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Abstract 

The rapid growth of stored data, particularly on magnetic disks, is doubling annually for each department within a 

company, creating a pressing need for efficient database management. While database design is a fundamental step 

in establishing a high-performance system, it alone is insufficient to ensure optimal efficiency. Query optimization 

plays a critical role in improving data transaction speed, reducing query execution time, and enhancing overall system 

responsiveness. This study evaluates various relational database models under different data volumes to analyze their 

impact on query performance. Using the Cost-Based Optimizer method and access time measurements, we assess 

query costs and determine the factors influencing performance. The results indicate that among the three database 

models analyzed, ERD-3 consistently delivers superior performance, especially in handling complex queries. This is 

attributed to its modular structure, strategic indexing, and reduced full table scans, which collectively minimize query 

execution costs. Additionally, several key factors significantly affect query performance, including record count, 

attribute size, query complexity, primary and unique key usage, indexing strategies, order-by clauses, index 

sequences, and SQL function application. This research contributes to the field of database optimization by 

demonstrating that ERD structuring and cost-based query analysis significantly improve system efficiency in large-

scale environments. These findings emphasize the necessity of a well-structured, scalable database model and 

efficient query processing techniques to accommodate large-scale data growth. The study’s conclusions provide a 

foundation for advanced optimization strategies, ensuring that modern database systems remain efficient and 

adaptable to evolving data demands. 

 

Keywords: Cost-Based Optimizer, Database Design, Query Optimization, Query Performance, Relational 
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1. INTRODUCTION 
A Database system performance is an increasingly critical issue as computerized database systems 

grow larger and more complex. A survey conducted by the University of California at Berkeley 

highlighted that the amount of data stored on magnetic disks doubles annually per department and per 

company, underscoring the pressing need for organizations to maintain optimal database performance 

[1]. This rapid data growth necessitates the development of robust performance assessment and 

enhancement strategies tailored to specific system types, whether operational systems or Decision 

Support Systems (DSS). These strategies must account for the evolving nature of technology and the 

diverse objectives of various database applications [2]. 

The design and development of a database system directly influence its performance. Advanced 

computer technology can address performance bottlenecks, but when systems become obsolete, even 

the most skilled database administrators may struggle to maintain high-performance levels [3]. 
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Moreover, the effectiveness of a database system depends significantly on its initial planning and design. 

Investing in robust database design from the outset is thus a critical factor in achieving sustained system 

efficiency [4]. 

Effective database design involves constructing a data model that accurately represents real-world 

scenarios while accommodating potential improvements. This foundational step ensures the system's 

adaptability to organizational needs and supports long-term performance optimization [5]. In practice, 

a well-structured database design can significantly reduce processing time for business operations, 

offering substantial performance gains in specific use cases [6]. 

Beyond initial design efforts, optimizing database performance often involves enhancing the 

speed of data transactions. One impactful approach is optimizing query processing speeds, which can 

boost performance by 25% to 100%, or even more in certain scenarios [7]. The strategic use of 

representative indexes, normalization processes, and table designs further contributes to improved 

system efficiency. These design principles can yield performance gains comparable to hardware 

enhancements, such as deploying high-performance storage solutions like RAID (Redundant Array of 

Inexpensive Disks) [1], [8]. 

Recent advancements have introduced models to enhance query performance, enabling database 

administrators to manage materialized views effectively and improve operational efficiency through 

faster report generation [4], [12]. Additionally, research has examined rule-based and cost-based 

optimization techniques, concluding that cost-based optimization offers a more efficient strategy by 

estimating and selecting execution plans with the lowest costs [13]. These studies highlight diverse 

approaches to improving database system performance through both software and hardware 

optimization. 

Despite these advancements, there remains a need to explore the interaction between database 

design, storage technology, and query optimization in relational database systems. This research seeks 

to address this gap by investigating relational database models with varying data volumes, performing 

tests on Direct-Attached Storage (DAS) systems using identical queries, and analyzing query costs using 

cost-based optimization methods [14]. Additionally, disk access times will be evaluated to propose 

practical strategies for database administrators. 

Query optimization is a crucial component in database management systems (DBMS) that 

significantly impacts performance. Various optimization techniques have been proposed in the literature 

to enhance the efficiency of query execution. Traditionally, query optimization relies on rule-based and 

cost-based approaches, where heuristics and estimated costs guide the selection of the optimal query 

execution plan [15]. These techniques focus on reducing query execution time by restructuring queries, 

leveraging indexes, and optimizing join operations. Early research in query optimization introduced 

fundamental strategies such as predicate pushdown, join reordering, and materialized views, which 

remain relevant in modern database systems [16]. 

One of the widely studied approaches is cost-based query optimization (CBO), where the 

optimizer estimates the cost of different query execution plans and selects the most efficient one. 

Selinger et al. [17] introduced the System R optimizer, which pioneered cost-based optimization by 

evaluating alternative join orders and access paths using statistical estimates. Since then, several 

enhancements have been made to CBO, including histograms for data distribution estimation [18] and 

machine learning techniques to improve cost estimation accuracy [19]. Despite its effectiveness, CBO 

suffers from high computational overhead, especially in complex queries involving multiple joins and 

subqueries. 

Rule-based optimization (RBO) is another approach that applies predefined transformation rules 

to optimize queries. Unlike CBO, RBO does not consider cost estimates but instead relies on heuristic 

rules to rewrite queries into more efficient forms. System-generated rules, such as predicate pushdown 
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and join elimination, are commonly used in commercial database systems [20]. While RBO is efficient 

for simple queries, it lacks adaptability to workload changes and complex query structures. Hybrid 

approaches combining RBO and CBO have been proposed to balance efficiency and adaptability [21]. 

With the advent of big data and distributed database systems, query optimization has extended to 

parallel and distributed environments. Modern distributed query optimizers employ strategies such as 

data partitioning, query decomposition, and distributed join processing to improve performance [22]. 

MapReduce-based query optimizers, such as those used in Apache Hive and Spark SQL, leverage 

parallel processing frameworks to execute queries efficiently over large datasets [23]. Recent research 

explores deep reinforcement learning techniques to optimize distributed query execution dynamically 

[24]. 

Additionally, adaptive query optimization (AQO) has gained attention as an approach to 

dynamically adjust execution plans based on runtime feedback. Traditional optimizers rely on static 

estimates, which may be inaccurate due to data distribution changes. AQO techniques, such as re-

optimization and feedback-based learning, help mitigate this issue [25]. Database systems like IBM Db2 

and PostgreSQL have incorporated adaptive optimization features to refine query execution over time 

[26]. As workloads become more unpredictable, AQO is expected to play a significant role in modern 

query optimizers. 

Query optimization techniques have evolved from rule-based and cost-based approaches to more 

adaptive and distributed methodologies. With advancements in machine learning and AI-driven 

optimizations, future research is likely to explore more intelligent and autonomous optimization 

strategies [27]. As database workloads grow in complexity, optimizing query performance remains a 

critical area of research with ongoing developments in both traditional and emerging database 

architectures. 

Ultimately, the findings of this research aim to provide actionable insights for database system 

administrators. By designing relational database models effectively, leveraging appropriate storage 

technologies, and optimizing queries for data retrieval, organizations can ensure sustained database 

performance. This research endeavors to contribute to the broader field of database optimization by 

offering practical guidelines for managing the complexities of modern database systems. 

2. METHOD 

This chapter outlines the research methodology employed to analyze query performance based 

on different database model designs and query costs. The study focuses on a company’s inventory 

system and utilizes a simulation application designed specifically for evaluating query efficiency rather 

than user interface considerations. The primary performance metrics include query cost, measured in 

disk I/O operations, and response time, assessed in milliseconds. 

The system workflow (Figure 1) illustrates the process of evaluating query performance and 

optimization using Cost-Based Optimization (CBO) applied to three relational model designs derived 

from ER diagrams (ER-1, ER-2, and ER-3). The process begins with inserting data at large scales (100K 

to 100M entities). After that, one of the three relational model designs is selected for testing. 

Next, a set of queries is chosen—including Simple, Aggregate, Join, Subquery, and Complex 

queries—which are sent to the Plan Generator module to produce multiple alternative execution plans. 

These plans are then evaluated by the Cost Estimator using available data statistics. The optimizer selects 

the most efficient plan based on the estimated cost. The system then records the average response time 

and estimated cost for each query. The process concludes after evaluating all query combinations across 

the selected models and data volumes. 
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Figure 1. System Workflow 

2.1. Query Configuration & Hardware Setups 

The research application is configured to handle a wide range of data sizes, varying from 100,000 

to 100,000,000 entities, to simulate both small-scale and large-scale database operations. While the 

testing environment consists of a computer system with the following specifications: 

1. Processor: Intel Core i3-3220 (3.3 GHz, dual-core, 4 threads). 

2. Memory: 8 GB DDR3 RAM. 

3. Storage: 2 × 500GB HDD (spinning disk drives). 

4. Operating System: Windows 7 Ultimate (64-bit). 

5. Database Management System: Oracle Database 11g Release 2. 

These hardware and software configurations are selected to simulate real-world database 

environments where storage, processing power, and memory availability impact performance. 

The study evaluates seven distinct query types, each representing a different aspect of database 

performance (Table 1). 

Table 1. Query Operation Types 

Query Types Operation 

Simple Query Basic selection and retrieval of records. 

Aggregate Query Summarization using functions such as COUNT, SUM, AVG, MIN, and 

MAX. 

Inner Join Retrieving data across multiple tables with matching key relationships. 

Outer Join Combining related data while retaining unmatched records. 

Subquery Nested queries used for filtering and processing data conditions. 
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Correlated 

Subquery 

Subqueries that reference columns from the outer query and execute row-by-

row. 

Complex Query Queries combining multiple operations, including joins, aggregations, and 

subqueries 

2.2. Database Design 

To evaluate the impact of different database modeling strategies on query performance, three 

entity-relationship (ER) models are implemented: 

1. ER-1 (Basic Model): A straightforward relational model including core entities such as goods, 

employees, materials, suppliers, transactions, and supply records. 

2. ER-2 (IS-A Hierarchical Model): Implements an IS-A relationship within the material_doc 

entity to distinguish between different document types and goods classifications. 

3. ER-3 (Separated Entity Model): Instead of using IS-A relationships, the material_doc entity is 

split into two distinct tables: material_doc_ambil (material retrieval) and material_doc_terima 

(material receipt). 

These models are designed to assess how different approaches to data structuring impact query 

efficiency, index utilization, and overall system performance. 

2.3. Testing Phase 

Each database design undergoes extensive testing using the predefined query types. The 

evaluation process consists of: 

1. Executing queries under different data loads to assess scalability. 

2. Measuring the average response time (millisecond) to evaluate query execution speed. 

3. Calculating the total query cost (disk I/O operations) to determine efficiency in data retrieval. 

The study aims to provide actionable insights for database administrators, helping them choose 

optimal data structuring techniques to improve transaction speed, reduce computational overhead, and 

optimize resource usage. The experimental results serve as a benchmark for understanding the trade-

offs between normalized and denormalized designs in real-world applications. 

3. RESULT 

3.1. ERD Performance Analysis in Various Query Types 

The performance analysis of different query types highlights the efficiency of ERD-3 in handling 

large-scale datasets. 

In Simple Queries (Figure 2), ERD-1 and ERD-3 outperform ERD-2, demonstrating better 

efficiency, particularly for large datasets, due to their use of direct index access rather than complex 

operations like nested loops. 

For Aggregate Queries (Figure 3), ERD-3 again proves to be the best choice, with execution 

times up to 94% faster than ERD-2. ERD-1 struggles with full table scans, while ERD-2’s performance 

is hindered by nested loops. Optimization using hash joins could enhance the efficiency of ERD-1 and 

ERD-2. 
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Figure 2. Simple Query    Figure 3. Aggregate Query 

 

In Inner Join Queries (Figure 4), ERD-3 is the fastest, with response times 74% better than the 

other ERDs. This advantage stems from its optimized indexing and hash join utilization, whereas ERD-

1 and ERD-2 rely heavily on full table scans, leading to slower performance. 

Similarly, for Outer Join Queries (Figure 5), ERD-3 remains the most efficient, processing 

queries 71% faster than ERD-2. The slower response times of ERD-1 and ERD-2 result from excessive 

full table scans, which could be improved by reducing these operations and increasing index utilization. 

 
Figure 4. Inner Join Query   Figure 5. Outer Join Query 

 

When evaluating Subqueries (Figure 6), all three ERDs display nearly identical performance, 

with ERD-2 slightly ahead (about 5% faster). The similarity in their query structures results in minimal 

differences, although index-based optimization could improve overall efficiency. 

For Correlated Queries (Figure 7), ERD-3 maintains its dominance with execution times 21.5% 

faster than ERD-1 and 17.8% faster than ERD-2. This efficiency is attributed to its better index 

utilization, though all ERDs still rely on nested loops, which could be optimized further. 

 
Figure 6. Subquery    Figure 7. Corelated Query 
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In the case of Complex Queries (Figure 8), ERD-3 once again outperforms the others, being 

34.4% faster than ERD-1 and 25.9% faster than ERD-2. ERD-3 achieves this through the reduction of 

full table scans and the frequent use of unique index scans, making it the most effective option. 

Meanwhile, ERD-1 and ERD-2 struggle with handling multi-table queries due to their heavier reliance 

on inefficient join operations. 

 
Figure 8. Complex Query 

 

Overall (Figure 9), the findings indicate that ERD-3 is the best choice for processing large-scale 

data due to its modular and efficient design. While ERD-1 has a simple structure, it is inefficient in 

handling joins, particularly in many-to-many relationships. ERD-2 improves upon ERD-1 by 

introducing hierarchical relationships and better entity grouping, yet it still suffers from performance 

limitations due to the use of merge join cartesian and nested loops. In contrast, ERD-3 overcomes these 

inefficiencies by implementing a modular approach, optimizing relationships, and reducing reliance on 

full table scans. The consistent superiority of ERD-3 across all query types, especially for large datasets 

(100 million records), makes it the most scalable and efficient solution for complex data processing. 

 
Figure 9. Response Time (second) per Scenario from Figure 2 to Figure 8 

3.2. Performance Evaluation of ERD Designs Based on Cost-Based Optimization (CBO) 

Analysis 

Based on the Cost-Based Optimization (CBO) analysis (Figure 10), ERD-3 consistently 

outperforms ERD-1 and ERD-2, particularly in handling high-complexity queries. In Simple Queries, 

ERD-1 and ERD-3 have the same query cost of 8, whereas ERD-2 incurs a cost of 13, making it 62.5% 

more expensive than the other two designs. The advantage of ERD-3 becomes even more evident in 

Aggregate Queries, where its cost is only 44,620, which is 79.4% lower than ERD-1 (217,208) and 
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92.7% lower than ERD-2 (608,290). This significant efficiency gain is attributed to ERD-3's modular 

design and optimized index usage, which enhances the performance of aggregate data calculations. 

 

 

Figure 10. Time Cost for each Data and Query Types 

 

For queries involving table joins, such as Inner Join and Outer Join Queries, ERD-3 again proves 

to be superior. Its query cost is 152,220, which is 73.2% lower than ERD-1 (568,896) and 79.0% lower 

than ERD-2 (725,082). This improvement is due to ERD-3's modular structure, where the Transactions 

entity is split into two separate entities, Transaksi_1 and Transaksi_2, reducing the complexity of join 

operations. For Correlated Subqueries, ERD-3 has a cost of 134,192, which is 26.5% lower than both 

ERD-1 and ERD-2, each of which has a cost of 182,444. In Complex Queries, ERD-3 remains the best 

performer with a cost of 558,058, which is 28.9% lower than ERD-1 (785,209) and 40.8% lower than 

ERD-2 (942,261). Overall, ERD-3’s modular, efficient design, along with optimal index utilization, 

enables cost reductions of over 90% in certain query types. This makes ERD-3 the ideal choice for large-

scale data processing systems. 

3.3. Factors Influencing Query Cost and Performance 

Beyond the CBO analysis, factors like query operations, attribute size, indexing, statistics, and 

complexity affect query cost and performance (Table 2). 

 

Table 2. Factors Affecting Query Execution Performance 

Factor Names Effects 

Query 

Operation 

Projection and selection operations generally reduce execution costs, whereas 

join operations increase complexity and cost. The use of the ORDER BY clause 

can increase query cost due to the sorting process required. 

Attribute Size The smaller the attribute size in a projection operation, the lower the execution 

cost. 

Index 

Utilization 

Using a unique key or primary key with an equality (=) operator in selection 

operations helps avoid full table access. Irrelevant indexes or the use of SQL 

functions on columns in the WHERE clause may cause the optimizer to ignore 

indexing. 
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Database 

Statistics 

Updated statistics allow the Cost-Based Optimizer (CBO) to generate more 

efficient execution plans. 

Query Type and 

Complexity 

Complex queries involving multiple joins or subqueries significantly increase 

execution cost, particularly on large datasets 

4. DISCUSSIONS 

Understanding these key factors enables organizations to optimize ERD design, leverage indexing 

efficiently, and maintain accurate database statistics, thereby improving query performance significantly 

across different data processing needs. Several optimization strategies can be employed: 

1) Index Optimization. 

Implement indexing strategies that prioritize frequently queried fields. Use composite 

indexes where appropriate to support multi-column filtering and joining operations. Avoid 

redundant or unused indexes that increase maintenance overhead without improving 

performance. 

2) Query Structure Refinement. 

Rewrite queries to minimize expensive operations such as full table scans and nested 

loops. Use appropriate join strategies such as hash joins instead of nested loops for large 

datasets. Optimize correlated subqueries by replacing them with joins or common table 

expressions (CTEs) when possible. 

3) Efficient Table Design. 

Normalize data structures to reduce redundancy while ensuring that joins remain efficient. 

Decompose many-to-many relationships into intermediary tables to improve join performance. 

Use partitioning techniques to distribute large tables into smaller, more manageable segments. 

Compared to the findings of Lindner et al. [4], our approach using ERD-3 shows better 

scalability in cost reduction, suggesting a modular ERD structure as a practical design principle. 

4) Use of Materialized Views. 

Precompute and store the results of expensive aggregation queries to improve response 

times. Refresh materialized views periodically to maintain data accuracy while reducing query 

execution time. 

5) Caching Strategies. 

Implement query caching for frequently executed queries to minimize redundant 

computations. Use application-level caching mechanisms such as Redis or Memcached to store 

commonly accessed data. 

6) Load Balancing and Resource Allocation. 

Distribute query loads across multiple database servers to prevent performance 

bottlenecks. Allocate adequate CPU and memory resources to database instances handling 

complex queries. 

This study informs best practices for relational schema design, particularly for transaction-heavy 

systems, which are common in both enterprise and government systems. 

5. CONCLUSION 

The findings from this study underscore the importance of a well-optimized ERD in ensuring 

efficient query execution. Among the three ERD designs analysed, ERD-3 consistently demonstrates 

superior performance across all query types, particularly in high-complexity scenarios. The cost analysis 

highlights how modular design, strategic indexing, and reduced full table access contribute to significant 

cost reductions, making ERD-3 the preferred model for large-scale database applications. The 
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implementation of modular ERD design and strategic indexing demonstrates tangible benefits in query 

performance, representing a practical advancement in relational database optimization in Informatics. 

By incorporating best practices such as indexing optimization, query restructuring, and table 

design improvements, organizations can further enhance query performance and database efficiency. 

Future research could explore real-world implementations of ERD-3 across different database 

management systems and evaluate its adaptability to varying workload patterns. Additionally, 

integrating machine learning techniques for dynamic query optimization may offer new opportunities 

for performance enhancements in complex data environments. 

Overall, this study provides valuable insights into query optimization strategies and reinforces the 

need for efficient database design in handling large-scale data processing challenges. By leveraging 

these findings, organizations can build scalable, high-performance database systems that effectively 

support growing data demands. 
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