Jurnal Teknik Informatika (JUTIF) Vol. 6, No. 5, October 2025, Page. 3683-3696
P-ISSN: 2723-3863 https://jutif.if.unsoed.ac.id
E-ISSN: 2723-3871 DOI: https://doi.org/10.52436/1.jutif.2025.6.5.4717

Fine-Tuned Transfer Learning with InceptionV3 for Automated Detection
of Grapevine Leaf Diseases

Miftahus Sholihin*!, Moh. Rosidi Zamroni?, Lilik Anifah’>, Mohd Farhan Md Fudzee*, Mohd
Norasri Ismail®

2Informatic Engineering, Universitas Islam Lamongan, Indonesia
3Electrical Engineering Department, Universitas Negeri Surabaya, Indonesia
*SFaculty of Computer Sciences and Information Technology, University Tun Hussein Onn Malaysia,
Malaysia

Email; 'miftahus.sholihin@unisla.ac.id

Received : May 13, 2025; Revised : Jun 24, 2025; Accepted : Aug 16, 2025; Published : Oct 21, 2025

Abstract

Grape leaf diseases pose a major threat to vineyard productivity, making early and accurate detection essential for
modern grape plantation management. Despite advancements in computer vision, challenges remain in differentiating
diseases with visually similar symptoms. This study addresses that gap by developing a grape leaf disease
classification system using a fine-tuned deep learning model based on the InceptionV3 architecture. Three training
scenarios were conducted with fixed parameters batch size of 32 and learning rate of 0.001while varying the number
of epochs (25, 50, and 75). Results showed a consistent improvement in classification accuracy with increased
training epochs, reaching 98.64%, 98.78%, and 99.09% respectively. Confusion matrix analysis revealed that most
misclassifications occurred between visually similar diseases such as Black Rot and ESCA, but error rates declined
as the number of epochs increased. Rather than merely applying transfer learning, this research highlights the impact
of systematic tuning specifically epoch count optimization in enhancing model accuracy for difficult to distinguish
disease classes. These findings underscore the urgency of developing high performance, automated disease detection
tools to support precision agriculture and sustainable crop health monitoring.
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1. INTRODUCTION

Grapes are fruit plants with high economic value and are widely cultivated worldwide, especially
in the Mediterranean region. The global grape industry has a tremendous market value, exceeding 189
billion USD [1]. Grapes are not only consumed as fresh fruit, but are also processed into various products
such as drinks and sweet foods. However, like other plants, grapes are susceptible to multiple diseases
that require immediate treatment.

Diseases in grape plants can cause significant economic losses [2]. Studies have shown that grape
diseases can result in yield losses of between 10% and 30% [3]. In the worst cases, losses due to disease
can even reach 80% of the total harvest [1]. Some common diseases that attack grape plants include
black rot, ESCA, leaf blight, powdery mildew, and downy mildew [4].

Rapid and accurate detection and diagnosis of grapevine diseases are essential for effective
vineyard management [5]. Traditional grapevine disease identification methods generally rely on human
visual observation [6], [7]. This approach has several drawbacks. It is time-consuming, requires expert
personnel, and is prone to subjective errors [8]. Consequently, delays in disease identification and
control measures often occur. These limitations drive the urgent need for automated systems capable of
rapid and accurate detection and classification of grapevine leaf diseases.
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In recent years, deep learning methods, especially Convolutional Neural Networks (CNN), have
been widely applied in agriculture [9], [10], [11], [12], [13], [14]. Various variants of CNN-based
methods have been developed to identify and monitor plant diseases [15]. The adaptation of CNN
models for specific agricultural problems remains an active and innovative area of research. Ji et al [2]
and Liu et al [15] specifically focused on grape leaf disease, achieving accuracies of 98.57% and
97.22%, respectively, by modifying the basic CNN architecture. Significant progress was also seen in
other commodities. For instance, Zhang et al [16] adapted AlexNet for cucumber disease identification
(94.65%), while Thet et al [17] modified VGG16 to achieve 98.4% accuracy for five leaf disease classes.
These findings strengthen the hypothesis that transfer learning from pre-trained CNN models can
overcome data limitations [18]. Recent studies have further demonstrated the potential of fine-tuned
transfer learning models such as InceptionV3 and EfficientNetBO in classifying grapevine leaf diseases
with high accuracy (92%—99.02 %) [8], [19], [20], [21]. These models have enabled early detection and
improved disease management strategies, further validating their role in modern agriculture.

On the other hand, the InceptionV3 architecture introduced by Szegedy et al [22] is one of the
CNN models in the GoogLeNet family that offers a balance between network depth, computational
efficiency, and classification performance. InceptionV3 has been proven effective in various everyday
image classification tasks and has been widely used in transfer learning applications in multiple domains
[23], [24], [25], including medical and agricultural fields [26], [27], [28], [29]. The transfer learning
strategy allows pre-trained weights from large datasets (such as ImageNet) to speed up the training
process and improve accuracy on smaller, specific datasets.

Although the transfer learning approach with CNN has been widely applied to plant disease
classification, studies that specifically apply fine-tuning to InceptionV3 for grape leaf disease are still
relatively limited. Most studies only use pre-trained models as feature extractors without further
adjustments to the model parameters. In fact, fine-tuning the upper layers of the network enables the
model to adapt to the target dataset more effectively. This adjustment can improve both accuracy and
generalization performance. However, limitations remain in model generalization to varied datasets and
environmental conditions, as highlighted by Das et al. [30] and Tamilmani and Khan [31].
Computational cost also remains a concern when scaling to large datasets. These practical concerns
highlight the need for efficient and robust training strategies.

Based on the literature review, a research gap has been identified in applying deep learning
techniques, particularly advanced architectures such as InceptionV3, for detecting and classifying grape
leaf diseases. To address this gap, the present study proposes a novel contribution by implementing a
transfer learning approach based on the InceptionV3 architecture, optimized through fine-tuning
techniques to improve classification accuracy. InceptionV3 was selected due to its ability to extract
multiscale features efficiently through its modular design. This research is expected to broaden the
application of InceptionV3 in plant disease classification and offer a more accurate and computationally
efficient solution for grape leaf disease detection. To the best of our knowledge, this study is the first to
systematically investigate the impact of fine-tuning epoch variations on the performance of InceptionV3
for grape leaf disease classification. This research is expected to broaden the application of InceptionV3
in plant disease classification. It also offers a more accurate and computationally efficient solution for
grape leaf disease detection. Furthermore, this work contributes to the conversation on responsible Al
in agriculture by acknowledging ethical considerations such as data bias, privacy, and the impact on
traditional farming practices [32], [33]. Ultimately, the findings are expected to support enhanced
productivity and sustainability in the grape plantation industry.
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2. METHOD

This research was conducted through four main stages, as shown in Figure 1. The first stage is
data collection, where the dataset used was obtained from the Kaggle platform. The dataset contains a
collection of grape leaf images categorized into several classes.

The next stage is data pre-processing. At this stage, a series of processes are carried out to ensure
that the data is in optimal condition before being used in model training. Pre-processing activities include
normalizing pixel values into a scale of [0,1] to speed up the convergence process and data augmentation
in the form of rotation, flipping, and zooming to increase the diversity of training data and prevent
overfitting. This process aims to strengthen the model's generalization to image variations in the real
world.

The third stage is the utilization of pre-trained models. In this context, the InceptionV3
architecture, which has been pre-trained on a large-scale dataset such as ImageNet, is used. The transfer
learning approach allows the utilization of visual features learned by the model, so that training on a
specific dataset (grape leaf images) can be done more efficiently and accurately, even with limited data.
The pre-trained model is selected and adjusted to the dataset's characteristics, and adjustments to the
output layer according to the number of target classes.
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Figure 1. Research Stage

The final stage is the model performance evaluation, which is carried out using metrics such as
accuracy, precision, recall, and F1-score, which are extracted from the confusion matrix. This evaluation
assesses the model's generalization ability to test data and detect potential bias or class imbalance. The
evaluation results are the basis for determining the approach's effectiveness and the potential for further
development.

2.1. Data Collection

The initial stage in this study is data collection. In this study, the data used are images of grape
leaves labeled according to their health conditions and the type of disease that attacks them. The dataset
is supervised and consists of four classes: black rot, ESCA (black measles), leaf blight, and healthy
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leaves.  This  dataset was  obtained from the Kaggle site via the link
(https://www.kaggle.com/datasets/rm1000/grape-disease-dataset-original ) uploaded by Mandal and
Gouda [34]. This dataset was chosen because it has good image quality and has been widely used in
plant disease classification research. The number of images in each class is presented in the following
Table 1.

Table 1. Grape Disease Dataset.

Class Name Training Testing Total
Black Rot 1888 472 2360
ESCE 1920 480 2409
Leaf Blight 1722 430 2152
Healthy 1692 423 2115

To provide a visual representation of the data used, Figure 2 are sample images from each class.

2.2. Data Pre-processing

After all the grape leaf image data has been successfully collected, the next stage is data pre-
processing to ensure that the data is in optimal condition for use by the deep learning model. This stage
begins with the resizing process, which is changing all images to a uniform size, for example, 224 x 224
pixels, to match the standard input of the pre-trained model architecture. Furthermore, the image pixel
values are normalized into the [0,1] range by dividing the RGB values by 255. This step is essential to
speed up the convergence process during model training and maintain learning stability.

To increase data variability and enhance the model’s generalization capability, several data
augmentation techniques are applied, including random rotation, horizontal flipping, zoom, and
brightness adjustment. These augmentations are applied only to the training subset to minimize the risk
of overfitting, especially when the dataset size is relatively small.

The dataset is divided into three main subsets: training, validation, and testing. The training and
validation subsets are generated using stratified splitting, implemented through the ImageDataGenerator
class from the Keras library. A validation split of 10% (validation_split=0.1) is used to ensure that the
class distribution remains balanced between the training and validation sets. The subsets are created
internally using the flow from_directory() method by specifying the subset="training' and
subset='validation' parameters. Meanwhile, the test set is stored in a separate directory and loaded using
a dedicated ImageDataGenerator instance with only rescaling (no augmentation applied). Additionally,
shuffle=False is used to preserve the order of samples, which is important for accurate performance
evaluation and comparison with ground truth labels.
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2.3. Pre-trained Model

This study uses a transfer learning approach using the InceptionV3 architecture pre-trained on the
ImageNet dataset. The base model is initialized with the include top=False parameter to remove the
default classification part and retain the convolution layer as a feature extractor. All layers in the base
model are frozen so that the learned weights are not updated during the training process, so that the
general features that have been discovered are maintained.

A unique classification head has been added to adapt the model to the targeted classification task.
First, a 2D Global Average Pooling layer is applied to reduce the spatial dimension of the output features
to a one-dimensional vector of size 2048. Dropout follows this layer with a deletion rate 0.5 to reduce
the risk of overfitting by randomly deactivating some neurons during training.

Next, a Dense layer with 256 units and a ReLU activation function is added to build a more
specific feature representation for the classification task. Finally, the output layer is a Dense layer with
four units, and a softmax activation function is used to generate probability predictions for the four target
classes.

During the fine-tuning phase, several hyperparameters were optimized, including setting the
initial learning rate to 0.001 using the Adam optimizer. A learning rate scheduler was implemented
using ReduceLROnPlateau to reduce the learning rate when the validation loss plateaued. Early
stopping with a patience of 10 epochs was also employed to prevent overfitting. The model was trained
with a batch size of 32 and a maximum of 75 epochs. Callbacks such as ModelCheckpoint were
used to save the best-performing model based on validation accuracy. The complete structure of the
customized InceptionV3 model architecture is shown in Figure 3, which illustrates the image processing
flow from input to generating class predictions.
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Figure 3. Proposed Method.

2.4. Evaluation

After the model training process is completed, the next step is to evaluate the model's performance
using test data that has never been involved in the training or validation process. This evaluation aims
to measure the model's generalization ability to new data and identify potential weaknesses in
classification performance. Several evaluation metrics used in this study include accuracy, representing
the proportion of correct predictions compared to all projections made.
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In addition, precision, recall, and F1-score are also calculated using the following mathematical
Equations (1), (2), (3), and (4).

TP

Precision = (D
TP+FP
TP
Recall = 2)
TP+FN
TP+FP
Accuracy = ————— 3)
TP+FP+TN+FN
Precision*Recall
F1—score =2« ————— 4
Precision+Recall

Where TP = True Positive, FP = False Positive, and FN = False Negative.

Precision measures how accurate the optimistic predictions produced by the model are, while
recall describes how much the model can capture all actual positive samples. The F1-score, being the
harmonic mean of precision and recall, provides a more balanced picture of model performance,
particularly in the presence of class imbalance.

In addition to these metrics, a confusion matrix is also used to visualize the distribution of
predictions between classes, including the number of correct predictions (true positives and true
negatives) and misclassifications (false positives and false negatives). The confusion matrix is
implemented using the confusion matrix function from sklearn.metrics. Analysis of the confusion
matrix provides more detailed insights into which classes are most often misclassified, so that it can be
used as a basis for efforts to improve model performance in subsequent iterations.

3.  RESULT

In this study, training and testing of image classification models were carried out using three
scenarios based on the number of epochs, namely 25, 50, and 75. Other parameters used remained
constant: the batch size of 32, the optimizer using Adam, and the learning rate of 0.001. Model
performance was evaluated by analyzing the accuracy and loss graphs at the training stage and the
confusion matrix analysis at the testing stage.

3.1. Training Process

The model training process was carried out with three different scenarios based on the number of
epochs, namely 25, 50, and 75 epochs. The training parameters used for these three scenarios were a
batch size of 32, an optimizer using Adam, and a learning rate of 0.001.

In the first scenario (25 epochs), the training accuracy showed a gradual increase from the initial
epoch and approached 95% by the final epoch, while the validation accuracy fluctuated around 97% as
shown in Figure 4. The training and validation loss values also decreased overall, although the validation
loss experienced slight fluctuations, indicating some instability in generalization. This suggests that the
model began learning relevant features but had not yet reached optimal stability.

In the second scenario (epoch 50) shown in Figure 5, the graph shows a more consistent increase
in training accuracy compared to the first scenario. Training accuracy is close to 96%, and validation
accuracy is around 97%. The training and validation loss values also experience a more significant
decrease compared to the previous scenario, indicating better model performance. This suggests the
model has started to generalize better to unseen data and is capturing more relevant feature patterns,
especially in complex disease classes.
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Figure 4. Training, Validation Accuracy, Training Loss, And Validation Loss With Epoch 25.
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Figure 5. Training, Validation Accuracy, Training Loss, And Validation Loss With Epoch 50.

Meanwhile, Figure 6 is the third scenario (epoch 75, shown in Figure 6), the graph shows a more
stable increase in training and validation accuracy. The training accuracy is above 96%, while the
validation accuracy reaches a range of more than 97%. The loss values in training and validation
experienced a sharper decline, with better stability compared to the previous scenario. This shows that
the model has learned the data more effectively as the number of epoch increases. This trend implies
that increasing epochs have enabled the model to extract more discriminative features, which are
particularly useful in distinguishing visually similar classes.

Model Accuracy Model Loss

a 10 20 30 40 50 60 70 [ 10 20 30 40 50 60 70
Epoch Epach

Figure 6. Training, Validation Accuracy, Training Loss, And Validation Loss With Epoch 75

3.2. Testing Process

This study evaluates the performance of the classification model using three different scenarios
based on the number of epochs, namely 25, 50, and 75 epochs, with a batch size parameter of 32 and a
learning rate of 0.001. Performance evaluation is carried out using a confusion matrix on the test data.

The model testing results at the 25 epoch configuration are illustrated by the confusion matrix in
Figure 7. Overall, the model was able to classify most of the test data correctly, although notable
misclassifications occurred in certain classes. The Black Rot class was accurately identified in 458
instances, with 14 samples misclassified as ESCA. Conversely, the ESCA class experienced a higher
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rate of misclassification, with 32 samples incorrectly predicted as Black Rot, while 448 were correctly
classified. The Leaf Blight class demonstrated excellent performance, achieving perfect classification
with all 423 samples correctly predicted. The Healthy class also performed well, with 427 correct
predictions and only 3 samples misclassified as Black Rot. These results suggest that at an early training
stage (25 epochs), the model still struggles to differentiate between visually similar classes, particularly
Black Rot and ESCA, which both exhibit necrotic spots and leaf discoloration patterns that may confuse
the model’s convolutional filters. This indicates that with a limited number of training cycles, the feature
representations learned by the model are not yet sufficiently discriminative. In contrast, the strong
classification performance in the Leaf Blight and Healthy classes implies that the distinguishing visual
features of these categories are more easily captured even with shallow training. Overall, although the
classification results at 25 epochs are promising, increasing the number of training epochs is necessary
to reduce inter-class confusion and improve the model’s generalization capability.

The model’s performance in the testing phase with a training configuration of 50 epochs is
depicted in the confusion matrix in Figure 8. Compared to the previous scenario with 25 epochs, the
results show an overall improvement in classification accuracy and a reduction in misclassifications.
For the Black Rot class, the model correctly classified 456 instances, with 16 samples misclassified as
ESCA. Conversely, for the ESCA class, 454 samples were correctly identified, while 25 were
misclassified as Black Rot, and 1 instance was incorrectly labeled as Healthy. The Leaf Blight class
maintained its strong performance, achieving 100% accuracy with all 423 instances correctly classified,
indicating that the features of this class continue to be reliably captured by the model. The Healthy class
also exhibited near-perfect classification, with 428 correct predictions and only 1 sample misclassified
as Black Rot, and 1 as ESCA.

These results suggest that increasing the number of training epochs enhances the model’s ability
to generalize and discriminate between visually similar classes. The notable reduction in
misclassifications between Black Rot and ESCA although still present indicates the model is learning
more refined and discriminative features with extended training. Additionally, the model’s robustness
across Leaf Blight and Healthy classes demonstrates its consistency in recognizing distinct visual
characteristics. Overall, the 50 epoch configuration reflects a positive progression in classification
performance, reducing inter-class confusion and further strengthening the model’s reliability on unseen
data.

Confusion Matrix
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Black Rot

True Labels
ESCA

Healthy

- 100

Leaf Blight
A

' ' |
Black Rot ESCA Healthy Leaf Blight
Predicted Labels

Figure 7. Confusion Matrix with Epoch 25.

3690


https://jutif.if.unsoed.ac.id/
https://doi.org/10.52436/1.jutif.2025.6.5.4717

Jurnal Teknik Informatika (JUTIF) Vol. 6, No. 5, October 2025, Page. 3683-3696
P-ISSN: 2723-3863 https://jutif.if.unsoed.ac.id
E-ISSN: 2723-3871 DOI: https://doi.org/10.52436/1.jutif.2025.6.5.4717

Confusion Matrix

Black Rot

ESCA

True Labels

- 200

Healthy

- 100

Leat Blight

| ' '
Black Rot ESCA Healthy Leaf Blignt
Pradicted Labels

Figure 8. Confusion Matrix with Epoch 50.
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Figure 9. Confusion Matrix with Epoch 75.

The confusion matrix for the model trained with 75 epochs, shown in Figure 9, indicates the best
overall performance among all tested configurations. The classification results show a notable reduction
in misclassifications, particularly between the visually similar Black Rot and ESCA classes. For the
Black Rot class, the model correctly identified 460 samples, with only 11 misclassified as ESCA and 1
as Healthy. Conversely, the ESCA class achieved 459 correct predictions, with 20 misclassified as Black
Rot and 1 instance incorrectly identified as Leaf Blight.

The Leaf Blight class maintained perfect classification performance, with all 423 samples
correctly predicted and zero errors, as in the previous scenarios. The Healthy class also achieved flawless
classification, with 430 correct predictions and no misclassifications representing an improvement over
earlier epochs.

These results demonstrate that increasing the number of epochs to 75 significantly improves the
model’s learning stability and feature discrimination, particularly in distinguishing between challenging
class pairs such as Black Rot and ESCA. The continued accuracy of the Leaf Blight and Healthy classes
further highlights the robustness and generalization capacity of the model. The overall distribution of
correct predictions, along with the minimal misclassification rate, reinforces the finding that 75 epochs
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represent the optimal training duration in this study, offering a well-balanced trade-off between
accuracy, generalization, and computational efficiency.

To provide a clear comparison of model performance across different training configurations, an
aggregated metric table is presented in Table 2.

From the results in Table 2, it can be concluded that increased epochs contribute significantly to
better classification performance. In particular, 75 epochs provided the highest and most consistent
accuracy, precision, recall, and F1-score.

Table 2. Overall Result Of Proposed Method.

Epoch Precision Recall Accuracy Fl-score
25 97,47 97,42 98,64 97,42
50 97,56 97,56 98,78 97,56
75 98,26 98,27 99,09 98,26

4. DISCUSSIONS

The results of the model performance evaluation on three configurations of the number of epochs
25, 50, and 75 show a trend of increasing performance as the number of training cycles increases, as
presented in Table 2. All evaluation metrics, namely precision, recall, accuracy, and F1-score, show
consistent improvements with the best results achieved at the 75th epoch.

At the 25th epoch, the model recorded a precision of 97.47%, a recall of 97.42%, an accuracy of
98.64%, and an F1-score of 97.42%. These metrics indicate that in the early stages of training, the model
can classify with a relatively low error rate. When the number of epochs was increased to 50, there was
a slight but consistent improvement in all metrics, namely, precision and recall increased to 97.56%,
while accuracy increased to 98.78%. This shows that adding training cycles strengthens the model's
generalization ability.

Optimal performance was achieved at epoch 75, with precision and recall values of 98.26% and
98.27%, respectively, accuracy of 99.09%, and F1-score of 98.26%. These values reflect the stability
and depth of the model's understanding of data patterns without indicating significant overfitting. The
balance between precision and recall values also shows that the model cannot only minimize positive
prediction errors, but is also quite sensitive in detecting all instances of the target class. This is reinforced
by the high Fl-score value, which indicates that the trade-off between precision and recall has been
achieved optimally.

Overall, the gradual improvement in all validation metrics proves that the longer training process
improves accuracy and consistency of model performance. Considering the aspects of accuracy,
stability, and efficiency, it can be concluded that the training configuration with 75 epochs is the most
optimal parameter to be applied in this study.

The model's performance in this study shows significant advantages compared to previous
approaches in digital image-based leaf disease classification. Previous studies have proposed various
strategies to improve classification accuracy, but with varying methods and complexities.

In recent years, a wide range of deep learning approaches have been explored for grapevine leaf
disease classification. These include both conventional CNN architectures and hybrid models that
integrate clustering, feature engineering, and ensemble techniques. For example, Kaur and Devendran
[35] developed a semi-automatic system for detecting grape leaf diseases by combining K-Means
clustering optimized using Grey Wolf Optimization (GWO), and hybrid feature extraction consisting of
Law’s Mask, GLCM, LBP, and Gabor features. The model was classified using an ensemble classifier
and recorded an accuracy of 95.69%. A similar approach was taken by Javidan et al [36], who also used
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the K-Means clustering method combined with a machine learning algorithm, resulting in an accuracy
of 98.97%. Meanwhile, Ishengoma and Lyimo [37] used a Convolutional Neural Network (CNN) for
feature extraction and a Random Forest for classification. In their experiments, features extracted from
the VGG-16 and InceptionV3 architectures gave the highest accuracy of 95.34%. The combined fine-
tuning-based model has also been tested in the literature. Ji et al [2] introduced a united model approach
by combining ResNet50 and InceptionV3 as a fine-tuning technique, which achieved an accuracy of
98.57%. Furthermore, Canghai et al [6] introduced GC-Mobilenet, which combines the MobileNet
architecture with the Ghost convolution algorithm, and achieved an accuracy of 98.63%.

In parallel, modern deep CNN architectures have also been benchmarked extensively.
EfficientNetBO0, for example, has demonstrated superior accuracy in several studies, reaching up to
99.02% [21], consistently outperforming InceptionV3 in various tasks [8], [38]. EfficientNetB5 and B7
have also shown strong results (96.07% and 96.39%), though BO is often preferred for its efficiency
[19]. VGG16, though widely applied, often trails behind, achieving 96.29% [39], while ResNet50 and
its deeper variants like ResNet152V2 offer improved generalization and reach up to 97.06% [20], [39],
[40]. DenseNet121 has demonstrated exceptional accuracy (99.12%), and MobileNetV2 has also
performed well, achieving 99% while remaining suitable for lightweight applications [41], [42].

Compared with those studies, the model in this study shows the highest accuracy of 99.09% on a
75-epoch configuration, accompanied by high and balanced precision, recall, and F1-score values. The
advantages of this model lie in the efficiency of the architecture and the stability of performance as the
epoch increases, without requiring the integration of optimization algorithms or complex hybrid models.
Thus, this study's approach produces more accurate classification performance than previous models
and offers a more straightforward, efficient, and reproducible solution for image-based plant disease
detection systems.

From an application standpoint, the proposed model can be adapted for real-time deployment in
mobile-based diagnostic systems or integrated into drone-based platforms for vineyard monitoring. The
relatively lightweight nature of InceptionV3 and its compatibility with transfer learning pipelines make
it well-suited for scalable, real-time plant health monitoring systems in precision agriculture.

5. CONCLUSION

This study has successfully developed and evaluated a deep learning-based classification model
using three different training scenarios based on the number of epochs, namely 25, 50, and 75 epochs.
With a batch size configuration of 32 and a learning rate of 0.001, the model shows a consistent increase
in performance as the number of epochs increases. From the evaluation results using a confusion matrix,
an accuracy of 98.64% was obtained at 25 epochs, 98.78% at 50 epochs, and 99.09% at 75 epochs.
Adding epochs has improved the model's generalization ability to test data. The most common
misclassification errors occurred between the Black Rot and ESCA classes, but these errors decreased
significantly at higher epochs. The higher the number of epochs, the better the precision, recall,
accuracy, and F1-score results. The configuration with 75 epochs provided the best performance, with
an accuracy value reaching 99.09% and a perfect balance between metrics, without showing symptoms
of overfitting. These findings indicate that training the model for a sufficient number of cycles
contributes significantly to the stability and accuracy of the classification. Therefore, 75 epochs are
recommended as the optimal parameter in model training for this study.

The implications of this research are significant for the field of Computer Science, particularly in
the subdomains of computer vision and precision agriculture. The implementation of transfer learning
using InceptionV3 offers a scalable and efficient approach to automated plant disease detection, which
can contribute to increasing agricultural productivity and supporting smart farming initiatives.
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Future research should consider expanding the dataset using field acquired images to improve
robustness under real world conditions. Additionally, integrating this model into mobile or edge
computing devices and evaluating its performance in real-time scenarios could further validate its
practicality for on-site deployment.
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