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Abstract

Insulators are critical components in power transmission and distribution systems, where any defects can lead to
severe operational failures and power outages. To enhance inspection efficiency, unmanned aerial vehicles (UAVs)
are increasingly used for aerial monitoring. However, the quality of images captured by drones is often compromised
due to hardware limitations, motion blur, and complex environmental backgrounds, which significantly reduces the
performance of deep learning-based defect detection methods. This study proposes an improved insulator defect
detection model based on the YOLOvS8n architecture, optimized for accuracy and efficiency in low-quality image
scenarios and suitable for deployment in resource-constrained environments. The model introduces two major
modifications. First, a Slim-Neck module employing Ghost-Shuffle Convolution (GSConv) replaces standard
convolutions to substantially reduce computational cost while preserving rich feature representations. Second, an
Efficient Multi-Scale Attention (EMA) module is integrated into the neck to enhance multi-scale feature fusion by
maintaining per-channel information without dimensionality reduction, improving the model’s ability to extract
discriminative features. Experimental results demonstrate that the proposed model achieves a precision of 92.0%,
recall of 88.6%, mAP@0.5 of 92.1%, and an inference speed of 161.29 FPS. Furthermore, it reduces parameter count
by 10.8% and computational load by 8.6% compared to the baseline, validating its suitability for real-time UAV-
based inspections. The model also outperforms existing methods in detecting insulator defects, particularly in
challenging conditions involving blur and complex backgrounds.
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1. INTRODUCTION

As the power grid continues to expand, transmission line installation areas are also growing [1].
To ensure long-term operational stability, regular inspections are required to detect potential defects in
various components [2]. Insulators, as one of the most critical components, play a vital role in supporting
conductors and maintaining electrical insulation throughout the transmission process [3], [4]. Since they
are typically installed outdoors, insulators are frequently exposed to extreme environmental conditions.
This exposure makes their surfaces prone to contamination and susceptible to damage such as corrosion,
cracking, and breakage [5]. Such deterioration can degrade insulation performance, potentially leading
to system faults and reducing the overall reliability and efficiency of power system operations [6].
Moreover, insulators are among the components with the highest failure rates in transmission systems,
and their malfunction can result in widespread system disruptions and significant economic losses [7],
[8]. Therefore, early detection and timely replacement of defective insulators are crucial measures to
maintain the reliability of power systems [9], [10].

Currently, defect detection in power system insulators still heavily relies on conventional methods
such as manual visual inspections and handheld device usage [11]. These traditional methods are labor-
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intensive and prone to inconsistency due to human subjectivity. Moreover, the remote and complex
environments of high-voltage transmission lines make manual inspections inefficient and impractical.
[12]. With the advancement of aerial survey technologies, drone-based inspection of electrical
infrastructure has become increasingly utilized [13]. Although this contactless detection method helps
overcome the limitations of manual inspection, it still faces challenges such as varying viewpoints in
aerial imagery, complex background interference, and uneven signal intensities [14].

Since manually reviewing drone imagery is no longer practical, many researchers have begun to
adopt deep learning based detection algorithms for identifying defects in insulators [15]. In recent years,
deep learning based insulator defect detection has become a major focus in research due to its superior
capability in accurately detecting faults [16]. Deep learning methods have demonstrated remarkable
performance in complex tasks such as image classification and component defect detection [17]. The
primary advantages of deep learning over traditional methods include high accuracy, fast detection
speed, automatic extraction of deep features, and resilience against environmental disturbances [18].

Deep-learning object detectors are generally classified into two categories. Two-stage, region-
based methods such as R-CNN, Faster R-CNN, FPN, and Mask R-CNN offer high accuracy but are
complex and relatively slow [19]. One-stage, regression-based methods such as YOLO, SSD,
EfficientDet, and RetinaNet provide faster detection with simpler architectures, though at a slight cost
in accuracy [20]. YOLO is widely adopted for insulator-fault detection due to its balance of speed and
precision [21]. However, UAV-based inspections still face challenges such as cluttered backgrounds,
diverse insulator shapes, small defect sizes, and poor image quality from long-range capture [16], [18].
To meet these challenges, recent studies have embedded lightweight convolutions and attention modules
into YOLO architectures. For instance, the integration of CBAM into YOLOVS5 enhances small-target
selectivity [22]. In another approach, GhostConv combined with Coordinate Attention and an
EVCBIlock is used in YOLOVS5s to enrich feature representation [23]. YOLOvV7 has been modified by
applying depthwise GhostConv along with SE attention, which helps reduce the number of parameters
without compromising accuracy [24]. Similarly, a variant of YOLOv8n incorporates Triplet Attention,
SCConv, a SC-Detect head, and a slim GSConv neck, leading to improved detection efficiency and
overall performance [25].

Recent advancements in object detection have focused on combining lightweight convolutional
operations with attention mechanisms to improve both accuracy and computational efficiency an
essential requirement for edge deployment on UAV platforms. MI-YOLO [26] enhances YOLOvVS5s by
incorporating attention modules and dilated convolutions, while similar improvements using CBAM
[27], and EMA-integrated FasterNet [28] have demonstrated better recall for detecting small defects.
Building on these trends, newer architectures such as LMD-YOLO [29], IALF-YOLO [30], and GSM-
YOLO [31] further advance performance by integrating modules like SCConv, SimAM, and MAP-CA
attention, achieving high detection speed and accuracy. However, despite these gains, many models still
face difficulties under extreme lighting conditions, in cluttered backgrounds, or when detecting very
small defects. In addition, the increasing complexity of these architectures can hinder real-time
performance on resource-limited UAVs, while dependence on narrow or imbalanced datasets continues
to limit their generalization to diverse real-world environments.

To overcome these limitations particularly in detecting small or subtle defects within low-
resolution and noisy aerial images this study proposes an improved insulator defect detection framework
based on the YOLOvV8n architecture. The proposed model is optimized to enhance detection accuracy
under challenging visual conditions while maintaining computational efficiency, making it well-suited
for deployment in real-time and resource-constrained environments. The primary contributions of this
work include: (1) the integration of an Efficient Multi-Scale Attention (EMA) module [32] enhances
multi-scale spatial and channel-aware feature fusion, significantly improving the detection of insulator
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defects in complex industrial environments. (2) Reconstructing the neck structure with a GSConv-based
Slim-Neck [33] optimizes the model’s parameters and computational load while preserving detection
accuracy, enabling efficient real-time deployment on resource-constrained edge devices. Through these
innovations, the proposed model aims to improve real-time defect detection in drone inspection systems,
facilitating more efficient monitoring of critical infrastructure and supporting sustainable power grid
maintenance.

2. METHOD

To develop an efficient and accurate insulator defect detection system, a structured methodology
was implemented, consisting of several key stages ranging from dataset preparation to model evaluation.
Each stage was designed to ensure the successful development, training, and deployment of a YOLO-
based model optimized for real-time detection in challenging environments. The research stages are
illustrated in Figure 1.
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Figure 1. Research Workflow for the Development of the YOLO-Based Insulator Defect Detection
System

The research began with a literature review, aimed at understanding the state-of-the-art methods
in insulator defect detection, including various YOLO variants and improvements using lightweight
convolutional and attention modules. Next, dataset acquisition was performed by collecting and curating
image data of insulators, including both defective and non-defective conditions. The dataset was then
processed in the pre-processing stage, where image annotations and data augmentations were applied to
improve model generalization and balance the training set. The following phase involved YOLOvS
architecture modification. In this step, the standard YOLOv8n structure was modified by integrating
two custom modules: (1) a Slim-Neck using GSConv for reduced model complexity and (2) an Efficient
Multi-Scale Attention (EMA) module to enhance feature representation at different spatial and channel
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levels. Transfer learning was then applied using pre-trained weights as the model’s initial parameters,
providing a strong starting point and reducing training time. Simultaneously, hyperparameter setting
was conducted to define key parameters such as batch size, learning rate, and training epochs. The model
was then subjected to the training phase, where the data was divided into train, validation, and test sets.
During this phase, the model’s parameters were optimized, and performance was monitored using
metrics such as precision, recall, and mean average precision (mAP). Upon completion of training, the
best-performing model weights were saved, followed by a comprehensive evaluation phase to assess
detection accuracy and inference speed (FPS) using both quantitative metrics and qualitative visual
comparisons. If the performance met the predefined benchmarks, the model was finalized as the YOLO-
based Insulator Defect Detection Model, ready for deployment in automated inspection systems,
especially on resource-constrained platforms such as drones or edge devices.

2.1. Proposed Framework for Insulator Defect Detection

To ensure accurate and efficient defect detection on insulator surfaces, this study proposes an
improved object detection framework based on a modified YOLOv8n architecture. The proposed
framework integrates lightweight convolutional modules and attention mechanisms to enhance both
performance and deployability, especially in edge computing environments. The architecture leverages
transfer learning and multi-scale feature fusion to detect fine-grained defects under various visual
conditions.
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Figure 2. The proposed framework for insulator defect detection using a modified YOLOv8n model

As illustrated in Figure 2, the framework begins by inputting insulator images, which are
processed through a feature extraction backbone based on CSPDarknet53. The model uses pre-trained
weights from the ImageNet public dataset to initialize the backbone, enabling better convergence and
generalization. The extracted feature maps are then passed through a SlimNeck module, which replaces
the default YOLO neck with a more efficient version using GSConv to reduce model complexity while
preserving spatial information. To further improve detection robustness, the Efficient Multi-Scale
Attention (EMA) module is embedded within the neck. EMA consists of parallel spatial and channel
attention paths that highlight relevant features and suppress irrelevant background noise. This
combination helps the model remain sensitive to small-scale defects in complex visual environments.
The final detection head processes the multi-resolution feature maps (20x20x512, 40x40x512,
80x80x256) to localize and classify insulator defects. The output is a detection result that accurately
identifies defective regions with bounding boxes and confidence scores.
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2.2. Architectural Design and Core Components of YOLOVS

YOLOVS represents a state-of-the-art evolution in the YOLO family of single-stage object
detection frameworks, renowned for its real-time performance and balance between speed and accuracy.
Building upon its predecessors, YOLOvVS employs a modular architecture comprising three core
components: a backbone network for hierarchical feature extraction, a neck network for multi-scale
feature fusion, and a detection head for precise localization and classification of objects. As shown
in Figure 3, the backbone leverages the CSPDarknet architecture to efficiently capture spatial and
semantic features across different scales, while the neck integrates advanced feature fusion techniques,
such as PANet (Path Aggregation Network), to aggregate contextual information from multiple layers.
The detection head further refines these features to predict bounding boxes and class probabilities with
minimal computational overhead. This streamlined design enables YOLOvVS8 to excel in scenarios
requiring rapid and reliable detection, such as identifying insulator defects in power grid infrastructure,
where both real-time processing and high accuracy are critical for operational safety and efficiency.
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Figure 3. Structure of YOLOVS

Figure 3 presents the detailed architecture of the YOLOv8 model, illustrating its three core
components: the Backbone, Neck, and Head. The Backbone is responsible for initial feature extraction
and is composed of alternating convolutional (Conv) layers and C2f modules, which replace the
traditional C3 structure to improve gradient flow and enhance the richness of extracted features. The
spatial pyramid pooling fast (SPPF) module at the end of the Backbone further aggregates spatial
information from different receptive fields. The Neck section employs a feature pyramid network
(FPN)-like structure with upsampling and concatenation operations, enabling multi-scale feature fusion
that enhances the model's ability to detect objects of varying sizes. The Head contains three detection
branches (P3, P4, and P5), each targeting a specific scale of objects, and utilizes binary cross-entropy
(BCE) for classification loss and a combination of Complete IoU (CloU) and Distribution Focal Loss
(DFL) for bounding box regression. YOLOvV8 has several variants, ranging from YOLOv8n to
YOLOvV8x, which are designed to meet various object detection needs. In this work, YOLOv8n is chosen
because of its lightweight and efficient model size, enabling fast object detection even with limited
hardware resources.
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2.3. Architectural Design of the Modified YOLOv8n Model

While YOLO excels in rapid, real-time object detection, it faces challenges such as excessive
computational expenses and reduced accuracy when identifying objects against intricate or busy
backgrounds. To overcome these limitations, this research proposes an enhanced version of YOLOvS8n,
termed Modified-YOLOvV8n, which implements two critical innovations. First, a Slim-Neck
architecture utilizing GSConv is introduced to minimize computational demands without compromising
the richness of feature representations. Second, an EMA module is integrated into the neck structure to
boost the detection of insulator defects within visually cluttered scenes. As shown in Figure 4b, the
improvements involve two structural changes: substituting the original C2f module with the efficient
cross stage partial block (VoV-GSCSP) component and replacing standard convolutional layers
with GSConv operations to streamline efficiency. Moreover, EMA modules are strategically
implemented after the final P3, P4, and P5 VoV-GSCSP layers to sharpen feature refinement and
amplify the model’s focus on insulator defects, even in environments dominated by complex
background interference. These adaptations collectively enhance both computational efficiency and
detection precision in challenging scenarios.
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Figure 4.  Structure of Modified YOLOv8n

Figure 4 outlines the modified network structure of the Modified YOLOvV8n, highlighting the
incorporation of lightweight mechanisms and attention modules within the neck structure. By replacing
the original C2f modules with VoV-GSCSP blocks and integrating GSConv layers, the design achieves
enhanced computational efficiency while retaining the network’s feature representation capabilities. The
inclusion of EMA modules after the P3, P4, and P5 layers strengthens the model’s capacity to prioritize
subtle and small-scale defect characteristics, particularly in visually cluttered and complex
environments. These refinements significantly elevate detection accuracy without compromising real-
time processing speeds, positioning the model as a robust solution for real-world inspection applications.
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2.4. Slim-Neck Structure with GSConv

Slim-neck is an efficient solution designed for the neck part of real-time object detection
architectures, aiming to enhance accuracy while reducing computational burden. This approach is
achieved through an innovative design that maintains high-quality feature representation while
minimizing parameter count and computational complexity. One of its core components is the Ghost-
Shuffle Convolution (GSConv) [33], which addresses the limitations of depthwise separable
convolution (DSC). Although DSC effectively reduces parameters and computation, it suffers from poor
inter-channel information exchange, which negatively impacts feature representation. GSConv
combines the strengths of standard convolution (SC) and DSC through a channel-shuffling mechanism,
enabling interaction across channels and preserving semantic connectivity. This hybrid approach
approximates the feature representation quality of SC with approximately 50% less computation, while
allowing better spatial and channel-level feature extraction. The core mechanism involves splitting input
channels into groups, applying DSC independently to each group, and then shuffling and merging them,
as depicted in Figure 5.
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Although GSConv has proven effective in reducing redundant information in feature maps while
maintaining detection accuracy, it has limited impact on inference time. To address this limitation, the
GSConv module was further developed through the integration of a GS bottleneck, as illustrated in
Figure 6a, which replaces the default bottleneck in the C2f structure. This led to the development of a
new module called VoV-GSCSP, a cross-layer feature refinement framework designed to improve
multi-scale feature integration with greater computational efficiency. VoV-GSCSP replaces the ELAN
module in the neck of the network and is constructed by combining functional blocks as shown in Figure

6b.
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As depicted in Figure 6b, the workflow begins with a 1x1 convolutional layer that extracts initial
features while reducing input channel dimensions. The output is then passed to the GS bottleneck, which
utilizes a residual connection to enhance gradient flow. Within the bottleneck, data is processed through
two successive GSConv layers to deepen spatial and channel-wise relationships. The refined features
are then concatenated with the compressed output of a parallel 1x1 convolution (reduced to half the
input channels). This merged output is again fused with the original VoV-GSCSP input using an
additional 1x1 convolution, followed by a final convolutional layer that restores the number of output
channels to Cz, as mathematically outlined in Equations (2) and (3).

GSBout = Fesc(Fesc(0Xc1)) + aX)c1/2 (2)
VoVGSCSP,,; = a(Concat(GSB,;, (aX¢1))) 3)

2.5. Neck Network with EMA

Figure 4b schematically illustrates the architectural modifications to the neck network in the
enhanced YOLOv8n model. The design integrates EMA modules [32] following the final VoV-GSCSP
blocks at the P3, P4, and P5 stages, preserving the original spatial resolution of feature maps while
enhancing semantic discriminability. As depicted in Figure 7, the EMA mechanism operates as a critical
element within the enhanced architecture. For an input feature map X € RH*W the EMA module

partitions the channels into G parallel sub-features ( X = [X¢, X4, ..., Xg_1], where X; € ]R{%XHXW),
facilitating multi-group learning of heterogeneous semantic patterns. This grouped processing enables
the network to capture nuanced defect signatures across diverse spatial and contextual scales,
particularly beneficial for small or occluded defects in complex environments.
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To augment the model’s capability for integrate multi-scale spatial information, the original 3%3
convolutional branch is substituted with a 5x5 branch, broadening the network’s receptive field to
capture richer contextual patterns across varying scales. The EMA module utilizes three parallel
pathways to derive attention descriptors from grouped feature maps: two branches employ 1x1
convolutions for localized feature extraction, while the third incorporates a 5x5 convolution to encode
broader spatial relationships. This design introduces a novel cross-dimensional aggregation strategy,
enabling seamless fusion of global context and fine-grained local details. Specifically, the outputs of the
1x1 convolutional branches undergo 2D global average pooling to distill channel-wise global spatial
statistics, condensing features into compact descriptors. Simultaneously, the output from the smaller-
scale branch is reconfigured to meet the dimensional specifications necessary for the ensuing channel-
wise feature activation step. The global pooling operation, mathematically expressed as:

1 .
Zc=qw LH=1 Z?]:lxc(l']) 4)

aims to capture global context and model long-range spatial dependencies across each channel. This
approach enables EMA to enhance the model’s sensitivity to spatial relationships, particularly in
complex visual environments.

3.  EXPERIMENTAL RESULTS

This section outlines the experimental setup, including the datasets used, evaluation metrics,
selected hyperparameters, as well as the results obtained and their corresponding analysis.

3.1. Experimental Environment and Datasets

The experimental environment runs on a 64-bit Windows 11 operating system, utilizing a GPU-
enabled system to accelerate deep learning processes. The development of the model was carried out
using the PyTorch framework with support from CUDA and Python. An overview of the hardware and
software components used in this experiment is presented in Table I.

Table . Hardware and Software Specifications
Description Specification
Processor Intel Core 17-10700F
GPU Nvidia GeForce RTX 3050
RAM 32GB

Operating System Windows 11
Software Libraries CUDA 11.8, Python 3.8.5, PyTorch 2.5.1

The dataset used in this study is the public Insulator Defect Image Dataset (IDID) [34], which can
be accessed through the IEEE Dataport platform. This dataset is specifically designed for defect
detection tasks in power transmission systems, with a focus on images containing insulator strings
captured in outdoor environments. The IDID includes insulators in three primary conditions: (1)
flashover, where visible electrical discharge marks are present; (2) broken, referring to structural damage
or cracks in the ceramic shell of the insulator; and (3) normal, which indicates insulators without any
observable defects. The original dataset comprises 1,600 high-resolution images, each with sufficient
detail to identify fine-grained visual features necessary for effective training of deep learning models.
samples of the original dataset are presented in Figure 8 to provide visual context of the image quality
and class representation.
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Figure 3. Image sample from IDID dataset

To ensure high-quality training data, all images were annotated manually using the Roboflow
annotation tool. This platform provides an intuitive interface that facilitates precise bounding box
placement around defective areas. To further enhance the model’s ability to generalize to real-world
deployment scenarios such as those encountered during drone-based inspection in outdoor environments
an extensive data augmentation strategy was employed. The augmentation techniques applied include
horizontal and vertical flipping, brightness adjustment, and Gaussian blur, each simulating common
variations in image capture caused by camera movement, lighting conditions, and object orientation.
These augmentations not only improve robustness but also address dataset imbalance by artificially
increasing the number of training samples for minority classes.

The distribution of bounding box annotations per class in the augmented Insulator Defect Image
Dataset (IDID) is summarized in Table II, which provides a quantitative overview of the dataset
composition. As shown in the table, the "Insulator" class contains a total of 1,093 annotations, while
defect-related classes such as "Broken" and "Flashover" are more prevalent, with 2,448 and 1,832
annotations, respectively. This distribution indicates a deliberate emphasis on capturing various defect
scenarios, ensuring that the dataset is sufficiently representative for training robust deep learning
models. Such a distribution supports the development of models that can generalize well across different
defect types, especially considering the imbalanced yet realistic nature of field data. A higher frequency
of certain defect classes also encourages the model to better distinguish subtle variations within similar
visual patterns.

Furthermore, Figure 9 presents a sample of annotated images from the dataset, highlighting the
wide range of visual conditions encountered during data collection. These samples demonstrate the
challenges inherent in real-world insulator defect detection tasks, including partial, and complex,
cluttered backgrounds. These factors introduce significant variation in object appearance and context,
demanding that the detection model learns robust feature representations to maintain high accuracy in
practical deployment scenarios.

Table [I.  Annotation Distribution per Class

Class Total Annotations
Insulator 1093
Broken 2448
Flashover 1832
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Figure 4. Sample annotated images from the IDID dataset

3.2. [Evaluation Metrics and Hyperparameters Settings

In object detection, model effectiveness is mainly assessed through Average Precision (AP),
which captures the accuracy in both identifying and categorizing objects. When the task includes several
object categories, the evaluation expands to mean Average Precision (mAP), calculated as the average
AP across all classes. Alongside accuracy, the inference speed is a key consideration, particularly for
real-time systems. This is quantified by Frames Per Second (FPS), which measures the number of
images the model can analyze within one second. The mathematical formulations of these evaluation
metrics are provided in Equations (5) to (9):

TP

= rhirp (5)
=, (6)
AP = [JP(R)R, (7)
mAP = ~Y7L, AP, 8)
FPS — 1000 )

Total Processing Time per Image

Where TP (True Positives) represents the number of correctly predicted positive samples, FN (False
Negatives) refers to the number of actual positive samples that were incorrectly predicted as negative,
and FP (False Positives) denotes the number of negative samples that were incorrectly classified as
positive. The symbol R stands for Recall, P for Precision, N is the total number of object categories
being detected, and Total processing time per image includes preprocessing, inference, and
postprocessing times.

In this experiment, the model training process was configured with carefully selected
hyperparameters to ensure convergence stability and efficient learning. Stochastic Gradient Descent
(SGD) was employed as the optimization algorithm due to its robustness in large-scale learning tasks.
The initial learning rate was set to 0.01, a balanced value chosen to prevent divergence from overly high
rates and slow convergence from overly low rates. To further enhance training stability and
generalization, a momentum of 0.95 and a weight decay of 0.0005 were applied. These values were
determined based on iterative experimental trials and performance monitoring through visualized
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training graphs. Although the model showed signs of convergence after approximately 100 epochs, the
training duration was extended to 300 epochs to ensure performance consistency across the dataset. A
batch size of 32 was selected to accommodate the available computational resources, maintaining a
balance between memory usage and gradient estimation stability. Other parameters, such as the input
resolution and augmentation ratios, followed default configurations from the Ultralytics YOLO
framework. A summary of the key hyperparameter settings used in the experiment is presented in Table
1.

Table III.  Hyperparameters Settings

Parameter Value
Epochs 300
Batch Size 32
Optimizer Stochastic Gradient Descent (SGD)
Initial Learning Rate ~ 0.01
Weight Decay 0.0005
Momentum 0.937

3.3. Experimental results and analysis Experiments

To validate the effectiveness of the proposed method, a series of experiments and comparative
analyses were conducted using the Insulator Defect Image Dataset (IDID). The evaluation process is
divided into two main components: ablation studies and comparative experiments. (1) To thoroughly
investigate the role of each modification introduced in the proposed approach, a series of ablation
experiments were conducted. These experiments aim to isolate the impact of each component by
evaluating model performance with and without specific enhancements. This process allows for a deeper
understanding of how individual changes contribute to overall improvements in detection accuracy,
computational efficiency, and robustness in diverse visual conditions. (2) In parallel, comparative
experiments were performed to benchmark the proposed method against several existing object
detection models based on the YOLO family. Using the same dataset and experimental settings, the
proposed model was evaluated alongside baseline architectures.

3.4. Ablation Experiment

To comprehensively evaluate the impact of each architectural enhancement introduced in the
proposed method, an ablation study was conducted focusing on two key components: the Efficient
Multi-Scale Attention (EMA) module and the Slim-neck structure based on GSConv. These components
were integrated separately and jointly into the YOLOv8n baseline to isolate and quantify their individual
and combined contributions to the model’s overall performance. The ablation experiments are essential
to understand how each modification affects detection accuracy, model complexity, and inference speed.
Table IV presents the detailed results of this analysis, comparing variations of the model with and
without the proposed modules across key metrics, including class-wise Average Precision (AP), mean
Average Precision at 0.5 loU (mAP@0.5), FLOPs, parameter count, and Frames Per Second (FPS).

As shown in Table IV, the baseline YOLOv8n model, without any enhancements, achieved a
mean Average Precision (mAP@0.5) of 90.5%, with class-wise APs of 95.5% for Broken insulators,
84.6% for Flashover, and 93.5% for general Insulator detection, operating at a speed of 178.57 frames
per second (FPS). When the EMA module was introduced independently, a marginal improvement in
overall detection accuracy was observed, with mAP@0.5 increasing to 90.8%. Notably, the AP for
Flashover defects increased to 85.3%, indicating that EMA enhances the model’s ability to capture
nuanced spatial features, particularly in defect classes with complex visual patterns and subtle luminance

71


https://jutif.if.unsoed.ac.id/

Jurnal Teknik Informatika (JUTIF) Vol. 7, No. 1, February 2026, Page. 60-80
P-ISSN: 2723-3863 https://jutif.if unsoed.ac.id
E-ISSN: 2723-3871 DOI: https://doi.org/10.52436/1.jutif.2026.7.1.4679

transitions. However, a slight reduction in AP for Broken defects suggests that the added spatial
aggregation could lead to an over-smoothing effect, potentially reducing sensitivity to fine-grained edge
discontinuities present in fracture patterns. Additionally, the computational cost slightly increased
(FLOPs: 8.2@G), and inference speed dropped to 158.73 FPS, underscoring the trade-off between spatial
precision and processing efficiency.

Table IV.Results of the ablation experiments

Model Slim- EMA AP(%) mAP FLOPs Params FPS
neck
Broken Flashover Insulator @0.5(%) (G) M)
- - 95.5 84.6 93.5 90.5 8.1 3 178.57
YOLOvV8n - v 93.4 85.3 93.7 90.8 8.2 2.9 158.73
v - 94.5 85.7 933 91.2 7.3 2.7 185.19
v v 95.6 86.9 94 92.1 7.4 2.7 161.29

In contrast, replacing the standard neck structure with a lightweight Slim-neck alone yielded a
more notable enhancement in both accuracy and efficiency. The model attained a mAP of 91.2% with a
significant reduction in FLOPs to 7.3G and parameter count to 2.7M, achieving the highest FPS of
185.19 across all configurations. These results suggest that Slim-neck not only accelerates inference but
also preserves semantic richness across scales due to its efficient feature aggregation strategy beneficial
in processing aerial images with small object-to-background ratios, as commonly encountered in power
grid inspection. Crucially, the integration of both EMA and Slim-neck resulted in the best performance,
achieving a peak mAP@0.5 of 92.1%, with respective APs of 95.6%, 86.9%, and 94.0 for Broken,
Flashover, and Insulator classes. While the inclusion of EMA slightly increases the FLOPs to 7.4G and
reduces the speed to 161.29 FPS compared to Slim-neck alone, the combined configuration offers the
optimal trade-off between accuracy and efficiency. The boost in performance is attributed to the
complementary nature of the two modules: Slim-neck enhances feature propagation and compactness,
while EMA facilitates robust contextual modeling by focusing attention on the most discriminative
spatial regions.

This synergy is visually corroborated in Figure 10. In the top row, the model with EMA correctly
identifies subtle fractures that were either missed or poorly localized by the baseline YOLOv8n. The
bounding boxes are more precise, and confidence scores are noticeably higher, indicating greater
certainty and improved spatial focus. In the second row, for Flashover defects, the EMA-augmented
model suppresses false positives and demonstrates more stable label assignments, even under complex
background textures. Furthermore, the EMA-equipped model demonstrates a clear advantage in
distinguishing between overlapping or adjacent insulator components a common challenge in UAV-
based inspection tasks where perspective distortion and occlusion are prevalent. These findings validate
that the proposed enhancements substantially elevate the model’s ability to detect minute and complex
defects with higher fidelity, while still maintaining high throughput. More importantly, the reduction in
computational overhead via Slim-neck ensures that the model remains deployable on edge devices,
making it suitable for real-time aerial inspection scenarios. Therefore, the final configuration combining
Slim-neck and EMA presents an optimal balance of detection precision, computational complexity, and
real-time capability addressing critical challenges in small object detection within high-resolution UAV

imagery.
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Figure 5. Comparison before and after adding EMA attention mechanism on the IDID dataset.

3.5. Comparison Experiment

The ablation experimental results show that the integration of the Slim-neck structure and the
Efficient Multi-Scale Attention (EMA) module significantly improves the performance of the
YOLOV8n baseline model in terms of both detection accuracy and computational efficiency. These
findings confirm that each component contributes positively, with their combination yielding the most
balanced and effective model configuration. To further validate the general effectiveness and
competitiveness of the proposed model, this section presents a comparison experiment against several
widely used YOLO-based object detection algorithms, including YOLOv5n, YOLOv6n, and the
original YOLOv8n. The purpose of this experiment is to benchmark the proposed method’s performance
using the same dataset and evaluation metrics, thereby assessing its practical advantages in real-world
defect detection tasks. The comparative results, summarized in Table V, highlight key indicators such
as precision, recall, mean Average Precision (mAP), computational cost, and inference speed, offering
a comprehensive view of the model’s capabilities relative to other existing methods.

Table V. Performance comparison with other models on the IDID dataset.

Model P R mAP@0.5 mAP@0.5:0.95 Params FLOPs FPS
(%) (%) (%) (%) M) (G)

YOLOvV5n 894 87.6 91.1 73.5 2.5 7.1 178.57

YOLOv6n 893 84.6 89 74.9 4.2 11.9 185.19

YOLOv8n 90.1 885 905 74.8 3 8.1 178.57

Proposed 92 88.6 92.1 75.1 2.7 7.4 161.29

Method

The proposed method achieves the highest Precision score of 92.0%, demonstrating a superior
ability to correctly identify positive instances compared to YOLOv5n with 89.4%, YOLOv6n with
89.3%, and YOLOv8n with 90.1%. In terms of Recall, the proposed model also leads with 88.6%,
slightly ahead of YOLOv8n at 88.5%, and significantly better than YOLOv5n at 87.6% and YOLOv6n
at 84.6%. These results indicate strong robustness of the proposed method in identifying true defect
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instances, even under complex visual scenarios. For localization performance, the model attains the
highest mAP@0.5 at 92.1%, surpassing YOLOv5n with 91.1%, YOLOv6n with 89.0%, and YOLOv8n
with 90.5%. Additionally, in the more rigorous mAP@0.5:0.95 evaluation, the proposed model achieves
75.1%, slightly higher than YOLOv5n at 73.5%, YOLOv6n at 74.9%, and YOLOv8n at 74.8%. This
confirms that the proposed model not only performs well on standard IoU thresholds but also maintains
accuracy across a wide range of object localization conditions. In terms of computational efficiency, the
proposed method is notably lightweight with only 2.7 million parameters and 7.4 billion FLOPs. This
is more efficient than YOLOv6n with 4.2 million parameters and 11.9 billion FLOPs, and YOLOv8n
with 3.0 million parameters and 8.1 billion FLOPs. Despite this compact structure, the model does not
compromise on accuracy, highlighting the effectiveness of the Slim-neck design and GSConv
integration. The only trade-off observed is in the inference speed. The proposed model operates at
161.29 FPS, which is slightly lower than YOLOvS5n at 178.57 FPS and YOLOv6n at 185.19 FPS. This
decrease is attributed to the addition of the Efficient Multi-Scale Attention module, which introduces
additional processing to enhance feature representation. However, the drop in speed remains within real-
time limits and is justified by the gains in accuracy and efficiency.

To provide a more comprehensive evaluation beyond numerical performance metrics, Figures 11
and 12 present qualitative comparisons of the proposed model's detection capability under various
conditions. These visualizations serve as essential complements to the quantitative analysis by
illustrating how the model behaves in real-world scenarios, where factors such as image quality,
environmental complexity, and lighting variability play significant roles in object detection
performance. Figure 11 presents a comparative evaluation of detection performance between the
proposed model and three baseline YOLO variants: YOLOv5n, YOLOv6n, and YOLOv8n. The figure
is structured in three horizontal panels, each representing a distinct scene involving different insulator
defect types, and four vertical columns representing detection results from the respective models. This
visualization enables a clear assessment of how each model performs in terms of localization accuracy,
detection confidence, and visual reliability under real-world scenarios.

In the first row of images, which features insulator chains mounted on a metallic tower structure,
the detection of Broken components proves to be challenging due to repetitive patterns and the presence
of structural interference. YOLOvS5n and YOLOv6n produce results with relatively low confidence,
such as 0.64 and 0.70 for Broken defects, and often draw bounding boxes that are either misaligned or
overly constrained. YOLOv8n shows moderate improvement in both box placement and confidence.
However, the proposed model clearly outperforms the baselines by generating precise bounding boxes
with confidence scores reaching 0.95 for Insulator and 0.71 for Broken. The localization is more accurate
and better fitted to the actual defect area, indicating that the model is able to effectively extract fine-
grained spatial features, even when surrounded by metallic noise and shadow artifacts.

In the second row, where flashover defects appear along the surfaces of stacked disc insulators
with a grassy or textured background, the baseline models show varying degrees of overprediction and
misclassification. YOLOv5n assigns multiple overlapping bounding boxes with low confidence values
such as 0.40 and 0.51, suggesting poor defect discrimination. YOLOv6n performs slightly better, with
a stronger confidence level of 0.66, but still suffers from visual redundancy. YOLOv8n improves the
precision further, yet still exhibits a degree of label dispersion and inconsistent box alignment. In
comparison, the proposed model generates clean, well-placed bounding boxes with confidence values
reaching up to 0.60, 0.56, and 0.44 for Flashover, while simultaneously identifying the Insulator class
with a high confidence of 0.93. These results indicate that the proposed model is more capable of
isolating actual defect regions and suppressing irrelevant visual information, which is particularly
crucial in outdoor scenes where background textures can easily lead to false detections.
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Figure 6. Comparison of detection result with other models.

The third row of Figure 11 displays insulators captured in visually degraded conditions, such as
blurry backgrounds, lower contrast, and complex natural scenery. In this scenario, YOLOv5n and
YOLOv6n manage to detect Broken defects with confidence around 0.74 and 0.66 but still exhibit
instability in bounding box accuracy and class distinction. YOLOvVS8n performs relatively better but still
underperforms in terms of certainty. The proposed model not only matches or exceeds the confidence
of prior variants reaching 0.75 for Broken but also offers improved alignment between the predicted
boxes and actual defect boundaries. It distinguishes Insulator and Broken classes with greater clarity,
even under subtle image noise and low-contrast areas. Across all cases in Figure 11, it is evident that
the proposed model consistently surpasses YOLOv5n, YOLOv6n, and YOLOV8n in terms of detection
quality, confidence reliability, and robustness in spatial reasoning.

Figure 12 presents a comprehensive visual comparison that emphasizes the robustness of the
proposed model over the YOLOv8n baseline under challenging real-world conditions commonly
encountered during aerial inspections. In Row A, which captures conditions involving motion blur and
defocus caused by UAV movement or unstable camera focus, the proposed model demonstrates superior
stability in both detection accuracy and bounding box precision. It consistently identifies critical objects
such as flashovers and insulators with high confidence, with examples reaching confidence scores as
high as 0.92 for insulators and 0.66 for flashovers. Meanwhile, the YOLOv8n baseline fails to maintain
detection consistency, exhibiting reduced confidence and occasionally missing targets altogether. This
performance gap highlights the effectiveness of the proposed enhancements in preserving spatial
understanding, even when low-level visual cues are degraded.

In Row B, which represents images with visually complex backgrounds including vegetation,
towers, and metallic infrastructure, the proposed model again outperforms the baseline by maintaining
precise localization of defects while avoiding false positives. The baseline model frequently
misclassifies background textures and edges as defect classes, suggesting a weak contextual
understanding. In contrast, the proposed model accurately isolates target objects like flashover regions,
producing predictions with strong confidence values such as 0.72, and avoids confusing similar-looking
regions in the environment. This improvement is largely attributed to the model’s enhanced spatial
attention and feature aggregation capability, which enables it to distinguish between foreground
anomalies and background clutter an essential feature for deployment in visually dense inspection
scenes.
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In Row C, which illustrates scenarios under extreme lighting conditions such as overexposure and
glare from direct sunlight, the baseline YOLOv8n model shows clear limitations. It often produces weak
or inconsistent predictions, failing to detect broken components reliably due to reduced contrast and
visual detail. The proposed model, on the other hand, continues to deliver stable detections even under
these harsh lighting conditions. It maintains high confidence scores, including values reaching up to
0.76 for broken insulators, reflecting a stronger photometric invariance and a more robust abstraction of
object shape and structure. This ability to perform under challenging illumination is critical in outdoor
inspections, where lighting variability is inevitable and uncontrolled.

The original image
insulator YOLOvVSn Proposed Method

Figure 7.

challenging visual conditions.

4. DISCUSSIONS

This study presents an improved object detection model by integrating a Slim-Neck structure with
Efficient Multi-scale Attention (EMA) into the YOLOv8n architecture. The modified model achieves
significant performance gains, increasing mAP@0.5 from 90.5% to 92.1%, while also reducing model
size and computational complexity. The number of parameters decreases by 10.8%, from 3.0 million to
2.7 million, and FLOPs are reduced by 8.6%, from 8.1 billion to 7.4 billion. The model maintains a high
inference speed of 161 FPS, making it practical for real-time UAV-based inspections. These
improvements are driven by the use of GSConv, which retains rich channel interactions at lower
computational cost, and the EMA module, which expands the receptive field and focuses on the most
discriminative spatial and channel-wise features. Together, these enhancements improve performance
under challenging conditions such as motion blur, complex backgrounds, and small object sizes.

Ablation studies reveal the individual contributions of each component. Adding EMA alone
improves detection for flashover defects but slightly reduces accuracy for broken insulators, likely due
to over-smoothing. The Slim-Neck module alone achieves the highest inference speed at 185.2 FPS and
enhances multi-scale feature distribution. When combined, the Slim-Neck and EMA deliver the best
performance, achieving a mAP@0.5 of 92.1% while maintaining low computational cost. These
findings indicate that Slim-Neck improves gradient flow and preserves spatial information, particularly
beneficial for detecting small objects. Meanwhile, EMA introduces contextual awareness, enhancing
confidence scores in images with complex or noisy visual patterns.
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When compared to baseline models such as YOLOv5n, YOLOv6n, and YOLOvVS8n, the proposed
approach achieves the highest performance in both mAP and precision, while maintaining one of the
lightest model sizes. Beyond outperforming these standard models, it also remains highly competitive
against more recent state-of-the-art approaches. For instance, the Insu-YOLO model by Y. Chen et al.
[35], which is based on YOLOv8n and incorporates GSConv and CARAFE, demonstrates improved
detection for small objects. However, its performance is limited when dealing with extremely small
defects and it lacks refinement in the post-processing stage. Similarly, Su et al. [25] introduced Triplet
Attention and a GSConv-based Slim-Neck into YOLOv8n to reduce background interference, but this
came at the cost of lower precision and reduced inference speed. Meanwhile, the IALF-YOLO model
proposed by Mei et al. [36] enhances small object detection by employing S-CBAM and GSConv, yet
results in a more complex architecture that is challenging to deploy on embedded platforms. In contrast,
the proposed model offers a more effective trade-off between detection accuracy and computational
efficiency. By integrating a Slim-Neck module based on Ghost-Shuffle Convolution and an Efficient
Multi-Scale Attention (EMA) mechanism, it achieves a precision of 92.0%, a mAP@0.5 of 92.1%, and
areal-time inference speed of 161 FPS, while reducing the parameter count by 10.8% and computational
load by 8.6%. These results demonstrate that the proposed method not only surpasses previous
approaches in accuracy but also provides practical advantages for deployment in real-world, resource-
constrained environments.

This research contributes to several key areas within the field of computer science. In computer
vision and embedded Al it demonstrates how attention mechanisms can be effectively integrated into
lightweight architectures for real-time deployment. In the area of automated inspection, the model
supports the use of UAVs for efficient power grid monitoring, advancing the application of Al for Social
Good. In model design, it introduces a hybrid structure that combines structural re-parameterization,
offering a practical design pattern for object detection in complex environments. Additionally, this study
contributes to dataset analysis by demonstrating how techniques like augmentation and class-weighting
can mitigate challenges such as class imbalance and image noise, thus supporting broader adoption in
real-world computer vision tasks. This work advances the application of efficient deep learning models
in real-time fault detection for smart grid infrastructures, providing a foundation for future intelligent
systems capable of operating reliably under harsh and variable field conditions. Through this
contribution, the study not only enhances technical capability but also strengthens the intersection
between Al innovation and its deployment in critical societal infrastructure.

5. CONCLUSION

This study introduced an enhanced object detection model for insulator defect detection, built
upon the YOLOvV8n architecture and improved through the integration of a Slim-Neck structure and
Efficient Multi-scale Attention (EMA). The proposed approach demonstrated significant gains in
accuracy, achieving a mAP@0.5 of 92.1%, while maintaining a lightweight structure with 2.7 million
parameters and an inference speed of 161 FPS. These improvements highlight the model’s ability to
perform real-time detection efficiently, making it well-suited for UAV-based inspection tasks in power
transmission systems. By combining GSConv for structural re-parameterization with EMA for better
contextual understanding, the model effectively addresses common challenges in aerial imagery, such
as small object sizes, motion blur, and complex backgrounds. In addition to its strong technical
performance, this research contributes to the broader fields of computer vision and embedded Al by
demonstrating how attention mechanisms can be applied to create accurate, fast, and resource-efficient
detection systems. The findings support practical applications in infrastructure monitoring and offer a
reference for lightweight yet powerful model design.
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Looking ahead, the researcher hopes that this work can be further developed to build a more
comprehensive and deployable insulator defect detection system. One key direction for future research
is real-time testing using UAVs to capture live video streams in operational environments. Such testing
would enable evaluation of the model’s responsiveness, stability, and accuracy under field conditions.
Furthermore, deploying the model on edge devices such as Jetson Nano or Raspberry Pi is essential for
assessing its performance in resource-constrained settings, and for ensuring robustness in practical
deployments. Another critical recommendation is to expand and diversify the dataset by including more
types of insulator defects, various weather conditions (e.g., sunny, rainy, foggy), and different image
perspectives or camera angles. These additions would significantly enhance the model’s generalization
capabilities and make it more adaptable to the variability of real-world inspection scenarios. In summary,
this research lays a solid foundation for Al-based infrastructure monitoring, and its continued
development through real-world testing and dataset expansion will be vital for advancing intelligent,
scalable inspection systems in the field of computer science.
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