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Abstract 

Insulators are critical components in power transmission and distribution systems, where any defects can lead to 

severe operational failures and power outages. To enhance inspection efficiency, unmanned aerial vehicles (UAVs) 

are increasingly used for aerial monitoring. However, the quality of images captured by drones is often compromised 

due to hardware limitations, motion blur, and complex environmental backgrounds, which significantly reduces the 

performance of deep learning-based defect detection methods. This study proposes an improved insulator defect 

detection model based on the YOLOv8n architecture, optimized for accuracy and efficiency in low-quality image 

scenarios and suitable for deployment in resource-constrained environments. The model introduces two major 

modifications. First, a Slim-Neck module employing Ghost-Shuffle Convolution (GSConv) replaces standard 

convolutions to substantially reduce computational cost while preserving rich feature representations. Second, an 

Efficient Multi-Scale Attention (EMA) module is integrated into the neck to enhance multi-scale feature fusion by 

maintaining per-channel information without dimensionality reduction, improving the model’s ability to extract 

discriminative features. Experimental results demonstrate that the proposed model achieves a precision of 92.0%, 

recall of 88.6%, mAP@0.5 of 92.1%, and an inference speed of 161.29 FPS. Furthermore, it reduces parameter count 

by 10.8% and computational load by 8.6% compared to the baseline, validating its suitability for real-time UAV-

based inspections. The model also outperforms existing methods in detecting insulator defects, particularly in 

challenging conditions involving blur and complex backgrounds. 
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1. INTRODUCTION 

As the power grid continues to expand, transmission line installation areas are also growing [1]. 

To ensure long-term operational stability, regular inspections are required to detect potential defects in 

various components [2]. Insulators, as one of the most critical components, play a vital role in supporting 

conductors and maintaining electrical insulation throughout the transmission process [3], [4]. Since they 

are typically installed outdoors, insulators are frequently exposed to extreme environmental conditions. 

This exposure makes their surfaces prone to contamination and susceptible to damage such as corrosion, 

cracking, and breakage [5]. Such deterioration can degrade insulation performance, potentially leading 

to system faults and reducing the overall reliability and efficiency of power system operations [6]. 

Moreover, insulators are among the components with the highest failure rates in transmission systems, 

and their malfunction can result in widespread system disruptions and significant economic losses [7], 

[8]. Therefore, early detection and timely replacement of defective insulators are crucial measures to 

maintain the reliability of power systems [9], [10]. 

Currently, defect detection in power system insulators still heavily relies on conventional methods 

such as manual visual inspections and handheld device usage [11]. These traditional methods are labor-
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intensive and prone to inconsistency due to human subjectivity. Moreover, the remote and complex 

environments of high-voltage transmission lines make manual inspections inefficient and impractical.  

[12]. With the advancement of aerial survey technologies, drone-based inspection of electrical 

infrastructure has become increasingly utilized [13]. Although this contactless detection method helps 

overcome the limitations of manual inspection, it still faces challenges such as varying viewpoints in 

aerial imagery, complex background interference, and uneven signal intensities [14]. 

Since manually reviewing drone imagery is no longer practical, many researchers have begun to 

adopt deep learning based detection algorithms for identifying defects in insulators [15]. In recent years, 

deep learning based insulator defect detection has become a major focus in research due to its superior 

capability in accurately detecting faults [16]. Deep learning methods have demonstrated remarkable 

performance in complex tasks such as image classification and component defect detection [17]. The 

primary advantages of deep learning over traditional methods include high accuracy, fast detection 

speed, automatic extraction of deep features, and resilience against environmental disturbances [18]. 

Deep-learning object detectors are generally classified into two categories. Two-stage, region-

based methods such as R-CNN, Faster R-CNN, FPN, and Mask R-CNN offer high accuracy but are 

complex and relatively slow [19]. One-stage, regression-based methods such as YOLO, SSD, 

EfficientDet, and RetinaNet provide faster detection with simpler architectures, though at a slight cost 

in accuracy [20]. YOLO is widely adopted for insulator-fault detection due to its balance of speed and 

precision [21]. However, UAV-based inspections still face challenges such as cluttered backgrounds, 

diverse insulator shapes, small defect sizes, and poor image quality from long-range capture [16], [18]. 

To meet these challenges, recent studies have embedded lightweight convolutions and attention modules 

into YOLO architectures. For instance, the integration of CBAM into YOLOv5 enhances small-target 

selectivity [22]. In another approach, GhostConv combined with Coordinate Attention and an 

EVCBlock is used in YOLOv5s to enrich feature representation [23]. YOLOv7 has been modified by 

applying depthwise GhostConv along with SE attention, which helps reduce the number of parameters 

without compromising accuracy [24]. Similarly, a variant of YOLOv8n incorporates Triplet Attention, 

SCConv, a SC-Detect head, and a slim GSConv neck, leading to improved detection efficiency and 

overall performance [25]. 

Recent advancements in object detection have focused on combining lightweight convolutional 

operations with attention mechanisms to improve both accuracy and computational efficiency an 

essential requirement for edge deployment on UAV platforms. MI-YOLO [26] enhances YOLOv5s by 

incorporating attention modules and dilated convolutions, while similar improvements using CBAM 

[27], and EMA-integrated FasterNet [28] have demonstrated better recall for detecting small defects. 

Building on these trends, newer architectures such as LMD-YOLO [29], IALF-YOLO [30], and GSM-

YOLO [31]  further advance performance by integrating modules like SCConv, SimAM, and MAP-CA 

attention, achieving high detection speed and accuracy. However, despite these gains, many models still 

face difficulties under extreme lighting conditions, in cluttered backgrounds, or when detecting very 

small defects. In addition, the increasing complexity of these architectures can hinder real-time 

performance on resource-limited UAVs, while dependence on narrow or imbalanced datasets continues 

to limit their generalization to diverse real-world environments. 

To overcome these limitations particularly in detecting small or subtle defects within low-

resolution and noisy aerial images this study proposes an improved insulator defect detection framework 

based on the YOLOv8n architecture. The proposed model is optimized to enhance detection accuracy 

under challenging visual conditions while maintaining computational efficiency, making it well-suited 

for deployment in real-time and resource-constrained environments. The primary contributions of this 

work include: (1) the integration of an Efficient Multi-Scale Attention (EMA) module [32] enhances 

multi-scale spatial and channel-aware feature fusion, significantly improving the detection of insulator 
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defects in complex industrial environments. (2) Reconstructing the neck structure with a GSConv-based 

Slim-Neck [33] optimizes the model’s parameters and computational load while preserving detection 

accuracy, enabling efficient real-time deployment on resource-constrained edge devices. Through these 

innovations, the proposed model aims to improve real-time defect detection in drone inspection systems, 

facilitating more efficient monitoring of critical infrastructure and supporting sustainable power grid 

maintenance.  

2. METHOD 

To develop an efficient and accurate insulator defect detection system, a structured methodology 

was implemented, consisting of several key stages ranging from dataset preparation to model evaluation. 

Each stage was designed to ensure the successful development, training, and deployment of a YOLO-

based model optimized for real-time detection in challenging environments. The research stages are 

illustrated in Figure 1. 

 

 
Figure 1.  Research Workflow for the Development of the YOLO-Based Insulator Defect Detection 

System 

 

The research began with a literature review, aimed at understanding the state-of-the-art methods 

in insulator defect detection, including various YOLO variants and improvements using lightweight 

convolutional and attention modules. Next, dataset acquisition was performed by collecting and curating 

image data of insulators, including both defective and non-defective conditions. The dataset was then 

processed in the pre-processing stage, where image annotations and data augmentations were applied to 

improve model generalization and balance the training set. The following phase involved YOLOv8 

architecture modification. In this step, the standard YOLOv8n structure was modified by integrating 

two custom modules: (1) a Slim-Neck using GSConv for reduced model complexity and (2) an Efficient 

Multi-Scale Attention (EMA) module to enhance feature representation at different spatial and channel 
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levels. Transfer learning was then applied using pre-trained weights as the model’s initial parameters, 

providing a strong starting point and reducing training time. Simultaneously, hyperparameter setting 

was conducted to define key parameters such as batch size, learning rate, and training epochs. The model 

was then subjected to the training phase, where the data was divided into train, validation, and test sets. 

During this phase, the model’s parameters were optimized, and performance was monitored using 

metrics such as precision, recall, and mean average precision (mAP). Upon completion of training, the 

best-performing model weights were saved, followed by a comprehensive evaluation phase to assess 

detection accuracy and inference speed (FPS) using both quantitative metrics and qualitative visual 

comparisons. If the performance met the predefined benchmarks, the model was finalized as the YOLO-

based Insulator Defect Detection Model, ready for deployment in automated inspection systems, 

especially on resource-constrained platforms such as drones or edge devices. 

2.1. Proposed Framework for Insulator Defect Detection 

To ensure accurate and efficient defect detection on insulator surfaces, this study proposes an 

improved object detection framework based on a modified YOLOv8n architecture. The proposed 

framework integrates lightweight convolutional modules and attention mechanisms to enhance both 

performance and deployability, especially in edge computing environments. The architecture leverages 

transfer learning and multi-scale feature fusion to detect fine-grained defects under various visual 

conditions. 

 

 
Figure 2.  The proposed framework for insulator defect detection using a modified YOLOv8n model 

 

As illustrated in Figure 2, the framework begins by inputting insulator images, which are 

processed through a feature extraction backbone based on CSPDarknet53. The model uses pre-trained 

weights from the ImageNet public dataset to initialize the backbone, enabling better convergence and 

generalization. The extracted feature maps are then passed through a SlimNeck module, which replaces 

the default YOLO neck with a more efficient version using GSConv to reduce model complexity while 

preserving spatial information. To further improve detection robustness, the Efficient Multi-Scale 

Attention (EMA) module is embedded within the neck. EMA consists of parallel spatial and channel 

attention paths that highlight relevant features and suppress irrelevant background noise. This 

combination helps the model remain sensitive to small-scale defects in complex visual environments. 

The final detection head processes the multi-resolution feature maps (20×20×512, 40×40×512, 

80×80×256) to localize and classify insulator defects. The output is a detection result that accurately 

identifies defective regions with bounding boxes and confidence scores. 
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2.2. Architectural Design and Core Components of YOLOv8 

YOLOv8 represents a state-of-the-art evolution in the YOLO family of single-stage object 

detection frameworks, renowned for its real-time performance and balance between speed and accuracy. 

Building upon its predecessors, YOLOv8 employs a modular architecture comprising three core 

components: a backbone network for hierarchical feature extraction, a neck network for multi-scale 

feature fusion, and a detection head for precise localization and classification of objects. As shown 

in Figure 3, the backbone leverages the CSPDarknet architecture to efficiently capture spatial and 

semantic features across different scales, while the neck integrates advanced feature fusion techniques, 

such as PANet (Path Aggregation Network), to aggregate contextual information from multiple layers. 

The detection head further refines these features to predict bounding boxes and class probabilities with 

minimal computational overhead. This streamlined design enables YOLOv8 to excel in scenarios 

requiring rapid and reliable detection, such as identifying insulator defects in power grid infrastructure, 

where both real-time processing and high accuracy are critical for operational safety and efficiency. 

 

 
Figure 3.  Structure of YOLOv8 

 

Figure 3 presents the detailed architecture of the YOLOv8 model, illustrating its three core 

components: the Backbone, Neck, and Head. The Backbone is responsible for initial feature extraction 

and is composed of alternating convolutional (Conv) layers and C2f modules, which replace the 

traditional C3 structure to improve gradient flow and enhance the richness of extracted features. The 

spatial pyramid pooling fast (SPPF) module at the end of the Backbone further aggregates spatial 

information from different receptive fields. The Neck section employs a feature pyramid network 

(FPN)-like structure with upsampling and concatenation operations, enabling multi-scale feature fusion 

that enhances the model's ability to detect objects of varying sizes. The Head contains three detection 

branches (P3, P4, and P5), each targeting a specific scale of objects, and utilizes binary cross-entropy 

(BCE) for classification loss and a combination of Complete IoU (CIoU) and Distribution Focal Loss 

(DFL) for bounding box regression. YOLOv8 has several variants, ranging from YOLOv8n to 

YOLOv8x, which are designed to meet various object detection needs. In this work, YOLOv8n is chosen 

because of its lightweight and efficient model size, enabling fast object detection even with limited 

hardware resources. 
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2.3. Architectural Design of the Modified YOLOv8n Model 

While YOLO excels in rapid, real-time object detection, it faces challenges such as excessive 

computational expenses and reduced accuracy when identifying objects against intricate or busy 

backgrounds. To overcome these limitations, this research proposes an enhanced version of YOLOv8n, 

termed Modified-YOLOv8n, which implements two critical innovations. First, a Slim-Neck 

architecture utilizing GSConv is introduced to minimize computational demands without compromising 

the richness of feature representations. Second, an EMA module is integrated into the neck structure to 

boost the detection of insulator defects within visually cluttered scenes. As shown in Figure 4b, the 

improvements involve two structural changes: substituting the original C2f module with the efficient 

cross stage partial block (VoV-GSCSP) component and replacing standard convolutional layers 

with GSConv operations to streamline efficiency. Moreover, EMA modules are strategically 

implemented after the final P3, P4, and P5 VoV-GSCSP layers to sharpen feature refinement and 

amplify the model’s focus on insulator defects, even in environments dominated by complex 

background interference. These adaptations collectively enhance both computational efficiency and 

detection precision in challenging scenarios. 

 

 
Figure 4.  Structure of Modified YOLOv8n 

 

Figure 4 outlines the modified network structure of the Modified YOLOv8n, highlighting the 

incorporation of lightweight mechanisms and attention modules within the neck structure. By replacing 

the original C2f modules with VoV-GSCSP blocks and integrating GSConv layers, the design achieves 

enhanced computational efficiency while retaining the network’s feature representation capabilities. The 

inclusion of EMA modules after the P3, P4, and P5 layers strengthens the model’s capacity to prioritize 

subtle and small-scale defect characteristics, particularly in visually cluttered and complex 

environments. These refinements significantly elevate detection accuracy without compromising real-

time processing speeds, positioning the model as a robust solution for real-world inspection applications. 

https://jutif.if.unsoed.ac.id/


Jurnal Teknik Informatika (JUTIF)  Vol. 7, No. 1, February 2026, Page. 60-80 
P-ISSN: 2723-3863  https://jutif.if.unsoed.ac.id                                       

E-ISSN: 2723-3871  DOI: https://doi.org/10.52436/1.jutif.2026.7.1.4679 

 

 

66 

2.4.    Slim-Neck Structure with GSConv 

Slim-neck is an efficient solution designed for the neck part of real-time object detection 

architectures, aiming to enhance accuracy while reducing computational burden. This approach is 

achieved through an innovative design that maintains high-quality feature representation while 

minimizing parameter count and computational complexity. One of its core components is the Ghost-

Shuffle Convolution (GSConv) [33], which addresses the limitations of depthwise separable 

convolution (DSC). Although DSC effectively reduces parameters and computation, it suffers from poor 

inter-channel information exchange, which negatively impacts feature representation. GSConv 

combines the strengths of standard convolution (SC) and DSC through a channel-shuffling mechanism, 

enabling interaction across channels and preserving semantic connectivity. This hybrid approach 

approximates the feature representation quality of SC with approximately 50% less computation, while 

allowing better spatial and channel-level feature extraction. The core mechanism involves splitting input 

channels into groups, applying DSC independently to each group, and then shuffling and merging them, 

as depicted in Figure 5.  

 
Figure 5.  Ghost-Shuffle Convolution Module 

 

Although GSConv has proven effective in reducing redundant information in feature maps while 

maintaining detection accuracy, it has limited impact on inference time. To address this limitation, the 

GSConv module was further developed through the integration of a GS bottleneck, as illustrated in 

Figure 6a, which replaces the default bottleneck in the C2f structure. This led to the development of a 

new module called VoV-GSCSP, a cross-layer feature refinement framework designed to improve 

multi-scale feature integration with greater computational efficiency. VoV-GSCSP replaces the ELAN 

module in the neck of the network and is constructed by combining functional blocks as shown in Figure 

6b. 

 

 
Figure 1.  The architectural designs of (a) the GS bottleneck module and (b) the VoV-GSCSP 

module 
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As depicted in Figure 6b, the workflow begins with a 1×1 convolutional layer that extracts initial 

features while reducing input channel dimensions. The output is then passed to the GS bottleneck, which 

utilizes a residual connection to enhance gradient flow. Within the bottleneck, data is processed through 

two successive GSConv layers to deepen spatial and channel-wise relationships. The refined features 

are then concatenated with the compressed output of a parallel 1×1 convolution (reduced to half the 

input channels). This merged output is again fused with the original VoV-GSCSP input using an 

additional 1×1 convolution, followed by a final convolutional layer that restores the number of output 

channels to C₂, as mathematically outlined in Equations (2) and (3).  

𝐆𝐒𝐁𝐨𝐮𝐭 = 𝐅𝐆𝐒𝐂(𝐅𝐆𝐒𝐂(𝛂𝐗𝐂𝟏)) + 𝛂(𝐗)𝐂𝟏/𝟐   (2) 

𝐕𝐨𝐕𝐆𝐒𝐂𝐒𝐏𝐨𝐮𝐭 = 𝛂(𝐂𝐨𝐧𝐜𝐚𝐭(𝐆𝐒𝐁𝐨𝐮𝐭, (𝛂𝐗𝐜𝟏)))     (3) 

2.5.   Neck Network with EMA  

Figure 4b schematically illustrates the architectural modifications to the neck network in the 

enhanced YOLOv8n model. The design integrates EMA modules [32] following the final VoV-GSCSP 

blocks at the P3, P4, and P5 stages, preserving the original spatial resolution of feature maps while 

enhancing semantic discriminability. As depicted in Figure 7, the EMA mechanism operates as a critical 

element within the enhanced architecture. For an input feature map 𝑿 ∈  ℝ𝑪×𝑯×𝑾, the EMA module 

partitions the channels into G parallel sub-features ( 𝑿 = [𝑿𝟎, 𝑿𝟏, … , 𝑿𝑮−𝟏], where 𝑿𝒊  ∈  ℝ
𝑪

𝑮
×𝑯×𝑾

), 

facilitating multi-group learning of heterogeneous semantic patterns. This grouped processing enables 

the network to capture nuanced defect signatures across diverse spatial and contextual scales, 

particularly beneficial for small or occluded defects in complex environments. 

 

 
Figure 2.  Structure of the EMA module 
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To augment the model’s capability for integrate multi-scale spatial information, the original 3×3 

convolutional branch is substituted with a 5×5 branch, broadening the network’s receptive field to 

capture richer contextual patterns across varying scales. The EMA module utilizes three parallel 

pathways to derive attention descriptors from grouped feature maps: two branches employ 1×1 

convolutions for localized feature extraction, while the third incorporates a 5×5 convolution to encode 

broader spatial relationships. This design introduces a novel cross-dimensional aggregation strategy, 

enabling seamless fusion of global context and fine-grained local details. Specifically, the outputs of the 

1×1 convolutional branches undergo 2D global average pooling to distill channel-wise global spatial 

statistics, condensing features into compact descriptors. Simultaneously, the output from the smaller-

scale branch is reconfigured to meet the dimensional specifications necessary for the ensuing channel-

wise feature activation step. The global pooling operation, mathematically expressed as: 

 

𝑧𝑐 =
1

𝐻.𝑊
∑ ∑ 𝑥𝑐(𝑖, 𝑗𝑊

𝑗=1 ) 𝐻
𝑖=1    (4) 

 

aims to capture global context and model long-range spatial dependencies across each channel. This 

approach enables EMA to enhance the model’s sensitivity to spatial relationships, particularly in 

complex visual environments. 

3. EXPERIMENTAL RESULTS  

This section outlines the experimental setup, including the datasets used, evaluation metrics, 

selected hyperparameters, as well as the results obtained and their corresponding analysis. 

3.1. Experimental Environment and Datasets 

The experimental environment runs on a 64-bit Windows 11 operating system, utilizing a GPU-

enabled system to accelerate deep learning processes. The development of the model was carried out 

using the PyTorch framework with support from CUDA and Python. An overview of the hardware and 

software components used in this experiment is presented in Table I. 

 

Table I. Hardware and Software Specifications 

Description Specification 

Processor Intel Core i7-10700F 

GPU Nvidia GeForce RTX 3050 

RAM 32GB 

Operating System Windows 11 

Software Libraries CUDA 11.8, Python 3.8.5, PyTorch 2.5.1 

 

The dataset used in this study is the public Insulator Defect Image Dataset (IDID) [34], which can 

be accessed through the IEEE Dataport platform. This dataset is specifically designed for defect 

detection tasks in power transmission systems, with a focus on images containing insulator strings 

captured in outdoor environments. The IDID includes insulators in three primary conditions: (1) 

flashover, where visible electrical discharge marks are present; (2) broken, referring to structural damage 

or cracks in the ceramic shell of the insulator; and (3) normal, which indicates insulators without any 

observable defects. The original dataset comprises 1,600 high-resolution images, each with sufficient 

detail to identify fine-grained visual features necessary for effective training of deep learning models. 

samples of the original dataset are presented in Figure 8 to provide visual context of the image quality 

and class representation. 
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Figure 3.  Image sample from IDID dataset 

 

To ensure high-quality training data, all images were annotated manually using the Roboflow 

annotation tool. This platform provides an intuitive interface that facilitates precise bounding box 

placement around defective areas. To further enhance the model’s ability to generalize to real-world 

deployment scenarios such as those encountered during drone-based inspection in outdoor environments 

an extensive data augmentation strategy was employed. The augmentation techniques applied include 

horizontal and vertical flipping, brightness adjustment, and Gaussian blur, each simulating common 

variations in image capture caused by camera movement, lighting conditions, and object orientation. 

These augmentations not only improve robustness but also address dataset imbalance by artificially 

increasing the number of training samples for minority classes. 

The distribution of bounding box annotations per class in the augmented Insulator Defect Image 

Dataset (IDID) is summarized in Table II, which provides a quantitative overview of the dataset 

composition. As shown in the table, the "Insulator" class contains a total of 1,093 annotations, while 

defect-related classes such as "Broken" and "Flashover" are more prevalent, with 2,448 and 1,832 

annotations, respectively. This distribution indicates a deliberate emphasis on capturing various defect 

scenarios, ensuring that the dataset is sufficiently representative for training robust deep learning 

models. Such a distribution supports the development of models that can generalize well across different 

defect types, especially considering the imbalanced yet realistic nature of field data. A higher frequency 

of certain defect classes also encourages the model to better distinguish subtle variations within similar 

visual patterns. 

Furthermore, Figure 9 presents a sample of annotated images from the dataset, highlighting the 

wide range of visual conditions encountered during data collection. These samples demonstrate the 

challenges inherent in real-world insulator defect detection tasks, including partial, and complex, 

cluttered backgrounds. These factors introduce significant variation in object appearance and context, 

demanding that the detection model learns robust feature representations to maintain high accuracy in 

practical deployment scenarios. 

 

Table II. Annotation Distribution per Class 

Class Total Annotations 

Insulator 1093 

Broken 2448 

Flashover 1832 
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Figure 4.  Sample annotated images from the IDID dataset 

 

3.2. Evaluation Metrics and Hyperparameters Settings 

In object detection, model effectiveness is mainly assessed through Average Precision (AP), 

which captures the accuracy in both identifying and categorizing objects. When the task includes several 

object categories, the evaluation expands to mean Average Precision (mAP), calculated as the average 

AP across all classes. Alongside accuracy, the inference speed is a key consideration, particularly for 

real-time systems. This is quantified by Frames Per Second (FPS), which measures the number of 

images the model can analyze within one second. The mathematical formulations of these evaluation 

metrics are provided in Equations (5) to (9): 

 

𝑃 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
,    (5) 

 

𝑅 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
 ,    (6) 

 

𝐴𝑃 =  ∫ 𝑃(𝑅)𝑑 𝑅
1

0
,   (7) 

 

𝑚𝐴𝑃 =  
1

𝑛
∑ 𝐴𝑃𝑖

𝑛
𝑖=1    (8) 

 

𝐹𝑃𝑆 =
1000

𝑇𝑜𝑡𝑎𝑙 𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 𝑇𝑖𝑚𝑒 𝑝𝑒𝑟 𝐼𝑚𝑎𝑔𝑒
    (9) 

Where 𝑇𝑃 (True Positives) represents the number of correctly predicted positive samples, 𝐹𝑁 (False 

Negatives) refers to the number of actual positive samples that were incorrectly predicted as negative, 

and 𝐹𝑃 (False Positives) denotes the number of negative samples that were incorrectly classified as 

positive. The symbol 𝑅 stands for Recall, 𝑃 for Precision, 𝑁 is the total number of object categories 

being detected, and Total processing time per image includes preprocessing, inference, and 

postprocessing times. 

In this experiment, the model training process was configured with carefully selected 

hyperparameters to ensure convergence stability and efficient learning. Stochastic Gradient Descent 

(SGD) was employed as the optimization algorithm due to its robustness in large-scale learning tasks. 

The initial learning rate was set to 0.01, a balanced value chosen to prevent divergence from overly high 

rates and slow convergence from overly low rates. To further enhance training stability and 

generalization, a momentum of 0.95 and a weight decay of 0.0005 were applied. These values were 

determined based on iterative experimental trials and performance monitoring through visualized 
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training graphs. Although the model showed signs of convergence after approximately 100 epochs, the 

training duration was extended to 300 epochs to ensure performance consistency across the dataset. A 

batch size of 32 was selected to accommodate the available computational resources, maintaining a 

balance between memory usage and gradient estimation stability. Other parameters, such as the input 

resolution and augmentation ratios, followed default configurations from the Ultralytics YOLO 

framework. A summary of the key hyperparameter settings used in the experiment is presented in Table 

III. 

 

Table III. Hyperparameters Settings 

Parameter Value 

Epochs 300 

Batch Size 32 

Optimizer Stochastic Gradient Descent (SGD)  

Initial Learning Rate 0.01 

Weight Decay 0.0005 

Momentum 0.937 

 

3.3. Experimental results and analysis Experiments 

To validate the effectiveness of the proposed method, a series of experiments and comparative 

analyses were conducted using the Insulator Defect Image Dataset (IDID). The evaluation process is 

divided into two main components: ablation studies and comparative experiments. (1) To thoroughly 

investigate the role of each modification introduced in the proposed approach, a series of ablation 

experiments were conducted. These experiments aim to isolate the impact of each component by 

evaluating model performance with and without specific enhancements. This process allows for a deeper 

understanding of how individual changes contribute to overall improvements in detection accuracy, 

computational efficiency, and robustness in diverse visual conditions. (2) In parallel, comparative 

experiments were performed to benchmark the proposed method against several existing object 

detection models based on the YOLO family. Using the same dataset and experimental settings, the 

proposed model was evaluated alongside baseline architectures. 

3.4. Ablation Experiment 

To comprehensively evaluate the impact of each architectural enhancement introduced in the 

proposed method, an ablation study was conducted focusing on two key components: the Efficient 

Multi-Scale Attention (EMA) module and the Slim-neck structure based on GSConv. These components 

were integrated separately and jointly into the YOLOv8n baseline to isolate and quantify their individual 

and combined contributions to the model’s overall performance. The ablation experiments are essential 

to understand how each modification affects detection accuracy, model complexity, and inference speed. 

Table IV presents the detailed results of this analysis, comparing variations of the model with and 

without the proposed modules across key metrics, including class-wise Average Precision (AP), mean 

Average Precision at 0.5 IoU (mAP@0.5), FLOPs, parameter count, and Frames Per Second (FPS). 

As shown in Table IV, the baseline YOLOv8n model, without any enhancements, achieved a 

mean Average Precision (mAP@0.5) of 90.5%, with class-wise APs of 95.5% for Broken insulators, 

84.6% for Flashover, and 93.5% for general Insulator detection, operating at a speed of 178.57 frames 

per second (FPS). When the EMA module was introduced independently, a marginal improvement in 

overall detection accuracy was observed, with mAP@0.5 increasing to 90.8%. Notably, the AP for 

Flashover defects increased to 85.3%, indicating that EMA enhances the model’s ability to capture 

nuanced spatial features, particularly in defect classes with complex visual patterns and subtle luminance 
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transitions. However, a slight reduction in AP for Broken defects suggests that the added spatial 

aggregation could lead to an over-smoothing effect, potentially reducing sensitivity to fine-grained edge 

discontinuities present in fracture patterns. Additionally, the computational cost slightly increased 

(FLOPs: 8.2G), and inference speed dropped to 158.73 FPS, underscoring the trade-off between spatial 

precision and processing efficiency. 

 

Table IV. Results of the ablation experiments 

Model Slim-

neck 

EMA AP(%) mAP FLOPs Params FPS 

   Broken Flashover Insulator @0.5(%) (G) (M)  

 

YOLOv8n 

- - 95.5 84.6 93.5 90.5 8.1 3 178.57 

- ✓ 93.4 85.3 93.7 90.8 8.2 2.9 158.73 

✓ - 94.5 85.7 93.3 91.2 7.3 2.7 185.19 

✓ ✓ 95.6 86.9 94 92.1 7.4 2.7 161.29 

 
In contrast, replacing the standard neck structure with a lightweight Slim-neck alone yielded a 

more notable enhancement in both accuracy and efficiency. The model attained a mAP of 91.2% with a 

significant reduction in FLOPs to 7.3G and parameter count to 2.7M, achieving the highest FPS of 

185.19 across all configurations. These results suggest that Slim-neck not only accelerates inference but 

also preserves semantic richness across scales due to its efficient feature aggregation strategy beneficial 

in processing aerial images with small object-to-background ratios, as commonly encountered in power 

grid inspection. Crucially, the integration of both EMA and Slim-neck resulted in the best performance, 

achieving a peak mAP@0.5 of 92.1%, with respective APs of 95.6%, 86.9%, and 94.0 for Broken, 

Flashover, and Insulator classes. While the inclusion of EMA slightly increases the FLOPs to 7.4G and 

reduces the speed to 161.29 FPS compared to Slim-neck alone, the combined configuration offers the 

optimal trade-off between accuracy and efficiency. The boost in performance is attributed to the 

complementary nature of the two modules: Slim-neck enhances feature propagation and compactness, 

while EMA facilitates robust contextual modeling by focusing attention on the most discriminative 

spatial regions.  

This synergy is visually corroborated in Figure 10. In the top row, the model with EMA correctly 

identifies subtle fractures that were either missed or poorly localized by the baseline YOLOv8n. The 

bounding boxes are more precise, and confidence scores are noticeably higher, indicating greater 

certainty and improved spatial focus. In the second row, for Flashover defects, the EMA-augmented 

model suppresses false positives and demonstrates more stable label assignments, even under complex 

background textures. Furthermore, the EMA-equipped model demonstrates a clear advantage in 

distinguishing between overlapping or adjacent insulator components a common challenge in UAV-

based inspection tasks where perspective distortion and occlusion are prevalent. These findings validate 

that the proposed enhancements substantially elevate the model’s ability to detect minute and complex 

defects with higher fidelity, while still maintaining high throughput. More importantly, the reduction in 

computational overhead via Slim-neck ensures that the model remains deployable on edge devices, 

making it suitable for real-time aerial inspection scenarios. Therefore, the final configuration combining 

Slim-neck and EMA presents an optimal balance of detection precision, computational complexity, and 

real-time capability addressing critical challenges in small object detection within high-resolution UAV 

imagery. 
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Figure 5.  Comparison before and after adding EMA attention mechanism on the IDID dataset. 

 

3.5. Comparison Experiment 

The ablation experimental results show that the integration of the Slim-neck structure and the 

Efficient Multi-Scale Attention (EMA) module significantly improves the performance of the 

YOLOv8n baseline model in terms of both detection accuracy and computational efficiency. These 

findings confirm that each component contributes positively, with their combination yielding the most 

balanced and effective model configuration. To further validate the general effectiveness and 

competitiveness of the proposed model, this section presents a comparison experiment against several 

widely used YOLO-based object detection algorithms, including YOLOv5n, YOLOv6n, and the 

original YOLOv8n. The purpose of this experiment is to benchmark the proposed method’s performance 

using the same dataset and evaluation metrics, thereby assessing its practical advantages in real-world 

defect detection tasks. The comparative results, summarized in Table V, highlight key indicators such 

as precision, recall, mean Average Precision (mAP), computational cost, and inference speed, offering 

a comprehensive view of the model’s capabilities relative to other existing methods. 

Table V. Performance comparison with other models on the IDID dataset. 

Model P 

(%) 

R 

(%) 

mAP@0.5 

(%)  

mAP@0.5:0.95 

(%) 

Params 

(M) 

FLOPs 

(G) 

FPS 

YOLOv5n 89.4 87.6 91.1 73.5 2.5 7.1 178.57 

YOLOv6n 89.3 84.6 89 74.9 4.2 11.9 185.19 

YOLOv8n 90.1 88.5 90.5 74.8 3 8.1 178.57 

Proposed 

Method 

92 88.6 92.1 75.1 2.7 7.4 161.29 

 

The proposed method achieves the highest Precision score of 92.0%, demonstrating a superior 

ability to correctly identify positive instances compared to YOLOv5n with 89.4%, YOLOv6n with 

89.3%, and YOLOv8n with 90.1%. In terms of Recall, the proposed model also leads with 88.6%, 

slightly ahead of YOLOv8n at 88.5%, and significantly better than YOLOv5n at 87.6% and YOLOv6n 

at 84.6%. These results indicate strong robustness of the proposed method in identifying true defect 
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instances, even under complex visual scenarios. For localization performance, the model attains the 

highest mAP@0.5 at 92.1%, surpassing YOLOv5n with 91.1%, YOLOv6n with 89.0%, and YOLOv8n 

with 90.5%. Additionally, in the more rigorous mAP@0.5:0.95 evaluation, the proposed model achieves 

75.1%, slightly higher than YOLOv5n at 73.5%, YOLOv6n at 74.9%, and YOLOv8n at 74.8%. This 

confirms that the proposed model not only performs well on standard IoU thresholds but also maintains 

accuracy across a wide range of object localization conditions. In terms of computational efficiency, the 

proposed method is notably lightweight with only 2.7 million parameters and 7.4 billion FLOPs. This 

is more efficient than YOLOv6n with 4.2 million parameters and 11.9 billion FLOPs, and YOLOv8n 

with 3.0 million parameters and 8.1 billion FLOPs. Despite this compact structure, the model does not 

compromise on accuracy, highlighting the effectiveness of the Slim-neck design and GSConv 

integration. The only trade-off observed is in the inference speed. The proposed model operates at 

161.29 FPS, which is slightly lower than YOLOv5n at 178.57 FPS and YOLOv6n at 185.19 FPS. This 

decrease is attributed to the addition of the Efficient Multi-Scale Attention module, which introduces 

additional processing to enhance feature representation. However, the drop in speed remains within real-

time limits and is justified by the gains in accuracy and efficiency.  

To provide a more comprehensive evaluation beyond numerical performance metrics, Figures 11 

and 12 present qualitative comparisons of the proposed model's detection capability under various 

conditions. These visualizations serve as essential complements to the quantitative analysis by 

illustrating how the model behaves in real-world scenarios, where factors such as image quality, 

environmental complexity, and lighting variability play significant roles in object detection 

performance. Figure 11 presents a comparative evaluation of detection performance between the 

proposed model and three baseline YOLO variants: YOLOv5n, YOLOv6n, and YOLOv8n. The figure 

is structured in three horizontal panels, each representing a distinct scene involving different insulator 

defect types, and four vertical columns representing detection results from the respective models. This 

visualization enables a clear assessment of how each model performs in terms of localization accuracy, 

detection confidence, and visual reliability under real-world scenarios. 

In the first row of images, which features insulator chains mounted on a metallic tower structure, 

the detection of Broken components proves to be challenging due to repetitive patterns and the presence 

of structural interference. YOLOv5n and YOLOv6n produce results with relatively low confidence, 

such as 0.64 and 0.70 for Broken defects, and often draw bounding boxes that are either misaligned or 

overly constrained. YOLOv8n shows moderate improvement in both box placement and confidence. 

However, the proposed model clearly outperforms the baselines by generating precise bounding boxes 

with confidence scores reaching 0.95 for Insulator and 0.71 for Broken. The localization is more accurate 

and better fitted to the actual defect area, indicating that the model is able to effectively extract fine-

grained spatial features, even when surrounded by metallic noise and shadow artifacts. 

In the second row, where flashover defects appear along the surfaces of stacked disc insulators 

with a grassy or textured background, the baseline models show varying degrees of overprediction and 

misclassification. YOLOv5n assigns multiple overlapping bounding boxes with low confidence values 

such as 0.40 and 0.51, suggesting poor defect discrimination. YOLOv6n performs slightly better, with 

a stronger confidence level of 0.66, but still suffers from visual redundancy. YOLOv8n improves the 

precision further, yet still exhibits a degree of label dispersion and inconsistent box alignment. In 

comparison, the proposed model generates clean, well-placed bounding boxes with confidence values 

reaching up to 0.60, 0.56, and 0.44 for Flashover, while simultaneously identifying the Insulator class 

with a high confidence of 0.93. These results indicate that the proposed model is more capable of 

isolating actual defect regions and suppressing irrelevant visual information, which is particularly 

crucial in outdoor scenes where background textures can easily lead to false detections. 

 

https://jutif.if.unsoed.ac.id/


Jurnal Teknik Informatika (JUTIF)  Vol. 7, No. 1, February 2026, Page. 60-80 
P-ISSN: 2723-3863  https://jutif.if.unsoed.ac.id                                       

E-ISSN: 2723-3871  DOI: https://doi.org/10.52436/1.jutif.2026.7.1.4679 

 

 

75 

 
Figure 6.  Comparison of detection result with other models. 

 

The third row of Figure 11 displays insulators captured in visually degraded conditions, such as 

blurry backgrounds, lower contrast, and complex natural scenery. In this scenario, YOLOv5n and 

YOLOv6n manage to detect Broken defects with confidence around 0.74 and 0.66 but still exhibit 

instability in bounding box accuracy and class distinction. YOLOv8n performs relatively better but still 

underperforms in terms of certainty. The proposed model not only matches or exceeds the confidence 

of prior variants reaching 0.75 for Broken but also offers improved alignment between the predicted 

boxes and actual defect boundaries. It distinguishes Insulator and Broken classes with greater clarity, 

even under subtle image noise and low-contrast areas. Across all cases in Figure 11, it is evident that 

the proposed model consistently surpasses YOLOv5n, YOLOv6n, and YOLOv8n in terms of detection 

quality, confidence reliability, and robustness in spatial reasoning. 

Figure 12 presents a comprehensive visual comparison that emphasizes the robustness of the 

proposed model over the YOLOv8n baseline under challenging real-world conditions commonly 

encountered during aerial inspections. In Row A, which captures conditions involving motion blur and 

defocus caused by UAV movement or unstable camera focus, the proposed model demonstrates superior 

stability in both detection accuracy and bounding box precision. It consistently identifies critical objects 

such as flashovers and insulators with high confidence, with examples reaching confidence scores as 

high as 0.92 for insulators and 0.66 for flashovers. Meanwhile, the YOLOv8n baseline fails to maintain 

detection consistency, exhibiting reduced confidence and occasionally missing targets altogether. This 

performance gap highlights the effectiveness of the proposed enhancements in preserving spatial 

understanding, even when low-level visual cues are degraded. 

In Row B, which represents images with visually complex backgrounds including vegetation, 

towers, and metallic infrastructure, the proposed model again outperforms the baseline by maintaining 

precise localization of defects while avoiding false positives. The baseline model frequently 

misclassifies background textures and edges as defect classes, suggesting a weak contextual 

understanding. In contrast, the proposed model accurately isolates target objects like flashover regions, 

producing predictions with strong confidence values such as 0.72, and avoids confusing similar-looking 

regions in the environment. This improvement is largely attributed to the model’s enhanced spatial 

attention and feature aggregation capability, which enables it to distinguish between foreground 

anomalies and background clutter an essential feature for deployment in visually dense inspection 

scenes. 
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In Row C, which illustrates scenarios under extreme lighting conditions such as overexposure and 

glare from direct sunlight, the baseline YOLOv8n model shows clear limitations. It often produces weak 

or inconsistent predictions, failing to detect broken components reliably due to reduced contrast and 

visual detail. The proposed model, on the other hand, continues to deliver stable detections even under 

these harsh lighting conditions. It maintains high confidence scores, including values reaching up to 

0.76 for broken insulators, reflecting a stronger photometric invariance and a more robust abstraction of 

object shape and structure. This ability to perform under challenging illumination is critical in outdoor 

inspections, where lighting variability is inevitable and uncontrolled. 

 

 
Figure 7.  Comparison of detection results between baseline and proposed models under 

challenging visual conditions. 

 

4. DISCUSSIONS 

This study presents an improved object detection model by integrating a Slim-Neck structure with 

Efficient Multi-scale Attention (EMA) into the YOLOv8n architecture. The modified model achieves 

significant performance gains, increasing mAP@0.5 from 90.5% to 92.1%, while also reducing model 

size and computational complexity. The number of parameters decreases by 10.8%, from 3.0 million to 

2.7 million, and FLOPs are reduced by 8.6%, from 8.1 billion to 7.4 billion. The model maintains a high 

inference speed of 161 FPS, making it practical for real-time UAV-based inspections. These 

improvements are driven by the use of GSConv, which retains rich channel interactions at lower 

computational cost, and the EMA module, which expands the receptive field and focuses on the most 

discriminative spatial and channel-wise features. Together, these enhancements improve performance 

under challenging conditions such as motion blur, complex backgrounds, and small object sizes. 

Ablation studies reveal the individual contributions of each component. Adding EMA alone 

improves detection for flashover defects but slightly reduces accuracy for broken insulators, likely due 

to over-smoothing. The Slim-Neck module alone achieves the highest inference speed at 185.2 FPS and 

enhances multi-scale feature distribution. When combined, the Slim-Neck and EMA deliver the best 

performance, achieving a mAP@0.5 of 92.1% while maintaining low computational cost. These 

findings indicate that Slim-Neck improves gradient flow and preserves spatial information, particularly 

beneficial for detecting small objects. Meanwhile, EMA introduces contextual awareness, enhancing 

confidence scores in images with complex or noisy visual patterns. 
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When compared to baseline models such as YOLOv5n, YOLOv6n, and YOLOv8n, the proposed 

approach achieves the highest performance in both mAP and precision, while maintaining one of the 

lightest model sizes. Beyond outperforming these standard models, it also remains highly competitive 

against more recent state-of-the-art approaches. For instance, the Insu-YOLO model by Y. Chen et al. 

[35], which is based on YOLOv8n and incorporates GSConv and CARAFE, demonstrates improved 

detection for small objects. However, its performance is limited when dealing with extremely small 

defects and it lacks refinement in the post-processing stage. Similarly, Su et al.  [25] introduced Triplet 

Attention and a GSConv-based Slim-Neck into YOLOv8n to reduce background interference, but this 

came at the cost of lower precision and reduced inference speed. Meanwhile, the IALF-YOLO model 

proposed by Mei et al. [36] enhances small object detection by employing S-CBAM and GSConv, yet 

results in a more complex architecture that is challenging to deploy on embedded platforms. In contrast, 

the proposed model offers a more effective trade-off between detection accuracy and computational 

efficiency. By integrating a Slim-Neck module based on Ghost-Shuffle Convolution and an Efficient 

Multi-Scale Attention (EMA) mechanism, it achieves a precision of 92.0%, a mAP@0.5 of 92.1%, and 

a real-time inference speed of 161 FPS, while reducing the parameter count by 10.8% and computational 

load by 8.6%. These results demonstrate that the proposed method not only surpasses previous 

approaches in accuracy but also provides practical advantages for deployment in real-world, resource-

constrained environments. 

This research contributes to several key areas within the field of computer science. In computer 

vision and embedded AI, it demonstrates how attention mechanisms can be effectively integrated into 

lightweight architectures for real-time deployment. In the area of automated inspection, the model 

supports the use of UAVs for efficient power grid monitoring, advancing the application of AI for Social 

Good. In model design, it introduces a hybrid structure that combines structural re-parameterization, 

offering a practical design pattern for object detection in complex environments. Additionally, this study 

contributes to dataset analysis by demonstrating how techniques like augmentation and class-weighting 

can mitigate challenges such as class imbalance and image noise, thus supporting broader adoption in 

real-world computer vision tasks. This work advances the application of efficient deep learning models 

in real-time fault detection for smart grid infrastructures, providing a foundation for future intelligent 

systems capable of operating reliably under harsh and variable field conditions. Through this 

contribution, the study not only enhances technical capability but also strengthens the intersection 

between AI innovation and its deployment in critical societal infrastructure. 

5. CONCLUSION 

This study introduced an enhanced object detection model for insulator defect detection, built 

upon the YOLOv8n architecture and improved through the integration of a Slim-Neck structure and 

Efficient Multi-scale Attention (EMA). The proposed approach demonstrated significant gains in 

accuracy, achieving a mAP@0.5 of 92.1%, while maintaining a lightweight structure with 2.7 million 

parameters and an inference speed of 161 FPS. These improvements highlight the model’s ability to 

perform real-time detection efficiently, making it well-suited for UAV-based inspection tasks in power 

transmission systems. By combining GSConv for structural re-parameterization with EMA for better 

contextual understanding, the model effectively addresses common challenges in aerial imagery, such 

as small object sizes, motion blur, and complex backgrounds. In addition to its strong technical 

performance, this research contributes to the broader fields of computer vision and embedded AI by 

demonstrating how attention mechanisms can be applied to create accurate, fast, and resource-efficient 

detection systems. The findings support practical applications in infrastructure monitoring and offer a 

reference for lightweight yet powerful model design. 
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Looking ahead, the researcher hopes that this work can be further developed to build a more 

comprehensive and deployable insulator defect detection system. One key direction for future research 

is real-time testing using UAVs to capture live video streams in operational environments. Such testing 

would enable evaluation of the model’s responsiveness, stability, and accuracy under field conditions. 

Furthermore, deploying the model on edge devices such as Jetson Nano or Raspberry Pi is essential for 

assessing its performance in resource-constrained settings, and for ensuring robustness in practical 

deployments. Another critical recommendation is to expand and diversify the dataset by including more 

types of insulator defects, various weather conditions (e.g., sunny, rainy, foggy), and different image 

perspectives or camera angles. These additions would significantly enhance the model’s generalization 

capabilities and make it more adaptable to the variability of real-world inspection scenarios. In summary, 

this research lays a solid foundation for AI-based infrastructure monitoring, and its continued 

development through real-world testing and dataset expansion will be vital for advancing intelligent, 

scalable inspection systems in the field of computer science. 

CONFLICT OF INTEREST 

There is no potential conflict of interesting this work. 

REFERENCES 

[1] A. Odo, S. McKenna, D. Flynn, and J. B. Vorstius, “Aerial Image Analysis Using Deep Learning 

for Electrical Overhead Line Network Asset Management,” IEEE Access, vol. 9, pp. 146281–

146295, 2021, doi: 10.1109/ACCESS.2021.3123158. 

[2] H. Liang, C. Zuo, and W. Wei, “Detection and Evaluation Method of Transmission Line Defects 

Based on Deep Learning,” IEEE Access, vol. 8, pp. 38448–38458, 2020, doi: 

10.1109/ACCESS.2020.2974798. 

[3] Z. Lu, Y. Li, F. Shuang, and C. Han, “InsDef: Few-Shot Learning-Based Insulator Defect 

Detection Algorithm With a Dual-Guide Attention Mechanism and Multiple Label Consistency 

Constraints,” IEEE Trans. Power Deliv., vol. 38, no. 6, pp. 4166–4178, Dec. 2023, doi: 

10.1109/TPWRD.2023.3311643. 

[4] W. Rodgers, J. A. Cardenas, L. A. Gemoets, and R. J. Sarfi, “A smart grids knowledge transfer 

paradigm supported by experts’ throughput modeling artificial intelligence algorithmic 

processes,” Technol. Forecast. Soc. Change, vol. 190, p. 122373, May 2023, doi: 

10.1016/j.techfore.2023.122373. 

[5] Y. Cao, H. Xu, C. Su, and Q. Yang, “Accurate Glass Insulators Defect Detection in Power 

Transmission Grids Using Aerial Image Augmentation,” IEEE Trans. Power Deliv., vol. 38, no. 

2, pp. 956–965, Apr. 2023, doi: 10.1109/TPWRD.2022.3202958. 

[6] F. Alcayde-García, E. Salmerón-Manzano, M. A. Montero, A. Alcayde, and F. Manzano-

Agugliaro, “Power Transmission Lines: Worldwide Research Trends,” Energies, vol. 15, no. 16, 

p. 5777, Aug. 2022, doi: 10.3390/en15165777. 

[7] L. Zhang, B. Li, Y. Cui, Y. Lai, and J. Gao, “Research on improved YOLOv8 algorithm for 

insulator defect detection,” J. Real-Time Image Process., vol. 21, no. 1, pp. 1–14, 2024, doi: 

10.1007/s11554-023-01401-9. 

[8] X. Liu, X. Miao, H. Jiang, and J. Chen, “Data analysis in visual power line inspection: An in-

depth review of deep learning for component detection and fault diagnosis,” Annu. Rev. Control, 

vol. 50, pp. 253–277, 2020, doi: 10.1016/j.arcontrol.2020.09.002. 

[9] A. El-Hag, “Application of Machine Learning in Outdoor Insulators Condition Monitoring and 

Diagnostics,” IEEE Instrum. Meas. Mag., vol. 24, no. 2, pp. 101–108, Apr. 2021, doi: 

10.1109/MIM.2021.9400959. 

[10] B. Chen, “Fault Statistics and Analysis of 220-kV and Above Transmission Lines in a Southern 

Coastal Provincial Power Grid of China,” IEEE Open Access J. Power Energy, vol. 7, pp. 122–

129, 2020, doi: 10.1109/OAJPE.2020.2975665. 

[11] Z. Wang, Q. Gao, J. Xu, and D. Li, “A Review of UAV Power Line Inspection,” 2022, pp. 3147–

https://jutif.if.unsoed.ac.id/


Jurnal Teknik Informatika (JUTIF)  Vol. 7, No. 1, February 2026, Page. 60-80 
P-ISSN: 2723-3863  https://jutif.if.unsoed.ac.id                                       

E-ISSN: 2723-3871  DOI: https://doi.org/10.52436/1.jutif.2026.7.1.4679 

 

 

79 

3159. doi: 10.1007/978-981-15-8155-7_263. 

[12] J. Hu, W. Wan, P. Qiao, Y. Zhou, and A. Ouyang, “Power Insulator Defect Detection Method 

Based on Enhanced YOLOV7 for Aerial Inspection,” Electronics, vol. 14, no. 3, p. 408, Jan. 

2025, doi: 10.3390/electronics14030408. 

[13] F. FJ, L. Meganathan, M. Esha, N. G. Minh Thao, and A. S. Arockia Doss, “Power Transmission 

Line Inspection Using Unmanned Aerial Vehicle - A Review,” in 2023 Innovations in Power 

and Advanced Computing Technologies (i-PACT), IEEE, Dec. 2023, pp. 1–5. doi: 10.1109/i-

PACT58649.2023.10434671. 

[14] J. Ding et al., “Object Detection in Aerial Images: A Large-Scale Benchmark and Challenges,” 

IEEE Trans. Pattern Anal. Mach. Intell., vol. 44, no. 11, pp. 7778–7796, Nov. 2022, doi: 

10.1109/TPAMI.2021.3117983. 

[15] J. Liu, C. Liu, Y. Wu, H. Xu, and Z. Sun, “An Improved Method Based on Deep Learning for 

Insulator Fault Detection in Diverse Aerial Images,” Energies, vol. 14, no. 14, p. 4365, Jul. 2021, 

doi: 10.3390/en14144365. 

[16] Y. Liu, D. Liu, X. Huang, and C. Li, “Insulator defect detection with deep learning: A survey,” 

IET Gener. Transm. Distrib., vol. 17, no. 16, pp. 3541–3558, Aug. 2023, doi: 

10.1049/gtd2.12916. 

[17] Y. Gong et al., “Defect detection of small cotter pins in electric power transmission system from 

UAV images using deep learning techniques,” Electr. Eng., vol. 105, no. 2, pp. 1251–1266, Apr. 

2023, doi: 10.1007/s00202-022-01729-8. 

[18] J. Liu, M. Hu, J. Dong, and X. Lu, “Summary of insulator defect detection based on deep 

learning,” Electr. Power Syst. Res., vol. 224, p. 109688, Nov. 2023, doi: 

10.1016/j.epsr.2023.109688. 

[19] X. Lu, Q. Li, B. Li, and J. Yan, “MimicDet: Bridging the Gap Between One-Stage and Two-

Stage Object Detection,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. 

Lect. Notes Bioinformatics), vol. 12359 LNCS, pp. 541–557, 2020, doi: 10.1007/978-3-030-

58568-6_32. 

[20] H. Zhang and R. S. Cloutier, “Review on One-Stage Object Detection Based on Deep Learning,” 

EAI Endorsed Trans. e-Learning, vol. 7, no. 23, p. 174181, Jun. 2022, doi: 10.4108/eai.9-6-

2022.174181. 

[21] B. Li, M. Xu, Z. Xie, D. Qi, and Y. Yan, “Research on Insulator Defect Detection Based on 

Improved YOLOv7,” Lect. Notes Electr. Eng., vol. 1169 LNEE, pp. 173–180, 2024, doi: 

10.1007/978-981-97-1072-0_17. 

[22] N. Zhang, J. Su, Y. Zhao, and H. Chen, “Insulator-YOLO: Transmission Line Insulator Risk 

Identification Based on Improved YOLOv5,” Processes, vol. 12, no. 11, p. 2552, Nov. 2024, 

doi: 10.3390/pr12112552. 

[23] L. Ding, Z. Q. Rao, B. Ding, and S. J. Li, “Research on Defect Detection Method of Railway 

Transmission Line Insulators Based on GC-YOLO,” IEEE Access, vol. 11, pp. 102635–102642, 

2023, doi: 10.1109/ACCESS.2023.3316266. 

[24] Y. Zhang, J. Li, W. Fu, J. Ma, and G. Wang, “A lightweight YOLOv7 insulator defect detection 

algorithm based on DSC-SE,” PLoS One, vol. 18, no. 12, p. e0289162, Dec. 2023, doi: 

10.1371/journal.pone.0289162. 

[25] J. Su, Y. Yuan, K. Przystupa, and O. Kochan, “Insulator defect detection algorithm based on 

improved YOLOv8 for electric power,” Signal, Image Video Process., vol. 18, no. 8–9, pp. 

6197–6209, 2024, doi: 10.1007/s11760-024-03307-w. 

[26] S. Luan, C. Li, P. Xu, Y. Huang, and X. Wang, “MI-YOLO: more information based YOLO for 

insulator defect detection,” J. Electron. Imaging, vol. 32, no. 04, Jul. 2023, doi: 

10.1117/1.JEI.32.4.043014. 

[27] D. Wei, B. Hu, C. Shan, and H. Liu, “Insulator defect detection based on improved Yolov5s,” 

Front. Earth Sci., vol. 11, Feb. 2024, doi: 10.3389/feart.2023.1337982. 

[28] Z. Li, C. Jiang, and Z. Li, “An Insulator Location and Defect Detection Method Based on 

Improved YOLOv8,” IEEE Access, vol. 12, pp. 106781–106792, 2024, doi: 

10.1109/ACCESS.2024.3436919. 

[29] W. Han, Z. Cai, X. Li, A. Ding, Y. Zou, and T. Wang, “LMD-YOLO: A lightweight algorithm 

https://jutif.if.unsoed.ac.id/


Jurnal Teknik Informatika (JUTIF)  Vol. 7, No. 1, February 2026, Page. 60-80 
P-ISSN: 2723-3863  https://jutif.if.unsoed.ac.id                                       

E-ISSN: 2723-3871  DOI: https://doi.org/10.52436/1.jutif.2026.7.1.4679 

 

 

80 

for multi-defect detection of power distribution network insulators based on an improved 

YOLOv8,” PLoS One, vol. 20, no. 2, p. e0314225, Feb. 2025, doi: 

10.1371/journal.pone.0314225. 

[30] Z. Mei, H. Xu, L. Yan, and K. Wang, “IALF-YOLO: Insulator defect detection method 

combining improved attention mechanism and lightweight feature fusion network,” 

Measurement, vol. 253, p. 117701, Sep. 2025, doi: 10.1016/j.measurement.2025.117701. 

[31] Z. Xu and X. Tang, “Transmission line insulator defect detection algorithm based on MAP-

YOLOv8,” Sci. Rep., vol. 15, no. 1, p. 10288, Mar. 2025, doi: 10.1038/s41598-025-92445-3. 

[32] D. Ouyang et al., “Efficient Multi-Scale Attention Module with Cross-Spatial Learning,” in 

ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing 

(ICASSP), IEEE, Jun. 2023, pp. 1–5. doi: 10.1109/ICASSP49357.2023.10096516. 

[33] H. Li, J. Li, H. Wei, Z. Liu, Z. Zhan, and Q. Ren, “Slim-neck by GSConv: a lightweight-design 

for real-time detector architectures,” J. Real-Time Image Process., vol. 21, no. 3, pp. 1–11, 2024, 

doi: 10.1007/s11554-024-01436-6. 

[34] P. K. Dexter Lewis, “Insulator Defect Detection,” IEEE Dataport, 2021, doi: 

https://dx.doi.org/10.21227/vkdw-x769. 

[35] Y. Chen, H. Liu, J. Chen, J. Hu, and E. Zheng, “Insu-YOLO: An Insulator Defect Detection 

Algorithm Based on Multiscale Feature Fusion,” Electronics, vol. 12, no. 15, p. 3210, Jul. 2023, 

doi: 10.3390/electronics12153210. 

[36] Z. Mei, H. Xu, L. Yan, and K. Wang, “IALF-YOLO: Insulator defect detection method 

combining improved attention mechanism and lightweight feature fusion network,” Meas. J. Int. 

Meas. Confed., vol. 253, no. PC, p. 117701, 2025, doi: 10.1016/j.measurement.2025.117701. 

 

https://jutif.if.unsoed.ac.id/

