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Abstract 

As the incidence of skin cancer continues to rise globally, effective automated classification methods 

become crucial for early detection and timely intervention. Lightweight neural networks such as 

MobileNetV3 offer promising solutions due to their minimal parameters, making them suitable for 

environment with low resource. This study aims to develop an automated multiclass skin cancer 

classification system by enhancing MobileNetV3 with the Convolutional Block Attention Module 

(CBAM). The primary goal is to achieve high classification accuracy without significantly increasing 

computational demands. We employed Bayesian optimization to automatically fine-tune model parameters 

and applied targeted data augmentation techniques to address class imbalance. CBAM was integrated to 

highlight diagnostically relevant regions within images. The proposed method was evaluated using the 

ISIC 2024 SLICE-3D dataset, which includes over 400,000 dermatoscopic images categorized into benign, 

basal cell carcinoma, melanoma, and squamous cell carcinoma classes. Preprocessing involved 

standardized resizing, normalization, and extensive geometric and photometric augmentations. Results 

demonstrated that our method achieved an accuracy of 98.97%, precision of 98.99%, recall of 98.97%, 

and an F1-score of 98.98%, surpassing previous state-of-the-art models by 1.86–6.52%. Remarkably, this 

improvement was achieved with minimal additional parameters due to the effective integration of CBAM. 
These results represent an advancement in automated medical image analysis, particularly for low resource 

settings, by combining lightweight CNNs with attention mechanisms and systematic hyperparameter 

exploration.   
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1. INTRODUCTION 

Globally, skin malignancies account for more than 331,000 new diagnoses and nearly 59,000 

fatalities each year [1], [2]. The primary types of skin cancer include Melanoma, Basal Cell Carcinoma 

(BCC), Squamous Cell Carcinoma (SCC), and non-malignant lesions. Early detection is vital, as it 

greatly enhances survival rates, particularly for aggressive forms of melanoma. This emphasizes the 

critical need for effective detection methods [3], [4]. 

Conventional diagnostic techniques rely on dermoscopy criteria (ABCD, 7-point), biopsies, and 

histopathology [5], [6], [7], [8]. Although these methods are clinically validated, they demonstrate 

significant limitations, such as observer inconsistencies, reliance on specialist expertise, and significant 

time investment [9], [10]. These identified limitations emphasize the critical need for the implementation 

of automated detection technologies to improve the precision and accessibility of diagnoses. 
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Contemporary developments in both machine learning and deep learning methodologies have 

demonstrated significant potential for advancing medical image analysis. Previous research Asfar et al. 

(2024) [11] has explored various traditional feature extraction techniques including HFF, HOG, GLCM, 

and LBP, achieving accuracy of up to 92% [11], that brings attention to the possibility of enhancement 

through the deployment of deep learning methodologies. The Convolutional Neural Networks (CNN) 

exhibit remarkable proficiency in extracting intricate information from dermoscopic images. This 

advanced capability significantly elevates the accuracy and reliability of diagnostic processes in 

dermatology [12]. However, conventional CNN architectures face significant limitations, including high 

computational requirements, prolonged training times, and a tendency to overfit on limited medical 

datasets [13], [14]. These problems mean that CNN architecture needs to be made that are both light and 

efficient so that they can keep diagnostic accuracy high while reducing the amount of reducing 

computational demands [15]. 

Prior research has explored a variety of CNN architectures for skin skin malignancy classification, 

showcasing differing levels of effectiveness. This highlights the potential for further advancements and 

refinements in these models to improve outcomes in skin cancer detection. Research employing 

MobileNetV1 achieved only 58% accuracy, while InceptionV3 reached 86.9% on the ISIC dataset [14]. 

Additionally, VGG-16 recorded an accuracy of 73.69%, which suggests a limited capacity for 

generalization across diverse presentations of skin cancer [16]. However, Conventional CNN models 

such as VGG-16 and InceptionV3 typically involve millions of parameters, leading to substantial 

computational demands and hindering real-time deployment in resource-limited scenarios. 

Lightweight CNN architectures, including MobileNetV1, MobileNetV2, and MobileNetV3, have 

partially addressed this concern by significantly reducing computational requirements and parameter 

counts, thus facilitating faster performance on edge devices. Lightweight CNN architectures such as 

MobileNetV3, offer considerable advantages for mobile implementation by enabling detection in 

regions with limited medical infrastructure [17]. When combined with U-Net for segmentation tasks, 

MobileNetV3 attained a remarkable accuracy of 97.84% [18], [19] conducted a thorough comparative 

analysis that established MobileNetV3-Large as the preeminent lightweight model, with 75.2% accuracy 

on ImageNet 2012 with merely 219 million FLOPs and 5.40 million parameters. The implementation of 

transfer learning with MobileNetV3 on facial expression recognition has achieved an impressive 

accuracy of 95.8%, showcasing its significant potential, even with its lightweight architecture [20]. 

Despite these advantages, MobileNetV3 show limitations in capturing complex and nuanced 

features essential for accurate skin lesion assessment. This challenge largely stems from the lack of 

advanced spatial attention mechanisms, which leads to diminished performance when analyzing 

intricate lesion morphologies [21]. While attempts have been made to improve computational efficiency 

through latency reduction strategies, these enhancements can sometimes come at the expense of 

diagnostic accuracy, especially when evaluating complex disease patterns [22]. 

The Convolutional Block Attention Module (CBAM) offers a robust mechanism to address these 

operational shortcomings. CBAM employs two sequential attention modules—channel and spatial 

attention—that enable the network to adaptively highlight the most informative features while adding 

only a negligible computational overhead [22], [23]. Recent research utilizing CBAM within CNN 

architectures demonstrates significant potential for enhancing feature detection accuracy while 

maintaining computational efficiency [24]. 

Earlier studies have achieved accuracy levels reaching 97.11% on the ISIC-2019 dataset utilizing 

deep neural network architectures [25]. Nevertheless, research focusing on the incorporation of CBAM 

into lightweight MobileNetV3 models, accompanied by systematic Bayesian hyperparameter 

optimization, and specifically addressing class imbalance within large-scale datasets such as ISIC 2024 

https://jutif.if.unsoed.ac.id/
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SLICE-3D, remains scarce. These unexplored aspects underscore the novelty and distinctive 

contribution of our study. 

This research elevates the learning capabilities of advanced neural network architectures 

employed for skin cancer diagnostic by incorporating MobileNetV3 with the CBAM, facilitating a more 

accurate differentiation between malignant and benign skin lesions while preserving computational 

efficiency. Previous research Asfar et al. [11] has demonstrated that combining various feature 

extraction methods can improve classification accuracy, which supports our integrated approach of 

enhancing MobileNetV3 with attention mechanisms. This research leverages the comprehensive ISIC 

2024 dataset, which presents a rich array of skin lesion examples along with detailed clinical 

annotations. A key opportunity for improvement in our methodology is the imbalanced distribution of 

examples encompassing both non-cancerous and cancerous lesions. To enhance the robustness of our 

findings, our study implementing advanced data augmentation techniques aimed at achieving a balanced 

representation of the different lesion types [26] The proposed research presents several contributions as 

follows:  

• Our research aims to overcome the limitations of traditional CNN architecture by innovatively 

integrating MobileNetV3's lightweight framework with the dual attention mechanisms of CBAM. 

This architectural improvement greatly increases the network’s capacity to collect complex and 

nuanced elements essential for precise dermatological image interpretation. 

• We implement a comprehensive hyperparameter optimization strategy using Bayesian optimization 

techniques to maximize model performance. This methodical approach allows for systematic 

exploration of the parameter space, resulting in optimal configurations that balance accuracy and 

computational efficiency. 

• To address the challenge of imbalanced class distribution in the ISIC 2024 dataset, our research 

proposes the implementation of targeted data augmentation methodologies designed to promote 

balanced representation across various lesion categories. This strategic approach aims to enhance 

the model's generalization capabilities, facilitating improved performance across a diverse 

spectrum of skin cancer presentations. 

The organization of this paper is as follows: Section 2 provides a comprehensive review of 

methods, including the proposed method to our research in skin cancer classification, data augmentation 

and attention mechanism like CBAM. Section 3 delineates the result of our methodology, training 

history, and evaluation metrics employed to assess the proposed methodologies. Section 4 presents an 

analysis and discussion of experimental results. Finally, Section 5 offers conclusions regarding the 

research findings and identifies promising avenues for future investigation. 

2. METHOD 

The proposed methodology outlines a comprehensive framework for skin malignancy 

classification with deep learning approaches, leveraging the ISIC 2024 dataset. Figure 1 points out that 

our methodology adheres to a meticulous pipeline comprising many essential phases: dataset processing, 

model construction, classification, and evaluation. The preprocessing phase consists of essential data 

preparation steps, including dataset splitting, resizing, normalization, and augmentation. During the 

model development phase, our study employs Bayesian optimization for hyperparameter tuning, 

implements the MobileNetV3Small architecture, and enhances feature extraction through CBAM. This 

integration enables the model to focus specifically on relevant dermatological features while 

maintaining optimal computational efficiency, positioning it for effective clinical deployment. The final 

phases encompass the categorization of cutaneous malignancies images and thorough model evaluation 

using standard metrics, alongside the specialized ISIC 2024 partial Area Under Curve (pAUC) metric 

tailored specifically for dermatological applications.  

https://jutif.if.unsoed.ac.id/
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Figure 1. Proposed Research Methods 
 

2.1. Dataset 

The study employs the SLICE-3D (Skin Lesion Image Crops Extracted from 3D TBP) data from 

the International Skin Imaging Collaboration (ISIC) 2024 Competition. Each image isolates a single 

skin lesion for analysis. within a standardized 15mm-by-15mm field-of-view and has an average 

resolution of 133 pixels by 133 pixels. The dataset notably includes four diagnostic categories: 

malignant lesions (BCC, SCC, Melanoma) and benign lesions, providing a substantial volume of 

400,945 samples, heavily skewed towards benign lesions (400,552 samples) across seven dermatologic 

centers globally as illustrated in Figure 2 [27]. 

We selected the SLICE-3D dataset due to its superior clinical and technical attributes compared 

to conventional repositories. Whereas most public skin-cancer collections comprise dermoscopic 

photographs with inherent selection biases and nonuniform acquisition protocols, SLICE-3D provides 

de-identified image tiles extracted from 3D total-body photography at smartphone-comparable 

resolution. Each 15 × 15 mm tile includes detailed metadata—patient age, sex, anatomical site, lesion 

diameter estimates, lighting modality, and anonymized identifiers—enabling reproducible analyses. 

Moreover, with over 400,000 samples across Benign, BCC, SCC, Melanoma classes, SLICE-3D’s scale, 

diversity, and diagnostic granularity uniquely support the development of robust, generalizable 

automated classification models. 

https://jutif.if.unsoed.ac.id/
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Figure 2. SLICE-3D ISIC 2024 Dataset 
 

2.2. Preprocessing 

The preprocessing phase consists of four interconnected steps that significantly enhance the 

dataset for deep learning applications. To start, our study performs dataset splitting in alignment with 

the directory organization defined in the path class. The preprocessing pipeline begins by stratifying the 

ISIC 2024 partitioned the dataset into 70% training, 15% validation, and 15% testing subsets, each stored 

in separate directories to eliminate data leakage and ensure unbiased evaluation. All images are then 

uniformly resized to 224 × 224 pixels to preserve lesion morphology and satisfy MobileNetV3 input 

specifications. Next, pixel intensities are normalized using ImageNet statistics to reduce internal 

covariate shifts and stabilize model convergence. 

To enhance generalization and address class imbalance—particularly for melanoma, SCC, and 

BCC—we employ an on-the-fly, multistage augmentation strategy (Figure 3). First, geometric 

transformations (random horizontal/vertical flips, ± 15° rotations, ± 10 px translations) introduce spatial 

variability. Second, photometric adjustments (± 20 % brightness, ± 15 % contrast, ± 10 % saturation, 

CLAHE) simulate lighting variations [28]. Third, advanced augmentations (motion blur with 3–5 px 

kernels, elastic deformations α = 36, σ = 6, coarse dropout of up to ten 16 × 16 px patches) increase 

robustness to image distortions. Finally, noise removal for addressing noise factors such as hair 

interference. This comprehensive approach yields a diversified training set while preserving memory 

efficiency.These efforts are aimed at effectively simulating the variability commonly encountered in 

real-world dermatoscopic imaging conditions, ultimately enriching the model’s robustness and 

adaptability. 

 

Figure 3. Dataset Augmentation 

 

2.3. Hyperparameter Tuning 
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We leveraged Bayesian optimization to systematically fine-tune five critical hyperparameters, 

striking an optimal balance between classification accuracy and computational efficiency. Our defined 

search space comprised: a learning rate (1×10⁻⁵ to 1×10⁻²), dropout rate (0.2–0.5), L2 regularization 

strength (1×10⁻⁶ to 1×10⁻³), the number of units in two successive dense layers (256–1 024 and 128–

512, respectively), and the proportion of MobileNetV3Small base layers to freeze initially (20–40 %). 

A custom Bayesian Optimizer, employing an Expected Improvement acquisition function, iteratively 

proposed hyperparameter sets over five rounds, each selected to minimize validation loss. This process 

converged on an optimal configuration—learning rate = 2.26×10⁻⁴, dropout = 0.35, L2 = 2.5×10⁻⁵, dense 

units = [512, 256], freeze ratio = 0.3—reducing tuning time by approximately 60% compared to 

exhaustive grid search and yielding a validation accuracy of 99.49% over 71 epochs (see in Figure 6). 

2.4. MobileNetV3 

After conducting hyperparameter optimization, this study implements the MobileNetV3Small 

architecture with tailored adaptations for dermatological image analysis, as illustrated in Figure 4. We 

selected MobileNetV3Small as our backbone architecture due to its optimal balance between 

computational efficiency and classification performance, particularly when augmented for domain-

specific tasks (Figure 4). Although MobileNetV3Large achieves higher top 1 accuracy on generic 

benchmarks (75.2 % vs. 67.4 % on ImageNet2012), its substantial parameter count (5.4 million) and 

FLOPs (219 million) limit its suitability for resource-constrained environments. In contrast, 

MobileNetV3Small comprises only 2.5 million parameters and requires 66 million FLOPs for 224 × 

224 inference, yet—when combined with a Convolutional Block Attention Module (CBAM) it attains 

comparable or superior accuracy on specialized datasets [21][24]. Our implementation employs transfer 

learning from ImageNet weights, partial freezing guided by the optimized freeze ratio, and strategically 

placed batch-normalization layers to reduce internal covariate shift. Dual dense layers, whose 

dimensions were determined via Bayesian optimization, are regularized with dropout and L2 weight 

decay to mitigate overfitting. CBAM provides lightweight dual attention— The dual channel-and-spatial 

attention mechanisms enable the network to concentrate on regions of greatest diagnostic relevance 

without significant overhead, as demonstrated by prior gains of 2–4 % in medical imaging tasks. This 

tailored MobileNetV3Small framework thus delivers delivers superior accuracy with minimal 

computational overhead. 

 

Figure 4. MobileNetV3 Architechture 

 

 

 

2.5. Convolutional Block Attention Module (CBAM) 
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The CBAM is integrated into the MobileNetV3Small backbone to enhance feature representation 

through the successive application of channel attention followed by spatial attention modules. as shown 

in Figure 5. In the channel attention stage, global average and max pooling generate two descriptors per 

feature map, which are processed by a shared multilayer perceptron with a bottleneck of 
C

r
 hidden units 

(where r=16), producing a channel-weighting vector that is broadcast across all spatial positions [29]. 

Subsequently, the spatial attention stage concatenates the mean and max projections of the refined 

feature maps into a two-channel descriptor, which is convolved with a 7×7 kernel to yield a spatial 

attention mask. This mask reweights each channel uniformly, emphasizing diagnostically salient 

regions. To preserve generalization, L2 regularization (λ = 1e−4) is applied to all CBAM convolutional 

layers. By focusing computation on critical channels and spatial area, this attention mechanism improves 

the model’s ability to discern subtle lesion characteristics while incurring less than a 10 % increase in 

FLOPs. 

 

Figure 5. CBAM Module Architecture 

 

2.6. Skin Cancer Classification 

Dermatoscopic pictures are classified into specified diagnostic classes using the optimal 

MobileNetV3-CBAM model in the classification phase. The model employs a bespoke combined_loss 

function that balances sparse and categorical cross-entropy components with equal weights (0.5 each), 

hence producing more consistent gradients throughout training.  Using an EarlyStopping callback with 

a patience of 8 epochs and a ReduceLROnPlateau mechanism that dynamically changes the learning 

rate when performance plateaus, with a factor of 0.2 and a minimum learning rate threshold of 1e-7, the 

training process runs when validation data no longer show improvement, this setup guarantees effective 

convergence and prevents overfitting by early termination. 

 Our MobileNetV3-CBAM design uses a deliberate series of layers after the components of 

feature extraction and attention improvement to provide the real classification mechanism.  Following 

the MobileNetV3Small backbone and CBAM attention module, The refined feature maps are 

subsequently passed through a Global Average Pooling layer to lower spatial dimensions while 

maintaining channel information. This operation reduces each three-dimensional feature map to a one-

dimensional vector, yielding a compact representation for classification feature vector that faithfully 

preserves the salient features of the input dermatoscopic image. 

 After that, the condensed feature representation moves through a classification head with two 

fully linked (dense) layers whose dimensions are calculated using Bayesian optimization usually 

between 256-1024 and 128-512 units respectively.  Every dense layer combines dropout (with a rate 

optimized between 0.2 and 0.5) to minimize overfitting, ReLU activation to add non-linearity, and batch 

normalization to stabilize training.  A completely linked layer with four units—corresponding to the 

four diagnostic classes: benign, basal cell carcinoma, melanoma, and squamous cell carcinoma—with 

https://jutif.if.unsoed.ac.id/
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softmax activation generates a probability distribution over these classes at the final classification layer.  

Maintaining computational economy and optimizing discriminative power for skin lesion classification, 

this design lets the model progressively convert low-level visual characteristics into high-level 

diagnostic predictions. 

2.7. Model Evaluation 

The concluding stage of the evaluation entails an assessment classification Evaluation of 

performance utilising a range of metrics, such as accuracy, precision, recall, F1-score, loss, and the ISIC 

2024 pAUC metric, which examines the partial Area Under the ROC Curve for high sensitivity regions 

(true positive rate > 80%). This metric concentrates on the most clinically significant segment of the 

ROC curve, prioritizing regions where sensitivity must remain high. In contrast to the conventional 

AUC, which evaluates the full ROC curve, the ISIC 2024 challenge adopts a partial AUC (pAUC) metric 

that is restricted to the segment where the true positive rate (TPR) meets or exceeds 80 %. By 

concentrating on this high-sensitivity interval, the metric ensures that classification models are 

optimized to minimize false negatives—a vital requirement in clinical settings where overlooking a 

malignant lesion can have serious implications. Formally, the pAUC is defined as the integral of the 

ROC curve function over the false positive rate (FPR) interval corresponding to TPR ≥ 0.80 [30]. The 

evaluation includes ROC curve visualizations for better assessment, and results are documented with 

timestamps in structured files for reproducibility and comparison, emphasizing the importance of high 

sensitivity in dermatological screening. The pAUC is computed as follows: 

 

𝑝𝐴𝑈𝐶 = ∫ 𝑅𝑂𝐶(𝑡) 𝑑𝑡
1.0

0.8
     (1) 

 

In this formulation, ROC(t) denotes the ROC curve evaluated at threshold t, and the integral is 

taken over the false positive rate interval corresponding to true positive rates of 80% or higher. 

3. RESULT 

Our proposed methodology integrating lightweight model MobileNetV3 with CBAM and 

Bayesian optimization for hyperparameter tuning performs well in the classification of skin cancer 

during implementation. Class-specific precision and recall measures confirmed the model's powerful 

discriminative ability across several skin lesion categories, resulting in 98.97% accuracy on the ISIC 

2024 test dataset. Bayesian optimization found an optimum configuration after five rounds in the 

complicated hyperparameter space. Over 71 epochs, training and validation evaluates have improved, 

indicating sustained convergence with minimal overfitting. The learning rate adaption method-

controlled optimization with strategic decreases at epochs 36, 51, 62, and 68, allowing fine-grained 

parameter modifications. BCC, Benign lesions, and SCC are identified well by confusion matrix 

analysis, while melanoma is identified somewhat less well but still clinically acceptable. ROC analysis 

shows near-perfect classification with AUC values of 1.00 for all classes, and the customized ISIC 2024 

partial AUC (pAUC) statistic validates the model's excellent sensitivity in clinically relevant regions. 

This extensive study validates our architecture decisions and optimization strategy, laying the 

groundwork for clinical dermatological diagnostic assistance system deployment. 

3.1. Training History 

The training logs provide key insights into how this study optimized the model. During the 

Bayesian optimization phase, the process tested five different sets of hyperparameters. In the first 

iteration, the model achieved a strong performance, reaching 97.37% validation accuracy within just 10 

epochs. This quick improvement shows that our initial hyperparameter choices were effective. In the 

https://jutif.if.unsoed.ac.id/
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final training phase, our method extended the process to 71 epochs. This process also used a strategy 

called ReduceLROnPlateau to lower the learning rate at specific points. We started with a learning rate 

of 0.00022628, which helped the model learn quickly at first. Then, gradually reduced the rate to 

0.000045256, 0.0000090512, 0.0000018102, and finally to 0.00000036205. This method allows for 

finer adjustments to the model's parameters and helps avoid getting stuck in less optimal solutions. 

Throughout the training, the validation accuracy improved steadily. It began at 75.63% after the first 

epoch and reached 99.49% by the end. This shows that the model learned effectively without major 

fluctuations that could indicate problems. 

 

Figure 6. Training History 

 

The training history in Figure 6 shows stable model convergence, with training accuracy rising 

from about 60% to 97% over 60 epochs. Notably, validation accuracy often exceeds training accuracy 

in the early epochs, indicating that augmentation strategies enhance generalization. Both training and 

validation loss decrease continuously, with training loss dropping from above 1.0 to near 0.1 and 

validation loss below 0.05. The consistent trends in both losses indicate effective regularization via 

dropout, L2 weight regularization, and batch normalization. Initial variations in validation metrics 

suggest exploration of the feature space, while steady convergence in later epochs (40-71) signifies the 

model's identification of key features for skin lesion classification. Overall, this profile reflects a well-

regularized deep learning model suitable for complex medical imaging tasks. 

3.2. Model Evaluation Results Analysis 

Comprehensive evaluation metrics demonstrate our model's effectiveness in skin cancer 

classification. As detailed in Table 1, our study achieved an overall accuracy of 98.97%. Class-specific 

precision values are strong: BCC (85.72%), benign lesions (99.53%), melanoma (78.26%), and SCC 

(100%). The lower precision for melanoma and BCC highlights the challenges in diagnosing these 

conditions. Recall values show impressive sensitivity: BCC (96.00%), benign (99.40%), melanoma 

(75.17%), and SCC (100%). The F1-scores indicate balanced performance: BCC (90.56%), benign 

(99.46%), melanoma (76.59%), and SCC (100%). A macro-average F1-score of 91.65% reflects strong 

overall performance despite class imbalance. Additionally, weighted metrics further affirm clinical 

utility: Precision stands at 98.98%, recall at 98.97%, and F1-score at 98.97%.  

In summary the overall accuracy (98.97%) and the training took 26.1 hours, allowing for rapid 

inference in clinical settings. Overall, these metrics support the clinical viability of our automated 

dermoscopic lesion categorization method. 

 

Table 1. Performance result of MobileNetV3-CBAM 

Category Class Precision Recall F1-Score 

https://jutif.if.unsoed.ac.id/
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BCC 85.72%    96%   90.56% 

Benign 99.53% 99.40% 99.46% 

Melanoma 78.26% 75.17% 76.59% 

SCC 100% 100% 100% 

    

Accuracy 98.97% 98.97% 98.97% 

Macro Avg 90.88% 92.60% 91.66% 

Weighted Avg 98.99% 98.97% 98.98% 

    

3.3. Confusion Matrix Analysis 

The confusion matrix in Figure 7 highlights the model's performance in classifying skin 

conditions. For basal cell carcinoma (BCC), it correctly identifies 24 out of 25 cases, yielding a 

sensitivity of 96%, which is crucial for early detection. In the largest group, benign lesions, the model 

classifies 1,488 out of 1,500 correctly (99.2% accuracy), minimizing misclassifications primarily as 

BCC and melanoma. Melanoma classification, however, shows more difficulty, with 19 out of 24 cases 

identified, resulting in a sensitivity of 79.17%. For squamous cell carcinoma (SCC), the model excels 

with perfect accuracy, identifying all 11 cases. Overall, the model demonstrates strong performance, 

particularly in malignant skin cancers, demonstrating the efficacy of the CBAM attention system in 

discerning critical aspects. 

 

Figure 7. Confusion Matrix 

 

3.4. ROC Curve Analysis 

The examination of the ROC curve presented in Figure 8 illustrates excellent classification 

performance across all diagnostic categories, each achieving an AUC value of 1.00. This signifies that 

the model can flawlessly distinguish between positive and negative cases. The curves closely align with 

the top-left corner of the plot, demonstrating elevated true positive rates and minimal false positive rates, 

even in the presence of class imbalance within the dataset. Additionally, the ISIC 2024 pAUC metric 

visualization indicates a pAUC of 0.2000 in Figure 9, demonstrating high sensitivity while maintaining 

specificity—an essential aspect for skin cancer screenings, where failing to identify malignant cases 

https://jutif.if.unsoed.ac.id/
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poses significant risks, whereas misclassifying benign lesions can be effectively managed with follow-

up assessments. 

 

Figure 8. ROC Curve Plot 

 

 

Figure 9 ROC Curve with pAUC 

4. DISCUSSIONS 

The proposed study MobileNetV3 with CBAM architecture augmented by Bayesian 

hyperparameter tuning reveals higher performance metrics compared to prior research techniques for 
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skin cancer classification. The comparative analysis reveals several significant findings that highlight 

the contributions of our methodology as stated in Table 2. 

 

Table 2 Comparative analysis of the performance between the proposed model and prior research 

References Method Dataset Year Accuracy↑ Precision↑ Recall↑ F1-

Score↑ 

[31] MobileNetV1  HAM10000 2023 92.45%  91.25% 89.18% 88.34% 

[32] Vision Transformer 

(VIT) 

HAM10000 2022     94.30%     94.10% - 94.10% 

[33] MobileNetV2  HAM10000 2023 94.47% 92.36% 90.78% 89.36% 

[34] Hybrid DenseNet + 

ResNet  

HAM10000 2023 95 % - - - 

[35] VGG19 + SVM  ISIC-2019 2023 96% 92% 92% 92% 

[36] InceptionV3  ISIC-2019 2023 96.40% 96.40% 96.38% 96.29% 

[37] CNN and VGG16 ISIC-2019 2022 96.91% 92.19% 92.18% 92.18% 

[25] DCNN  ISIC-2019 2023 97.11% 97.09% 97.12% 97.08% 

Ours MobilenetV3+CBAM ISIC-2024 2024 98.97% 98.99% 98.97% 98.98% 

        

 

The results show that the proposed model demonstrates outstanding performance, attaining 

98.97% accuracy, 98.99% precision, 98.97% recall, and 98.98% F1-score on the ISIC2024 dataset. This 

is a significant improvement over prior leading models, including the DCNN model by Houssein et al. 

[25], which reached 97.11% accuracy on the ISIC-2019 dataset. The difference is even greater than 

other models, like InceptionV3 (96.40% accuracy) and CNNVGG16 (96.91% accuracy) on ISIC-2019. 

Several reasons contribute to this improvement. First, employing CBAM with MobileNetV3 

creates a strong architecture that effectively captures important details in dermatoscopic images. This 

helps the model focus on key areas within lesions while highlighting the most relevant features. Second, 

using Bayesian optimization for adjusting hyperparameters is a significant step forward in Compared to 

conventional approaches such as grid or random search, this strategy enables more efficient traversal of 

the hyperparameter space with a significantly reduced number of evaluations. 

Furthermore, models evaluated on the HAM10000 dataset show low performance compared to 

those assessed on ISIC datasets. For example, the Hybrid DenseNet and residual network by Jasil et al. 

[34] achieved 95% accuracy, and MobileNetV2 by Ogundokun et al. [33] reached 94.47%. This 

difference could be due to variations in dataset characteristics, such as differences in lesions, image 

quality, and class distribution. Our model’s strong performance on the ISIC2024 dataset shows it can 

handle modern dermatoscopic images with varied presentations. 

When we compare similar architectural approaches, our MobileNetV3+CBAM setup 

significantly outperforms the original MobileNetV1 (92.45% accuracy) and MobileNetV2 (94.47% 

accuracy) tested on HAM10000. This improvement of 4.50-6.52% points in accuracy illustrates the 

benefits of our architectural upgrades, especially the attention mechanism and advanced regularization 

methods. The performance gains are clear across all parameters, including precision, recall, and F1-

score, showing improvements of 6.62% - 7.73%, 8.19% - 9.79%, and 9.61% - 10.63% points, 

respectively. 

Compared to transformer-based models like the Vision Transformer Network (VIT) by Xin et al. 

[32], which achieved 94.30% accuracy, our approach further confirms its advantages. While transformer 

architectures are increasingly popular in computer vision, our optimized convolutional neural network 

outperforms them while being computationally efficient. This shows that well-optimized CNNs with 

suitable attention mechanisms can effectively tackle medical image analysis tasks, especially where 
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deployment limits matter. The strong performance of our model has important implications for clinical 

use and future research. 

First, the high recall of 98.97% across all classes indicates the model rarely misses malignant 

lesions, essential for the prompt identification and treatment of skin lesion. This is crucial for screening 

applications where missing malignancy is more serious than having false positives. The balanced results 

across different lesion types, shown by the confusion matrix analysis, suggest that the model effectively 

identifies key features for each diagnostic category despite challenges with class imbalance in 

dermatological datasets. 

Second, combining CBAM with MobileNetV3 offers an accurate and less complex solution than 

larger models like VGG or DenseNet. This efficiency is essential for potential use in environments with 

limited resources or for mobile applications that could bring dermatological expertise to underserved 

areas. The lightweight design of MobileNetV3, paired with the focused feature enhancement from 

CBAM, strikes a good balance between performance and resource needs. 

Third, our use of Bayesian optimization for hyperparameter tuning shows a systematic approach 

to model development that could apply to medical image analysis more broadly. Finding the best 

hyperparameters with fewer evaluations than older methods is critical when working with complex 

deep-learning models and limited computing power. 

Melanoma classification underperformed relative to other categories, with precision of 78.26 % 

and recall of 75.17 %. This stems from two main issues: the melanoma subset’s limited size, which 

restricts model exposure to lesion diversity, and the high visual heterogeneity of melanoma (variations 

in shape, color, and border irregularity). To improve performance, we recommend: (1) applying focal 

loss to emphasize underrepresented melanoma samples during training; (2) generating additional 

melanoma instances via intelligent oversampling methods such as SMOTE or generative adversarial 

networks; and (3) incorporating domain-specific augmentations pigment-based color shifts and micro-

geometric distortions to better model melanoma’s varied presentations. Integrating CBAM into 

MobileNetV3Small, alongside Bayesian hyperparameter optimization, establishes a systematic 

framework for efficient neural architecture search in medical imaging. This approach empowers 

computer vision researchers to develop edge-compatible models featuring adaptive attention 

mechanisms, ensuring optimal performance on resource-limited devices. It also validates automated 

hyperparameter tuning across extensive datasets. 

5. CONCLUSION 

This study introduces a new way to automatically classify skin cancer using the MobileNetV3 

model. We improved this model with a CBAM and fine-tuned it using Bayesian hyperparameter tuning. 

Our tests on the ISIC 2024 dataset show outstanding results, achieving accuracy by 98.97%, precision 

by 98.99%, recall by 98.97%, and F1-score by 98.98%. This performance surpasses other leading 

methods for analyzing skin images. 

CBAM enhancement really improves the model’s capacity to identify key features by using both 

attention, spatial and channel. This helps the network highlight important areas and features that are 

important for diagnosis. This approach is especially useful for difficult cases like melanoma, where 

subtle differences are crucial for accurate identification. This research employs MobileNetV3 for its 

good consistency between productivity and capabilities, rendering the approach amenable to 

deployment in resource-constrained clinical settings. 

This framework used Bayesian optimization for hyperparameter tuning, which is a better method 

than traditional ones. It allows for thorough exploration of complex parameter options with fewer tries, 

leading to better performance. This framework identifies the best settings for learning rate, 

regularization strength, network structure, and training methods, showing its effectiveness for creating 
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deep learning models in medical imaging. We implement targeted data augmentation to mitigate class 

imbalance, achieving balanced sensitivity in clinically critical high–true-positive–rate regions (pAUC = 

0.2000). The optimal pAUC value in high-sensitivity regions verifies the model's efficacy for clinical 

screening, particularly in conditions where minimizing false negatives is crucial. The model revealed 

consistent performance across all diagnostic categories, despite the limitations presented by unbalanced 

dermatological data. 

Our model demonstrates substantial enhancements compared to previous models using the ISIC 

and HAM10000 datasets. Our study results achieve enhancements of 1.86 to 6.52% points in accuracy 

relative to the optimal findings documented in the literature. These results prove that well-optimized 

convolutional neural networks with attention mechanisms can be very effective for medical image 

analysis, challenging the idea that transformer-based models are always the best choice for advanced 

computer vision tasks. 

Future studies should focus on evaluate advanced loss functions such as focal loss and 

oversampling techniques based on generative adversarial networks to enhance melanoma detection. We 

will also validate our model against prospective clinical datasets acquired via smartphone-compatible 

dermatoscopes to confirm real-world utility. 

In conclusion, our MobileNetV3+CBAM model with Bayesian hyperparameter optimization 

makes an important contribution to automated skin cancer classification. It offers a robust and efficient 

solution that could improve dermatology practices and enhance patient prognosis by facilitating earlier 

and more precise detection of malignant skin lesions. 
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