimal parameter in model training for this study. 

The implications of this research are significant for the field of Computer Science, particularly in 

the subdomains of computer vision and precision agriculture. The implementation of transfer learning 

using InceptionV3 offers a scalable and efficient approach to automated plant disease detection, which 

can contribute to increasing agricultural productivity and supporting smart farming initiatives. 
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Future research should consider expanding the dataset using field acquired images to improve 

robustness under real world conditions. Additionally, integrating this model into mobile or edge 

computing devices and evaluating its performance in real-time scenarios could further validate its 

practicality for on-site deployment. 
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