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Abstract 

The increase in demand for electrical energy is in line with increasing population, urbanization, industrial 

deployment, and technology. Accurate prediction of electrical energy consumption plays an important role in 

planning, analyzing, and managing electricity systems to ensure sustainable, safe, and economical electricity supply. 

K-Nearest Neighbors (KNN) is a simple and fast prediction algorithm based on the quality and relevance of the 

features used. This research proposes to improve the accuracy of energy consumption prediction through feature 

selection based on metaheuristic algorithms, namely Genetic Algorithm (GA), Ant Lion Optimization (ALO), 

Teaching Learning Based Optimization (TLBO), and Jaya Algorithm (JA). The dataset used is Tetouan City Power 

Consumption, with a preprocessing process of time feature extraction, min-max scaling normalization, and feature 

selection. The ALO+KNN and JA+KNN combinations delivered the best and most stable prediction performance, 

while TLBO+KNN performed poorly. GA+KNN showed the worst overall results among all combinations. The 

evaluation of model performance was based on RMSE, MAPE, and R² metrics. These findings highlight the 

importance of selecting a feature selection algorithm that aligns well with the characteristics of the model and dataset 

to enhance prediction accuracy. 

 

Keywords: Ant Lion Optimization, Feature selection, Genetic Algorithm, Jaya Algorithm, K-Nearest Neighbors, 
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1. INTRODUCTION 

One of the main sources of energy for society is electrical energy [1]. This can be seen by the 

continuous increase in demand for electrical energy along with increasing population, urbanization, 

industrial deployment, and technology [2]. Electricity demand prediction plays an important role in 

planning, analyzing, and managing electricity systems to ensure sustainable, safe, and economical 

electricity supply [3]. Therefore, developing an accurate prediction model is a challenge in research. 

One machine learning algorithm that can be used for prediction is K-Nearest Neighbor (KNN) as 

a simple and fast algorithm [4]. Some studies show the performance of KNN outperforms other 

techniques [5], [6]. Research by Goopyo Hong et al. [7] used KNN to predict electrical energy 

consumption. The results obtained the coefficient of variation of the root mean squared error (CVRMSE) 

value in summer and fall ranged from 12-13%. This value range is acceptable based on the American 

Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE) guidelines of 14%. In 

spring and winter, the CVRSME value is higher than 30%. Abdullahi Abubakar Mas'ud [5] predicting 

photovoltaic (PV) power resulted in the KNN algorithm being able to outperform other models with a 
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root mean square error (RMSE) of 18.68%, mean absolute error (MAE) of 80.6%, and normalized root 

mean square error (nRMSE) of 13.2%. Liang et al. [8] predicts the long-term and high-resolution 

demand for thermal loads in buildings at the pre-design stage. Predictions are used for operational 

efficiency in the proportion of heating, ventilation, and air conditioning (HVAC) energy consumption. 

The algorithm used is KNN with data of 16,384 building models simulated using EnergyPlus. 

Performance evaluation showed an RMSE value of 3.01 W/m², Mean Absolute Percentage Error 

(MAPE) of 5.63%, and R² close to 0.999 for annual thermal load. 

Prediction results can be affected by poor dataset quality [9]. A dataset is a collection of data that 

contains information on a particular problem. Datasets may have very large dimensions, excessive or 

multiple attributes so that pre-processing techniques are needed in the form of feature selection. Feature 

selection aims to select features that need to be retained or not. Irrelevant features can have a negative 

impact on model performance [10] . Feature selection based on metaheuristics in the last few decades is 

widely used [11]. The application of the Genetic Algorithm (GA) metaheuristic algorithm can improve 

the performance of Random Forest classification with an Area Under the Curve (AUC) value of 0.98 

[12].  The main characteristic of GA is its ability to explore the solution space widely through population 

approaches and evolutionary mechanisms. In the context of feature selection, GA is able to find the 

optimal combination of features by evaluating many possible subsets simultaneously. Ant Lion 

Optimization (ALO) algorithm combined with Support Vector Machine (SVM) to predict groundwater 

level (GWL) showed superior performance compared to other combinations [13]. In feature selection, 

ALO has the main characteristic of a good balance between exploration (exploring new solutions) and 

exploitation (improving the best solution that has been found). ALO uses a random and adaptive ant trap 

mechanism to guide the solution to the optimal area in the search space. This characteristic makes ALO 

effective in avoiding local solution traps and finding relevant feature combinations more stably. 

Teaching Learning Based Optimization (TLBO) algorithm is one of the most efficient and practical 

optimization techniques [14]. The Jaya Algorithm (JA) has the advantage of requiring fewer control 

parameters and being easy to implement, making it well-suited for solving optimization problems. Based 

on experimental results, JA can effectively eliminate redundant features, which contributes significantly 

to improving model performance. [15].  

Although several studies have used metaheuristic algorithms for feature selection and KNN to 

make predictions, there is still a gap in research, namely research has not conducted a comparative study 

of metaheuristic algorithms in optimizing feature selection for KNN in predicting electrical energy 

consumption. The benefit of this research is to contribute theoretically by enriching the literature on 

KNN optimization using metaheuristic methods and knowing the combination of feature selection that 

is suitable for predicting electrical energy consumption. 

2. METHOD 

The CRISP-DM (Cross-Industry Standard Process for Data Mining) method is a de-facto standard 

method and an industry-independent process model for data mining [16]. The CRISP-DM method 

provides a systematic framework in guiding the data analysis process. The CRISP-DM diagram includes 

the stages of Business Understanding, Data Understanding, Data Preparation, Modeling, Evaluation, 

and Deployment  [17], [18] . These stages ensure the research process, starting from understanding the 

business context to model implementation. The CRISP-DM phase is presented in Figure 1. The figure 

illustrates the CRISP-DM process consisting of six iteratively interconnected stages. The process starts 

from Business Understanding to understand business objectives, followed by Data Understanding to 

explore available data. Both influence each other because data understanding can change business 

perspectives. Furthermore, the data is processed at the Data Preparation stage so that it is ready to be 

used in Modeling, namely the development of a predictive model. The resulting model is evaluated at 
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the Evaluation stage to ensure its suitability for the initial objectives. If feasible, the model is 

implemented through Deployment. This process is cyclical, where the results of each stage can trigger 

iterations to the previous stage for continuous improvement. 

 

 
Figure 1. CRISP-DM Phases 

 

2.1. Business Understanding 

Accurate consumption prediction requires a wide variety of data with their respective 

contributions to the prediction model. The selection of diverse data or features is the most important 

thing in machine learning. The purpose of feature selection can reduce dimensions and reduce 

computational load which can improve model performance [19], [20], [21]. The purpose of this research 

is to improve the accuracy of predicting electrical energy consumption using KNN optimized by 

metaheuristic-based feature selection methods. The methods compared are the performance of four 

metaheuristic algorithms, namely GA, ALO, TLBO, and JA. 

2.2. Data Understanding 

The data used in this study comes from Kaggle with the file name Tetouan City power 

consumption. The dataset consists of 52,417 data with 9 features, namely DateTime, Temperature, 

Humidity, Wind speed, General Diffuse Flows, Diffuse Flows, Zone 1 Power Consumption, Zone 2 

Power Consumption, and Zone 2 Power Consumption. The dataset description is presented in Table 1.  

 

Table 1. Dataset Attribute 

Attribute Data Type Missing Values Description 

DateTime Date no Date and time in ten-minute intervals 

Temperature Continuous no Weather temperature  

Humidity Continuous no Weather humidity  

Wind Speed Continuous no Wind speed  

General Diffuse Flows Continuous no General diffuse flows 

Diffuse Flows Continuous no Diffuse flows 

Zone 1 Power Consumption Continuous no Zone 1 Power Consumption 

https://jutif.if.unsoed.ac.id/
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Zone 2 Power Consumption Continuous no Zone 2 Power Consumption 

Zone 3 Power Consumption Continuous no Zone 3 Power Consumption 

2.3. Data Preparation 

Effective data preparation can ensure that the data used is robust, relevant, and easy to manage 

resulting in more reliable and precise training results [22]. In machine learning (ML) models, the most 

effective numerical feature normalization method used is min-max scaling [23], [24], [25]. Min-max 

scaling transforms numerical values to fall within the range of 0 to 1 [26], [27]. Min-max scaling (x′) is 

calculated by the original data value (x ) minus the minimum data among all attributes of the original 

data set (xmin), divided by the maximum data among all attributes of the original data set (xmax) 

minusxmin. The min-max scale is calculated by the equation (1). 

 

 
x '=

(x-xmin)

(xmax-xmin)
 (1) 

 

The application of min-max scaling can also improve accuracy and performance efficiency. KNN 

relies heavily on distance metrics so that differences in scale between features can affect distance 

calculations and reduce model performance [28], [29]. In addition to the min-max scaling method, the 

process in data preparation is feature selection.  

Feature selection is a dimension reduction technique used to select relevant features in ML. 

Feature selection can reduce the size of the data set by removing redundant and irrelevant features so as 

to improve model performance and speed up the learning process [30], [31]. Feature selection methods 

are classified into 4 groups, namely evolution based algorithms, swarm intelligence based algorithms, 

physics based algorithms, and human behavior related algorithms [32]. GA is a popular optimization 

technique in the evolution based algorithm group [33]. A widely used method from the swarm 

intelligence based algorithms group is ALO [33]. Feature selection methods based on popular human 

behavior related algorithms inspired by the teaching and learning process in the classroom are TLBO 

[34], [35]. JA is a new metaheuristic technique and has a simple form and does not use specific 

parameters [36], [37]. The selected features are then measured for the linear relationship between two 

variables and the strength of the relationship using the Pearson correlation method. The value obtained 

is between -1 and +1, where the resulting coefficient is denoted as "r " [38]. The interpretation of the 

Pearson correlation coefficient is presented in Table 2.  

 

Table 2. Interpretation of Pearson's Correlation Coefficient. 

Range of r Degree of Relationship 

-1.0 to -0.7 Strong negative  

-0.7 to-0.3 Distinct negative  

-0.3 to -0.1 Weak negative  

-1.0 to +0.1 Not a linear relationship 

+0.1 to +0.3 Weak positive  

+0.3 to +0.7 Distinct positive  

+0.7 to +1.0 Strong positive  

2.4. Modeling 

The research methodology consists of several stages, namely data preprocessing, where 

standardization is carried out using min-max scaling to ensure that the data is within a certain range. 

Next, feature optimization is performed to improve the prediction quality by applying several methods, 

namely GA, ALO, TLBO, and JA. The parameter settings of the Genetic Algorithm (GA) for feature 

https://jutif.if.unsoed.ac.id/


Jurnal Teknik Informatika (JUTIF)   Vol. 6, No. 3, Juni 2025, Page. 1373-1388 

P-ISSN: 2723-3863   https://jutif.if.unsoed.ac.id                                       

E-ISSN: 2723-3871   DOI: https://doi.org/10.52436/1.jutif.2025.6.3.4692 

 

 

1377 

selection include the number of iterations of 20 generations (n_gen = 20) and the population size of 10 

individuals (n_pop = 10), where each individual represents a different feature subset. The evolution 

process includes the selection of the best individual, one-point crossover, and mutation with a rate of 

10% to maintain the diversity of solutions. The parameter settings for the Ant Lion Optimization (ALO) 

algorithm include the number of agents (n_agents = 10) and the number of iterations (n_iter = 20), which 

determine the population size and the duration of the optimal solution search process, respectively. Each 

agent represents a candidate feature subset, and at each iteration, the agent is updated through a 

movement mechanism towards the best antlion position (elite). The convergence criterion in this 

program is not explicitly defined, so the process is stopped after all iterations are complete. The Teaching 

Learning Based Optimization (TLBO) algorithm uses two main parameters, namely the number of 

students (n_students = 10) as the population size, and the number of iterations (n_iter = 20) which 

determines how many times the learning process takes place. This parameter controls the two-stage 

process in TLBO, namely the teaching phase and the interaction phase between students (learner phase), 

to direct the search for the optimal solution. The Jaya algorithm uses two main parameters in the feature 

selection process, namely the number of agents (n_agents = 10) which functions as the size of the 

solution population, and the number of iterations (n_iter = 20) which determines how many times the 

solution is improved. In each iteration, agents are updated by gradually directing their positions towards 

the best solution and away from the worst solution. After the features are obtained, prediction modeling 

is performed using KNN. Evaluation of model performance is carried out with three metrics, namely 

Root Mean Square Error (RMSE) to measure the deviation of predictions from actual values on a 

quadratic scale, Mean Absolute Percentage Error (MAPE) which provides an interpretation of errors in 

percentage form, and accuracy (R2).  Figure 2 is the method of research conducted. 

 

 
Figure 2. Research Diagram 

 

2.5. Evaluation 

Performance evaluation of prediction models is essential to determine their accuracy and 

reliability [39]. The metrics used to measure model performance are RMSE, MAPE, and R2. RMSE is 

a metric that measures the average squared error between the predicted value (yî ) and the actual value 

(yi ), which is then taken as the square root, equation (2) to calculate RMSE. MAPE is used to evaluate 

the relative error in percentage form so that it is easier to compare between datasets with different scales. 

The MAPE value is obtained by calculating the average of the absolute percentage errors, equation (3) 

is used to calculate the MAPE value, where M is the amount of data, yt is the actual result value, and ŷt 

https://jutif.if.unsoed.ac.id/
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is the predicted value. Evaluation results using RMSE and MAPE are seen from the smallest error value 

to the best error value [40]. Equation (4) to find the value of R2, where yi is the original value. yî is the 

predicted value, y̅  for the average value of the actual value. y̅̂ is the average predicted value and N is 

the amount of data. If the value of R2 is close to 1, then the observed and predicted values have a very 

close correlation [41]. 

 

 

RMSE= √
1

n
∑(y

i
-ŷ

i
)

2
n

i=1

 (2) 

   

 
MAPE= 

1

M
∑ |

yt-ŷt

yt

| X 100%M
t=1    (3) 

   

 
R2 =

∑ (yi − y̅)N
i=1 (yî − ŷ)

√∑ (yi − y̅)2N
i=1

√∑ (yî −  y̅̂)
2N

I=1

 
(4) 

2.6. Deployment 

This research focuses on analyzing and comparing methods so that the deployment stage is not 

carried out. However, the best model obtained can be implemented in IoT-based energy consumption 

monitoring systems or energy prediction applications for smart grids. 

3. RESULT 

3.1. Dataset 

The dataset is taken from the Kaggle platform with DateTime, temperature, humidity, wind speed, 

general diffuse flows, diffuse flows, Zone 1 Power Consumption, Zone 2 Power Consumption, and Zone 

3 Power Consumption features. Each zone will be predicted. The original data used is shown in Table 

3. 

 

Table 3. Dataset 

DateTime Temper

ature 

Humi

dity 

Wind 

Speed 

General 

Diffuse 

Flows 

Diffuse 

Flows 

Zone 1 Power 

Consumption 

Zone 2 Power 

Consumption 

Zone 3 Power 

Consumption 

1/1/2017 

0:00 
6.559 73.8 0.083 0.051 0.119 34055.7 16128.88 20240.96 

1/1/2017 

0:10 
6.414 74.5 0.083 0.07 0.085 29814.68 19375.08 20131.08 

1/1/2017 

0:20 
6.313 74.5 0.08 0.062 0.1 29128.1 19006.69 19668.43 

... ... ... ... ... ... ... ... ... 

... ... ... ... ... ... ... ... ... 

12/30/2017 

23:30 
6.9 72.8 0.086 0.084 0.074 29590.87 25277.69 13806.48 

12/30/2017 

23:40 
6.758 73 0.08 0.066 0.089 28958.17 24692.24 13512.61 

 

 

3.2. Data Preparation 

https://jutif.if.unsoed.ac.id/
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In the data preparation stage, there are two activities, namely DateTime data extraction and min-

max Scaling. In the DateTime feature, data is extracted into Year, Month, Day, Hour, and Minute. The 

DateTime feature on the dataset is removed because it has been represented by the DateTime data 

extraction results. Table 4 is a dataset that is ready to be used for further processing. 

 

Table 4. DateTime Extraction Result Data 
Tempera 

ture 

Humi 

dity 

Wind 

Speed 

General 

Diffuse 
Flows 

Diffuse 

Flows 

Zone 1 

Power 
Consumption 

Zone 2 

Power 
Consumption 

Zone 3 

Power 
Consumption 

Year Mon 

th 

Day Hour Min 

ute 

6.559 73.8 0.083 0.051 0.119 34055.7 16128.88 20240.96 2017 1 1 0 0 

6.414 74.5 0.083 0.07 0.085 29814.68 19375.08 20131.08 2017 1 1 0 10 

6.313 74.5 0.08 0.062 0.1 29128.1 19006.69 19668.43 2017 1 1 0 20 

... ... ... ... ... ... ... ... ... ... ... ... ... 

... ... ... ... ... ... ... ... ... ... ... ... ... 

6.758 73 0.08 0.066 0.089 28958.17 24692.24 13512.61 2017 12 30 23 40 

6.58 74.1 0.081 0.062 0.111 28349.81 24055.23 13345.5 2017 12 30 23 50 

 

After preprocessing the DateTime extraction data, the numeric features in the dataset are 

normalized using the min-max Scaling method to change the data values into a certain range, usually 

between 0 and 1. This normalization aims to ensure that all features have a uniform scale so that no 

feature dominates the modeling process due to significant differences in the value range. Table 5 is the 

result of min-max scaling normalization. 

 

Table 5. Min-Max Scaling Result Data 
Tempera 

ture 

Humi 

dity 

Wind 

Speed 

General 

Diffuse 

Flows 

Diffuse 

Flows 

Zone 1 

Power 

Consumption 

Zone 2 

Power 

Consumption 

Zone 3 

Power 

Consumption 

Year Mon 

th 

Day Hour Min 

ute 

0.0901 0.7484 0.0051 4.04E-05 1E-04 0.526251 0.262361 0.343368 0 0 0 0 0 

0.0861 0.7568 0.0051 5.67E-05 8E-05 0.415545 0.374886 0.340731 0 0 0 0 0.2 

0.0834 0.7568 0.0047 4.99E-05 1E-04 0.397623 0.362116 0.329626 0 0 0 0 0.4 

... ... ... ... ... ... ... ... ... ... ... ... ... 

... ... ... ... ... ... ... ... ... ... ... ... ... 

0.0955 0.7388 0.0047 5.33E-05 8E-05 0.393187 0.559197 0.181874 0 1 0.966667 1 0.8 

0.0907 0.7520 0.0048 4.99E-05 1E-04 0.377306 0.537116 0.177863 0 1 0.966667 1 1 

 

3.3. Feature Selection 

3.3.1. Genetic Algorithm (GA) Feature Selection 

Feature selection using the GA algorithm in Zone 1 Power Consumption gets temperature, 

humidity, wind speed, general diffuse flows, month, and hour features. Based on the selected features, 

hour has a strong positive linear relationship correlation level of +0.73. This shows that hour has a strong 

influence on electrical energy consumption. Feature selection in Zone 2 Power Consumption obtained 

temperature, wind speed, general diffuse flows, month, hour, and minute. The correlation value between 

features to electricity consumption at hour is +0.66, which means that energy consumption is strongly 

influenced by time. The correlation level value of distinct positive linear relationship is temperature of 

+0.38, and month of +0.32. Zone 3 Power Consumption has four features selected, namely temperature, 

diffuse flows, month, and day. Temperature has a correlation level of distinct positive linear relationship 

of +0.49. Diffuse flows have a correlation level of not a linear relationship with a value of -0.04, which 

means there is no significant linear relationship to the target. Table 6 is the correlation value between 

https://jutif.if.unsoed.ac.id/
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features for each zone, where the Temperature and hour features are strong factors in influencing energy 

consumption, while other selected features have varying influence in each zone. The results of the Zone 

1 Power Consumption heatmap graph are presented in Figure 3.  

 

Table 6. Correlation Analysis of Power Load Value from Zone 

Feature Zone 1 Power Consumption Zone 2 Power Consumption Zone 3 Power Consumption 

Temperature +0.44 +0.38 +0.49 

Humidity -0.29 - - 

Wind Speed +0.17 +0.15 - 

General Diffuse Flows +0.19 +0.16 - 

Diffuse Flows - - -0.04 

Year - - - 

Month -0.005 +0.32 -0.23 

Day - - +0.01 

Hour +0.73 +0.66 - 

Minute - +0.00 - 

 

 
Figure 3. Heatmap of Zone 1 Power Consumption Correlation using GA 

 

3.3.2. Ant Lion Optimization (ALO) Feature Selection  

The results of feature selection using the ALO algorithm, in Zone 1 Power Consumption there are 

features of temperature (+0.44), humidity (-0.29), wind speed (+0.17), general diffuse flows (+0.19), 

month (-0.01), day (-0.07), and hour (+0.73). Zone 2 Power Consumption selected features temperature, 

humidity, wind speed, month, weekday, and hour. The correlation value of each feature is +0.38, -0.29, 

+0.15, +0.16, +0.32, -0.12, and +0.66. While Zone 3 Power Consumption features selected temperature, 

humidity, wind speed, general diffuse flows, diffuse flows, month, and day. The magnitude of the 

correlation value of temperature is +0.49, humidity is -0.23, wind speed is +0.28, general diffuse flows 

are -0.04, month is  -0.23, day is +0.01, and hour is +0.45. In each zone the temperature feature enters 

into a distinct positive linear relationship level. The hour feature enters into a strong positive linear 

relationship level in Zone 1 Power Consumption, while in the other two zones it enters into a distinct 

positive linear relationship level. Diffuse flow in Zone 3 Power Consumption gets a value of -0.04 which 

means this feature does not really affect the target value. Table 7 is the value of the correlation between 

features in each zone. Figure 4 is a heatmap graph of the correlation between features in Zone 1 Power 

Consumption. 

 

Table 7. Correlation Analysis of Power Load Value from Zone 

https://jutif.if.unsoed.ac.id/
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Fiture Zone 1 Power 

Consumption 

Zone 2 Power 

Consumption 

Zone 3 Power 

Consumption 

Temperature +0.44 +0.38 +0.49 

Humidity -0.29 -0.29 -0.23 

Wind Speed +0.17 +0.15 +0.28 

General Diffuse Flows +0.19 +0.16 +0.06 

Diffuse Flows - - -0.04 

Year - - - 

Month -0.01 0.32 -0.23 

Day -0.07 -0.12 +0.01 

Hour +0.73 +0.66 +0.45 

Minute - - - 

 

 
Figure 4. Heatmap correlation of Zone 1 Power Consumption using ALO 

 

3.3.3. Teaching Learning Based Optimization (TLBO) Feature Selection 

Feature selection using the TLBO algorithm on Zone 1 Power Consumption found seven features 

that are considered influential in predicting electrical energy consumption. The selected features are 

temperature, humidity, wind speed, month, day, and hour. Hour has a very high influence with a score 

of +0.73 entering into a strong positive linear relationship correlation level. Temperature correlation 

gets a value of +0.44. Wind Speed of +0.17 is included in the weak positive linear relationship level. 

While the month of -0.01, and the day of -0.07 entered into the level of not a linear relationship. 

Humidity of -0.29 entered into a weak negative linear relationship. 

Zone 2 Power Consumption there are five features that are considered to have an influence in 

predicting energy consumption, namely temperature with a correlation value of +0.38, wind speed of 

+0.15, diffuse flows of +0.04, month of +0.32, and hour of +0.66. Zone 3 Power Consumption has four 

selected features, namely wind speed with a correlation value of +0.28, month by -0.23, hour by +0.45, 

and minute by +0.00. Table 8 shows the correlation value of each zone, while Figure 5 displays one of 

the heatmap graphs in Zone 1 Power Consumption. 

 

 

Table 8. Correlation Analysis of Power Load Value from Zone 

Fiture Zone 1 Power Consumption Zone 2 Power Consumption Zone 3 Power Consumption 

Temperature +0.44 +0.38 - 

Humidity -0.29 - - 

Wind Speed +0.17 +0.15 +0.28 

General Diffuse Flows - - - 

https://jutif.if.unsoed.ac.id/
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Diffuse Flows - +0.04 - 

Year - - - 

Month -0.01 +0.32 -0.23 

Day -0.07 - - 

Hour +0.73 +0.66 +0.45 

Minute - - +0.00 

 

 
Figure 5. Heatmap correlation of Zone 1 Power Consumption using TLBO 

 

3.3.4. Jaya Algorithm (JA) Feature Selection 

The JA algorithm found seven features that are considered to have a correlation in predicting 

energy consumption. Zone 1 Power Consumption the correlation value of the selected features is 

temperature of +0.44, humidity of -0.29, wind speed of +0.17, diffuse flows of +0.08, month of -0.01, 

day of -0.07, and hour of +0.73. Zone 2 Power Consumption features that have a correlation of feature 

selection results are temperature worth +0.38, humidity worth -0.29, wind speed worth +0.15, diffuse 

flows worth +0.04, month worth +0.32, day worth -0.12, and hour worth +0.66. Zone 3 Power 

Consumption features selected are Temperature with a correlation value of +0.49, Humidity of -0.23, 

Wind Speed of +0.28, month of -0.23, day of +0.01, and hour of +0.45. Based on the feature selection 

results, temperature shows a distinct positive linear relationship correlation in each zone. Table 9 

presents the feature preservation results and correlation values in each zone. Figure 6 is a heatmap graph 

that shows the level of correlation between features in Zone 1 Power Consumption. 

 

Table 9. Correlation Analysis of Power Load Value from Zone 

Fiture Zone 1 Power Consumption Zone 2 Power Consumption Zone 3 Power Consumption 

Temperature +0.44 +0.38 +0.49 

Humidity -0.29 -0.29 -0.23 

Wind Speed +0.17 +0.15 +0.28 

General Diffuse Flows - - - 

Diffuse Flows +0.08 +0.04 - 

Year - - - 

Month -0.01 +0.32 -0.23 

Day -0.07 -0.12 +0.01 

Hour +0.73 - +0.45 

Minute - +0.66 - 
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Figure 6. Heatmap correlation of Zone 1 Power Consumption using JA 

 

3.4. Modeling and Evaluation 

KNN is one of the supervised learning algorithms used for classification and regression. The 

evaluation compares various feature selection methods to improve the performance of KNN, namely 

GA, ALO, TLBO, and JA. The training and test data ratio used is 90:10, which means 90% of the data 

is used for training and 10% for testing. 

Performance comparison based on RMSE values shows that the KNN model without feature 

selection produces the highest error in Zone 1 Power Consumption. The GA+KNN model records the 

highest error in Zone 2 and Zone 3. In contrast, the integration of ALO+KNN and JA+KNN shows 

stable RMSE results in all zones. The JA+KNN model excels with the smallest RMSE value, which is 

856.1696 kW in Zone 1 and 598.8744 kW in Zone 2. While ALO+KNN records the smallest RMSE in 

Zone 3 of 699.5722 kW. Compared with KNN without feature selection (for example, assuming its 

RMSE in Zone 1 is 1300 kW), JA+KNN provides a reduction in RMSE of 443.83 kW in Zone 1. If 

GA+KNN produces an RMSE in Zone 2 of 3350.7657 kW, then JA+KNN reduces the error by 2751.89 

kW. For Zone 3, if GA+KNN has an RMSE of 3350.7657 kW, then ALO+KNN reduces the error by 

2651.19 kW. This significant difference shows that choosing the right feature selection algorithm can 

drastically improve the prediction accuracy of the KNN model. Table 10 is the RMSE value data of all 

prediction models. 

 

Table 10. RMSE of each Prediction Model 

Prediction 

Model 

Zone 1 Power Consumption 

(kW) 

Zone 2 Power Consumption 

(kW) 

Zone 3 Power Consumption 

(kW) 

KNN 1871.4290 1394.7660 1574.9974 

GA+KNN 1221.0346 1829.6050 3350.7657 

ALO+KNN 874.6656 638.9848 699.5722 

TLBO+KNN 904.3016 1375.2004 1703.2814 

JA+KNN 856.1696 598.8744 718.0008 

 

The Mean Absolute Percentage Error (MAPE) values of each prediction model indicate that the 

integration of feature selection algorithms significantly improves the accuracy of the KNN model. In 

Zone 1, the baseline KNN model records a MAPE of 4.32%, whereas the JA+KNN model achieves the 

lowest MAPE of 1.80%, resulting in an improvement of 2.52%. In Zone 2, JA+KNN reduces the MAPE 

from 4.99% to 1.93%, indicating a gain of 3.06%. Likewise, in Zone 3, JA+KNN demonstrates superior 
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performance with a MAPE of 2.34%, improving prediction accuracy by 3.93% compared to the baseline 

KNN value of 6.28%. The ALO+KNN model also shows competitive performance with MAPE values 

of 1.82% in Zone 1, 1.99% in Zone 2, and 2.38% in Zone 3. These results correspond to improvements 

of 2.50, 3.00, and 3.90% points, respectively. The TLBO+KNN model yields a MAPE of 1.85% in Zone 

1, reflecting an improvement of 2.47% points, although its accuracy in Zones 2 and 3 is less stable 

compared to other models. On the other hand, the GA+KNN model performs poorly, with MAPE values 

of 6.60% in Zone 2 and 12.49% in Zone 3. These figures exceed those of the baseline KNN and indicate 

a decline in performance by 1.61 and 6.21%  points, respectively. Overall, the results confirm that the 

use of feature selection algorithms, particularly JA and ALO, can significantly enhance the prediction 

accuracy of the KNN model. Table 11 summarizes the MAPE values of each model across all zones. 

 

Table 11. MAPE of each Prediction Model 

Prediction 

Model 

Zone 1 Power 

Consumption 

(%) 

Zone 2 Power 

Consumption 

(%) 

Zone 3 Power 

Consumption 

(%) 

KNN 4.3203 4.9895 6.2790 

GA+KNN 2.5816 6.6034 12.4876 

ALO+KNN 1.8204 1.9914 2.3821 

TLBO+KNN 1.8549 4.6538 6.1906 

JA+KNN 1.8006 1.9323 2.3444 

 

The R² values of each prediction model show significant performance improvements when KNN 

is integrated with a feature selection algorithm. In Zone 1, the baseline KNN model achieves an R² of 

0.9299, while the JA+KNN model reaches 0.9853, representing an improvement of 0.0554. The 

ALO+KNN model follows closely with an R² of 0.9847, which indicates an increase of 0.0548, and the 

TLBO+KNN model achieves an R² of 0.9836, reflecting a gain of 0.0537. In Zone 2, JA+KNN again 

demonstrates superior performance with an R² of 0.9866, which is 0.0588 higher than the KNN value 

of 0.9278. ALO+KNN also shows strong results with an R² of 0.9849, marking an increase of 0.0571, 

while TLBO+KNN reaches 0.9299, offering only a slight improvement of 0.0021. Conversely, 

GA+KNN results in a reduced performance in Zone 2, obtaining an R² of 0.8758, which is 0.0520 lower 

than the baseline KNN. In Zone 3, ALO+KNN achieves the highest R² value of 0.9887, improving upon 

KNN’s 0.9428 by 0.0459. This is followed by JA+KNN with an R² of 0.9881, reflecting an improvement 

of 0.0453. In contrast, TLBO+KNN yields an R² of 0.9331, indicating a slight decline of 0.0097, and 

GA+KNN performs the worst with an R² of 0.7410, which represents a substantial decrease of 0.2018 

from the baseline. These results highlight that the JA+KNN and ALO+KNN models provide the most 

consistent and significant improvements in prediction accuracy, whereas the GA+KNN model tends to 

degrade model performance in several zones. Table 12 presents the detailed R² values for each prediction 

model. 

 

Table 12. R2 of each Prediction Model 

Prediction 

Model 

Zone 1 Power 

Consumption 

Zone 2 Power 

Consumption 

Zone 3 Power 

Consumption 

KNN 0.9299 0.9278 0.9428 

GA+KNN 0.9701 0.8758 0.7410 

ALO+KNN 0.9847 0.9849 0.9887 

TLBO+KNN 0.9836 0.9299 0.9331 

JA+KNN 0.9853 0.9866 0.9881 
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4. DISCUSSIONS 

The research proved that metaheuristic based feature selection has a significant impact on 

improving the accuracy of KNN performance in energy consumption prediction. The dataset used is 

Tetouan City Power Consumption, consisting of 52,417. The dataset consists of nine features, namely 

datetime, temperature, humidity, wind speed, general diffuse flows, diffuse flows, Zone 1 Power 

Consumption, Zone 2 Power Consumption, and Zone 3 Power Consumption. The datetime feature is 

extracted into year, month, day, hour, and minute. The purpose of extraction is to optimize temporal 

information, so that consumption patterns based on time can be analyzed more deeply. The datetime 

attribute in the dataset is removed, so as not to redundant with the results of data extraction. The next 

step is to normalize the data using min-max scaling, because KNN depends on distance calculations so 

that the same scale is needed.  

The feature selection process using GA, ALO, TLBO, and JA shows that the hour, temperature, 

and humidity features are almost always present in the feature selection results. These three features 

show that the features have a dominant influence on energy consumption. The results of feature selection 

using ALO and JA are able to select features that have an influence in predicting energy consumption, 

so this algorithm is more effective than TLBO and GA.  

Energy consumption prediction is carried out in each zone, namely Zone 1 Power Consumption, 

Zone 2 Power Consumption, and Zone 3 Power Consumption. Prediction results using KNN without 

feature selection show RMSE values in each zone of 1871.4290 kW, 1394.7660 kW, and 1574.9974 

kW. The evaluation results based on the MAPE value, in each zone are 4.3203%, 4.9895%, and 

6.2790%. In addition, the R² value for KNN without feature selection is quite low compared to other 

models, namely 0.9299 in Zone 1 Power Consumption, 0.9278 in Zone 2 Power Consumption, and 

0.9428 in Zone 3 Power Consumption. This shows that KNN without feature selection is less than 

optimal in modeling energy consumption patterns.  

Employing metaheuristic algorithms for feature selection contributes to improving the 

effectiveness of predictive modeling. The combination of ALO+KNN and JA+KNN provides excellent 

performance. In JA+KNN, the RMSE value in each zone drops to 856.1696 kW, 598.8744 kW, and 

718.0008 kW. Based on the MAPE value in each zone, the values are 1.8006%, 1.9323%, and 2.3444%. 

The R² value in each zone reaches 0.9853, 0.9866, and 0.9881, indicating that JA+KNN has a very good 

level of precision in representing actual data. The ALO+KNN model also shows good performance with 

RMSE values in each zone of 874.6656 kW, 638.9848 kW, and 699.5722 kW, and MAPE in each zone 

of 1.8204%, 1.9914%, and 2.3821%. The R² value achieved was even higher in Zone 3 Power 

Consumption at 0.9887, while in Zone 1 Power Consumption it reached 0.9847, and Zone 3 Power 

Consumption reached 0.9849. Based on the evaluation results, it strengthens the evidence that ALO is 

very effective in finding the optimal feature subset. 

The GA+KNN model shows inconsistent performance, even producing the largest RMSE in Zone 

3 Power Consumption of 3350.7657 kW, MAPE reaching 12.4876%, and R² only 0.7410, showing that 

GA is less effective in predicting energy consumption. This is in line with the findings of Allemar Jhone 

P. Delima and Guilian Feng [42] who revealed that GA, when not combined with additional optimization 

strategies, is prone to overfitting and premature convergence. While the TLBO+KNN model provides 

intermediate results, better than KNN without feature selection, with RMSE for each zone of 904.3016 

kW, 1375.2004 kW, and 1703.2814 kW. MAPE values for each zone are 1.8549%, 4.654%, and 

6.1906%. The R² values for each zone reached 0.9836, 0.9299, and 0.9331. 

Overall, the integration of ALO and JA-based feature selection is proven to significantly reduce 

prediction error (RMSE and MAPE) while increasing model accuracy (R²) compared to using KNN 
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without feature selection. This confirms that feature selection plays a crucial role in building a more 

accurate energy consumption prediction model. In the context of computer science, these methods 

contribute to the advancement of intelligent data preprocessing techniques, particularly in high-

dimensional data environments where irrelevant features can degrade model performance. ALO and JA 

not only improve prediction quality but also enhance computational efficiency by reducing the number 

of input features, leading to faster training and inference times. Their ability to select optimal feature 

subsets without exhaustive search demonstrates their practical value in real-world applications, 

especially in energy systems where accurate and efficient forecasting is vital for operational planning 

and resource optimization. 

5. CONCLUSION 

The results show that feature selection plays a significant role in improving the accuracy of the 

K-Nearest Neighbor (KNN) model for predicting electrical energy consumption. Among the evaluated 

models, the integration of ALO+KNN and JA+KNN demonstrates the most consistent and effective 

performance in this scenario, as reflected by reduced RMSE and MAPE values and increased R² scores 

across the three zones. The JA+KNN model achieves the lowest RMSE in Zone 1 at 856.1696 kW and 

in Zone 2 at 598.8744 kW, along with the smallest MAPE values of 1.8006 percent in Zone 1 and 2.3444 

percent in Zone 3. The ALO+KNN model yields the lowest RMSE in Zone 3 at 699.5722 kW and the 

smallest MAPE in Zone 2 at 1.9914 percent. In terms of R², JA+KNN achieves the highest values in 

Zone 1 and Zone 2 at 0.9853 and 0.9866 respectively, while ALO+KNN records the highest R² in Zone 

3 at 0.9887. Conversely, the GA+KNN model exhibits inconsistent and less reliable performance across 

the zones. These findings indicate that, under the tested conditions, ALO+KNN and JA+KNN offer 

strong potential for enhancing predictive accuracy in energy consumption modeling. For future research, 

it is recommended to explore the integration of hybrid prediction approaches, such as combining KNN 

with deep learning models like Long Short-Term Memory (LSTM), and applying JA-based feature 

selection to further improve both temporal learning and feature relevance. Additionally, evaluating the 

robustness of these models under real-time or streaming data environments could provide valuable 

insights for practical deployment. 
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