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Abstract 

Rice, the staple food for the majority of Indonesia's population, faces significant production threats from leaf 

diseases, which can decrease yields and jeopardize national food security. Traditional manual identification of 

these diseases is a major challenge for farmers, as it is often subjective, prone to misdiagnosis leading to 

incorrect treatments, time-consuming, demands specialized expertise, and is difficult to implement widely for 

effective real-time early prevention, allowing diseases to spread and significantly impact crop yields. This 

research addresses these challenges by developing an automated and easily accessible rice leaf disease diagnosis 

system. The system is manifested as a mobile application that integrates a Convolutional Neural Network (CNN) 

model, specifically utilizing the EfficientNetB0 architecture, for the classification of rice leaf images and 

leverages key Firebase services such as its Realtime Database for data synchronization and Cloud Storage for 

image management to ensure a scalable and responsive backend. The methodology involved several key stages. 

Firstly, the CNN model was developed by employing a transfer learning approach on the pre-trained 

EfficientNetB0 architecture. Secondly, the model underwent comprehensive testing using a dataset of 1,000 

new rice leaf images, which were independently validated by agricultural experts. The results demonstrated that 

the developed CNN model achieved a global accuracy of 85.9%, with an average precision of 86.1% and recall 

of 85.9% (macro-average) in the expert validation testing phase with the 1,000 new images. However, the study 

also identified variations in the model's performance across different disease classes, highlighting areas that 

require further optimization to enhance detection effectiveness for specific types of rice leaf diseases. The 

primary benefit of this research is the provision of a practical rice leaf disease diagnosis tool that is readily 

accessible to farmers via a mobile application, empowering them with timely and accurate information for 

effective crop management. This can lead to reduced crop losses, improved yield quality, and contribute 

significantly to national food security. Furthermore, this research contributes to the field of applied machine 

learning and mobile computing in resource-constrained agricultural environments, offering valuable insights for 

the development of impactful informatics solutions. 

Keywords : Agricultural Technology, Convolutional Neural Network, Mobile Application, Mobile Integration, 

Rice Leaf Disease Detection. 
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1. INTRODUCTION 

Rice is a vital agricultural commodity in Southeast Asia, serving as a staple food [1] and an 

economic pillar [2], [3]. As the primary food crop for more than half of the global population, its 

production is crucial for food security and economic stability [4], [5]. In Southeast Asia, rice cultivation 

supports families and millions of farmers, influencing trade policies, national economies, and cultural 

practices [6]. Rice farming faces challenges from diseases such as Bacterial Leaf Streak, Dead Heart, 

Hispa, Bacterial Leaf Blight, Blast, Brown Spot, Downy Mildew, Bacterial Panicle Blight, and Tungro, 
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which reduce crop yields and lower quality, thereby causing economic problems for farmers and 

consumers [7], [8]. These diseases lead to significant crop losses, impacting food availability and 

increasing global rice prices [9]. Such crop losses exacerbate food insecurity, especially in rice-

dependent countries. Therefore, understanding and addressing these diseases are crucial for sustainable 

rice production and food security [10], [11]. 

The utilization of Convolutional Neural Networks (CNNs) in mobile applications offers a solution 

for real-time plant disease detection that is accessible to farmers [12], [13]. Using mobile devices, 

farmers can analyze plant images with a CNN model and receive instant feedback for timely disease 

management [14], [15]. This application helps farmers make better decisions despite limited technical 

knowledge, enhances diagnostic efficiency, and allows for early problem identification to reduce crop 

losses [16], [17]. Furthermore, mobile applications can facilitate continuous data collection from farmers 

to refine CNN models [18], and encourage collaboration and knowledge sharing, which can improve 

model performance over time [19], [20]. 

A major constraint is the lack of easy-to-use, real-time disease detection tools, while conventional 

methods like visual inspection are subjective and often delay identification [21], [22]. This delay risks 

significant crop losses, especially with rapidly spreading diseases. Innovative, technology-based 

solutions like CNNs are urgently needed. CNNs are effective in analyzing and recognizing visual 

patterns in plant disease images [23] and have proven superior to traditional methods in speed and 

detection accuracy [24], [25], [26]. Integrating CNNs into mobile applications makes these advanced 

detection capabilities accessible to farmers, empowering them to manage crops more effectively through 

real-time analysis and immediate feedback [24]. 

While several studies have explored CNNs for plant disease detection, including rice diseases, 

and some have proposed mobile applications, several gaps remain. Many existing solutions may focus 

on limited disease sets [27], rely on datasets captured under controlled laboratory conditions which may 

not generalize well to diverse field environments [28], or lack rigorous validation with new, unseen field 

data assessed by agricultural experts [15]. Furthermore, some applications might not be optimized for 

usability by farmers with varying technical literacy or may lack a robust backend for data management 

and potential future scalability [12]. This highlights the need for a mobile diagnostic tool that is not only 

accurate, leveraging advanced CNN architectures, but also validated under realistic field conditions, 

user-friendly for the target agricultural community, and built upon a scalable backend infrastructure. 

This research aims to address these gaps by introducing a mobile application designed for farmers 

in the Indonesian context to diagnose rice leaf diseases using a CNN model, specifically EfficientNetB0 

known for its balance of accuracy and computational efficiency suitable for mobile deployment. The 

goal is to improve detection accessibility, efficiency, and accuracy. Given the importance of rice 

farming, technology-based disease management is vital for enhancing productivity. This application 

offers a user-friendly, real-time tool for field use, supported by a CNN model for image classification. 

For its functionality, the application integrates Firebase cloud services. Firebase was chosen for its 

robust suite of tools tailored for mobile application development, including its Realtime Database for 

efficient data synchronization of diagnostic results and image metadata, Firebase Cloud Storage for 

scalable storage of rice leaf images, and its inherent scalability to handle a growing user base and data 

volume. This backend choice facilitates rapid diagnosis, timely action by farmers, and historical data 

tracking, while the application prioritizes a simple and easy-to-operate user interface (UI) for farmers 

with varying technical skills. 

The main objectives of this research are: (1) To develop a mobile application integrating an 

EfficientNetB0-based CNN model for the accurate diagnosis of common rice leaf diseases. (2) To 

rigorously evaluate the model's performance and generalization capability using a new dataset of rice 

leaf images collected from diverse field conditions and independently validated by agricultural experts. 
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(3) To implement a user-friendly mobile interface coupled with a scalable Firebase backend to provide 

a practical and accessible diagnostic tool for farmers. The key contributions of this work include: (a) a 

validated mobile-based diagnostic tool specifically for rice leaf diseases prevalent in regions like 

Indonesia; (b) empirical evidence on the performance of the EfficientNetB0 architecture on real-world, 

expert-annotated field images of rice diseases; and (c) a practical system architecture leveraging mobile 

and cloud technologies that can be adapted for other agricultural diagnostic applications. 

2. RESEARCH METHODOLOGY 

The research methodology is illustrated in Figure 1, which provides an overview of the stages 

involved in the research conducted by the researchers: 

 

 
Figure 1. Research Flow Diagram 

2.1. System Architecture Design 

This research developed a mobile-based platform for efficient, real-time diagnosis of rice leaf 

diseases. The system combines a Convolutional Neural Network (CNN) for image analysis with a 

backend infrastructure for request processing and data management, as detailed in Figure 2. The 

operational flow begins when a farmer captures a rice leaf image via the mobile application. This image 

is sent as a request to a Virtual Private Server (VPS), which then forwards it to an Application 

Programming Interface (API). The API, built with Bun.js (request handling) and Python (processing 

logic), bridges the mobile application and the EfficientNetB0 CNN model. The API relays the image to 

the CNN model, which analyzes it and returns a disease prediction. The API then sends this diagnostic 

result back to the mobile application, either via the VPS or directly (see Figure 2 for data paths). For 

data persistence, the API logs diagnostic information (image reference, results) into a PostgreSQL 

database. The mobile application can also directly query this database for user diagnostic history. This 

architecture provides a responsive, cloud-based solution to aid farmers in rapid crop health management. 
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Figure 2. Architecture of Rice Leaf Disease Detection Mobile Application 

2.2. Data Collection and Pre-processing 

Two distinct datasets were employed for model development and evaluation. First, a public 

Kaggle dataset (https://www.kaggle.com/datasets/subhauiioo/rice-disease-detection) containing 10,407 

images of rice leaves, categorized by various diseases (e.g., Bacterial Leaf Blight, Rice Blast, Brown 

Spot) and healthy states, served as the primary data for model training. This dataset was divided into 

80% for training, 15% for validation (for hyperparameter tuning and preventing overfitting), and 5% for 

initial testing to ensure a fair evaluation of generalization, with detailed counts provided in Table 1. 

 

Table 1. Rice Leaf Disease Dataset from Kaggle (Source: [13]) 

No Disease Name Number of 

Original 

Dataset 

Number of 

Testing 

Dataset 

Number of 

Training 

Dataset 

Number of 

Validation 

Dataset 

1 Normal 1764 89 1411 264 

2 Bacterial leaf 

blight 

479 25 383 71 

3 Bacterial leaf 

streak 

380 19 304 57 

4 Bacterial panicle 

blight 

337 18 269 50 

5 Blast 1738 88 1390 260 

6 Brown spot 965 49 772 144 

7 Dead hearth 1442 73 1153 216 

8 Downy mildew 620 31 496 93 

9 Hispa 1594 80 1275 239 

10 Tungro 1088 55 870 163 

 Total Number of 

Disease = 10 

Original 

Dataset = 

10.407 

Testing 

Dataset 

= 527 

Training Dataset 

= 8323 

Validation 

Dataset  

= 1557 
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Second, to assess real-world performance, a field dataset of 1,000 rice leaf images was collected 

directly from paddy fields under diverse weather and plant conditions. This dataset, comprising 100 

images for each of the 10 disease/healthy classes (detailed in Table 2), was exclusively used for expert 

validation of the trained model's ability to identify diseases in more varied and unstructured 

environments. 

 

Table 2. Rice Leaf Disease Dataset Collected Directly from Paddy Fields 

No Disease Name Number of Data 

1 Normal 100 

2 Bacterial leaf blight 100 

3 Bacterial leaf streak 100 

4 Bacterial panicle blight 100 

5 Blast 100 

6 Brown spot 100 

7 Dead hearth 100 

8 Downy mildew 100 

9 Hispa 100 

10 Tungro 100 

 Number of Disease = 10 Dataset = 1000 

 

Prior to CNN model input, images underwent preprocessing to standardize data and enhance 

model performance. Key steps included resizing all images to a consistent dimension (e.g., 256x256 

pixels) and normalizing pixel values to a 0-1 range. To improve model robustness against field condition 

variability (e.g., lighting, camera angles, orientation), reduce overfitting, and increase the effective size 

of the training data, augmentation techniques such as random rotations, flips, and color adjustments 

were applied. These preprocessing and augmentation steps are crucial for developing a model that can 

accurately classify rice leaf diseases under diverse real-world conditions. 

2.3. CNN Model Development & Training 

The CNN model architecture implemented in this research is designed to classify diseases in rice 

leaf images, utilizing EfficientNetB0, known for its balance of high accuracy and computational 

efficiency. The conceptual workflow, illustrated in Figure 3, encompasses image input, feature 

extraction, and classification stages. 

 

 
Figure 3. CNN Architecture (Adapted from: [29]) 
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The process begins with input images, preprocessed as detailed in Section 2.2 (including 

augmentation, resizing to 256x256 pixels, normalization, and tensor conversion). This tensor data is 

then fed to the model in batches using torch.utils.data.DataLoader. The core of the model performs 

feature extraction using the pre-trained EfficientNetB0 base. EfficientNetB0, initially trained on 

ImageNet, excels at identifying diverse visual features through its sophisticated architecture comprising 

numerous convolutional layers (including depthwise separable convolutions), pooling layers, and 

squeeze-and-excitation blocks. This stage transforms the input image into a 1000-dimension feature 

vector. This feature vector subsequently enters the classification stage. As depicted by the Fully 

Connected layers in Figure 3, this stage maps extracted features to the 10 target disease classes 

(including healthy leaves). The custom classifier head consists of a dropout layer (probability 0.25) 

applied to the 1000-dimension feature vector, followed by a fully connected layer (fc1) reducing 

dimensionality to 128. A SiLU (Sigmoid Linear Unit) activation function introduces non-linearity. 

Another dropout layer (probability 0.5) is applied for further regularization before a final fully connected 

layer (fc2) maps the 128-dimension vector to 10 output neurons. These output logits are converted to a 

logarithmic probability distribution using a log_softmax activation function, yielding the model's final 

predictions. 

The model's training commenced with initialization by loading weights from a previously saved 

checkpoint (model_best.pth.tar). For the fine-tuning strategy, based on the provided code, at least the 

final classifier layer of the base EfficientNetB0 (efficient_net.classifier.1) and the custom fully 

connected layers (fc1, fc2) were set to be trainable. Stochastic Gradient Descent (SGD) was employed 

as the optimizer, configured with an initial learning rate of 1x10-5, momentum of 0.9, and weight decay 

of 1x10-5. The optimizer's state was also loaded from the checkpoint. The CrossEntropyLoss function 

was utilized to compute the difference between predicted and actual labels. Training was conducted for 

a total of 100 epochs, resuming from epoch 10 as indicated by the training loop (range(10, EPOCHS)), 

with a batch size of 128. The learning rate was managed through two mechanisms: a step decay function 

(lr = initial_lr * (0.1 ** (epoch // 30))) applied at the start of each epoch, and a CosineAnnealingLR 

scheduler (with T_max=10, eta_min=1e-6) whose step() method was invoked after each validation 

phase based on validation loss. Throughout the training, after each epoch, the model's performance was 

evaluated on the validation set. A checkpoint, including the model state, optimizer state, and the best 

validation accuracy achieved so far, was saved if the current epoch's validation accuracy (acc1) 

surpassed the previous best. The entire training process was conducted using PyTorch on a system 

equipped with a GPU. 

2.4. Mobile Application Development 

The mobile application for rice leaf disease diagnosis was developed using the Flutter cross-

platform framework, chosen for its ability to create responsive, high-performance applications 

compatible with both Android and iOS, thereby ensuring broad accessibility for farmers with varying 

device capabilities. The primary design focus was to simplify disease detection and management 

through an intuitive user interface (UI), particularly for image capture and receiving diagnostic results, 

while ensuring efficient data handling and minimal device resource consumption. This application 

utilizes a hybrid backend architecture to leverage the distinct advantages of different cloud services. 

Firebase handles user authentication and related functionalities. The core image processing and 

diagnostic data management are handled by a custom backend consisting of a Virtual Private Server 

(VPS) running a Bun.js and Python-based API, with PostgreSQL as the primary database. This hybrid 

approach combines Firebase's ease of use for user-facing services with the control and flexibility of a 

custom VPS setup for intensive computations and structured data storage. 
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The application usage flow, illustrated in the updated Figure 4, begins with user authentication 

via Firebase. Once authenticated, the farmer can access disease information or capture an image of a 

suspect rice leaf. This image is then securely transmitted to the VPS, where the API processes the request 

and forwards the image to the pre-trained CNN model (detailed in Section 2.3) for analysis. The 

diagnostic result from the CNN is returned via the API to the mobile application for display to the user. 

The expert validation workflow is also integrated: experts can review diagnoses through the app, and 

their validated labels (correct or corrected) are submitted via the API and stored in the PostgreSQL 

database, facilitating continuous model improvement. 

 

 

Figure 4. Application Usage Flow Diagram 

 

Data management is distributed across the hybrid backend. The PostgreSQL database, managed 

via the VPS-hosted API, serves as the primary repository for diagnostic results, image metadata 

(references/paths, upload timestamps), expert validation data, and potentially anonymized geographical 

or plant condition data. Each uploaded image and its associated diagnosis are linked to ensure 

traceability. Firebase Firestore (or Realtime Database) may be used to store user profile information 

linked via Firebase Authentication UIDs and potentially application settings or pointers to results for 

quick user access, while image files themselves might be temporarily stored or directly processed by the 

VPS. The application's UI is designed with simplicity and intuitiveness as core principles, ensuring ease 

of operation for farmers with diverse technical backgrounds. Clear navigation, appropriately sized 

interactive elements, and a streamlined workflow for image submission and result retrieval minimize 

user confusion. Diagnostic results are presented clearly, often with actionable advice. This user-centric 

design, combined with the robust and flexible hybrid backend, aims to provide an effective and 

accessible tool for farmers to manage rice crop health more efficiently. 

2.5. System Testing and Expert Validation 

The system's CNN model performance was rigorously evaluated through an expert testing and 

validation process using 1,000 new rice leaf images. This dataset was entirely independent of the model's 

training, development-phase validation, or initial testing sets, ensuring an objective assessment of 

generalization capability under real-world conditions. These images, encompassing various types of 

diseases and healthy leaf conditions, were initially unlabeled by the system. The CNN model first 

performed disease class predictions for each of the 1,000 images, and these initial predictions were 

recorded. Subsequently, agricultural experts from Jenderal Soedirman University conducted a thorough 
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review using the developed mobile application. For each image, experts compared the original leaf photo 

with the model's prediction and its associated confidence score. If an expert deemed the model's 

prediction correct, it was validated as "Correct." Conversely, if an expert disagreed, they selected 

"Incorrect," provided the accurate disease label, and could include feedback regarding the discrepancy. 

This corrective feedback is crucial for future model refinement. 

All expert feedback, including validations, corrections, and reasons for discrepancies, was 

systematically recorded. The database was subsequently updated with these expert-validated labels, 

creating an enriched dataset containing both the model's initial predictions and the final expert-verified 

labels. This validated dataset serves as a valuable asset for future retraining efforts, enabling continuous 

improvement of the model's accuracy. ollowing the complete review and validation of all 1,000 images, 

a comprehensive performance evaluation was conducted. Standard metrics, including accuracy, 

precision, recall, and F1-score, were calculated based on the expert validation results. These metrics are 

defined as follows, where TP (True Positives) are correctly identified positive instances, FP (False 

Positives) are negative instances incorrectly identified as positive, FN (False Negatives) are positive 

instances incorrectly identified as negative, and TN (True Negatives) are correctly identified negative 

instances. Precision is calculated as: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
   (1) 

Recall (sensitivity) is calculated as   

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
   (2) 

Specifity is calculated as   

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁+𝐹𝑃
   (3) 

F1-Score is calculated as  

2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
   (4) 

A confusion matrix was also generated to analyze the distribution of correct and incorrect 

predictions across each disease class. These analyses provide a deep understanding of the model's 

strengths and areas requiring further improvement. 

3. RESULTS 

3.1. CNN Model Performance Context and Initial Benchmarking 

To establish a baseline and provide context for the CNN model developed in this study, 

performance metrics from a relevant previous study by the authors [30] are presented in Table 3. This 

earlier work, which also focused on rice leaf disease classification using a similar CNN approach, 

reported a global accuracy of 98.86% on its specific dataset and under its testing conditions. This 

included a micro-precision of 100% and a micro-recall of 99.42%. These prior results (Table 3) served 

as an internal benchmark and highlighted the potential of CNNs, thereby motivating the current 

research's focus on development and rigorous validation on an entirely new, field-collected dataset with 

expert oversight. 
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Table 3. CNN Model Performance in Previous Research (Source: [30]) 

Metric Score 

Accuracy 98,86% 

Precision 100% 

Recall 99,42% 

F1-Score 99,70% 

 

3.2. Mobile Application Interface for Diagnosis and Validation  

The developed mobile application, built using Flutter, served as the primary platform for both 

potential farmer use and for conducting the expert validation process in this study. Key aspects of the 

application's user interface (UI) are illustrated in Figure 5. The "History" feature (Figure 5.a) allows 

users to track past diagnoses, providing details such as disease type, date, and thumbnail images. A 

detailed diagnostic view (Figure 5.b) presents images of infected leaves along with comprehensive 

disease descriptions, symptoms, potential causes, and comparative reference images. The application 

also features a dashboard (Figure 5.c) capable of displaying summary statistics; in this study, it was 

utilized to visualize aspects of the validation data. 

 

  
 

Figure 5. a) Application History Section, b) Detailed Disease Diagnosis View, c) Dashboard View 

 

The expert validation workflow was directly integrated into the mobile application. Figure 6 

shows the dedicated interface used by experts. It presented the input image alongside the model's 

prediction, a reference sample image, and supporting information about the predicted disease (Figure 

6.a). Experts then used options to mark the diagnosis as "Valid Data" or "Invalid Data" (Figure 6.b). 

Validations were confirmed (Figure 6.c), while for invalid diagnoses, experts could provide the correct 

label and additional feedback, all of which was stored for subsequent analysis and model refinement 
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Figure 6. a) Initial Validation View, b) Validation Choices, c) Confirmation after Validation 

3.3. Expert Validation of the Developed CNN Model 

The core performance evaluation of the CNN model developed in this research was conducted 

through the expert validation process detailed in Section 2.5, utilizing the mobile application interface 

described above and the 1,000 new rice leaf test images. A confusion matrix, presented in Table 4, 

visually summarizes the model's prediction accuracy against the actual classes determined by the 

experts. The matrix rows represent the actual disease classes, while the columns indicate the predicted 

classes. Diagonal values denote correct classifications (True Positives, TP) for each class, and off-

diagonal values represent misclassifications. With 100 samples for each of the 10 classes, Table 4 

provides a comprehensive overview of prediction frequencies and error types. 

 

Table 4. Confusion Matrix of Expert Validation Results 

Class Normal 

Bacterial 

Leaf 

Streak 

Dead 

Heart 
Hispa 

Bacterial 

Leaf 

Blight 

Blast 
Brown 

Spot 

Downy 

Mildew 

Bacterial 

Panicle 

Blight 

Tungro Total 

Normal 85 5 2 3 1 1 2 0 0 1 100 
Bacterial 

Leaf 

Streak 

3 90 2 1 1 1 0 1 1 0 100 

Dead 

Heart 

2 3 84 4 2 1 1 2 0 1 100 

Hispa 4 2 3 85 1 2 2 0 1 0 100 
Bacterial 

Leaf 

Blight 

3 4 2 2 79 2 1 3 1 3 100 

Blast 2 1 1 3 1 89 2 0 1 0 100 

Brown 

Spot 

1 1 2 2 2 1 87 1 1 2 100 

Downy 

Mildew 

2 2 1 1 3 1 1 86 0 3 100 

Bacterial 
Panicle 

Blight 

3 1 1 2 2 1 1 0 88 1 100 

Tungro 3 1 1 1 4 0 2 1 1 86 100 

 

Detailed quantitative performance metrics, calculated based on the confusion matrix (Table 4) 

and defined in Section 2.5 (Eq. 1-4), were determined for each class. As an illustration, for the "Normal" 

class, with TP=85, FP=23, and FN=15 from Table 4, the Precision (Eq. 1) is 0.787, Recall (Eq. 2) is 
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0.85, Specifity (Eq. 3) is 0.9744, and F1-Score (Eq. 4) is 0.8173. A similar calculation process was 

applied to all disease classes, with the comprehensive results presented in Table 5. 

 

Table 5. Test Results on Mobile Application 

Class TP FP FN TN Support Precision Recall (Sensitivity) Specificity F1-Score 

Normal 85 23 15 877 100 0.787 0.85 0.9744 0.8173 

Bacterial Leaf Streak 90 20 10 880 100 0.8182 0.9 0.9778 0.8571 

Dead Heart 84 15 16 885 100 0.8485 0.84 0.9833 0.8442 

Hispa 85 19 15 881 100 0.8173 0.85 0.9789 0.8333 

Bacterial Leaf Blight 79 17 21 883 100 0.8229 0.79 0.9811 0.8061 

Blast 89 10 11 890 100 0.899 0.89 0.9889 0.8945 

Brown Spot 87 12 13 888 100 0.8788 0.87 0.9867 0.8744 

Downy Mildew 86 8 14 892 100 0.9149 0.86 0.9911 0.8866 

Bacterial Panicle Blight 88 6 12 894 100 0.9362 0.88 0.9933 0.9072 

Tungro 86 11 14 889 100 0.8866 0.86 0.9878 0.8731 

Total 859 141 141 8859 1000     

Average      0.86094 0.859 0.98433 0.8594 

 

The overall model performance, based on the expert validation of 1,000 test samples (Table 5), 

shows a global accuracy of 85.9% (859 correct predictions). The macro-average precision, recall, and 

F1-score were 0.8609, 0.8590, and 0.8594, respectively. The micro-average values for these metrics 

were 0.8590, consistent with the global accuracy. Analysis of per-class metrics in Table 5 indicates 

performance variation. The model demonstrated strong performance for classes such as Blast (Recall 

0.89, Precision 0.899) and Bacterial Panicle Blight (Precision 0.9362, Recall 0.88). Good performance 

was also observed for Bacterial Leaf Streak (Recall 0.90). Other classes, including Dead Heart, Hispa, 

Brown Spot, Downy Mildew, and Tungro, showed fairly good performance, though with some instances 

of false positives or false negatives. This variability highlights areas for potential future model 

refinement. A detailed comparison with other state-of-the-art studies will be presented in the Discussion 

section. 

4. DISCUSSION 

This research focused on developing and evaluating a mobile-based system using a Convolutional 

Neural Network (CNN) model, specifically EfficientNetB0, for the diagnosis of rice leaf diseases. The 

model achieved a global accuracy of 85.9% when tested on 1,000 new images independently validated 

by agricultural experts, with macro-average precision, recall, and F1-score of 0.8609, 0.8590, and 

0.8594, respectively. These results underscore the model's potential for practical field application and 

its generalization capability on real-world data. However, analysis of per-class metrics (Table 5) and the 

confusion matrix (Table 4) revealed performance variations. While the model demonstrated high 

effectiveness for diseases like Blast and Bacterial Panicle Blight, challenges were observed with others, 

such as Bacterial Leaf Blight, and some misclassifications occurred for the "Normal" (Healthy) class. 

This variability is likely attributable to visual similarities between certain disease symptoms or diverse 

disease manifestations not fully captured during training. 

4.1. Comparison with Previous Studies 

The 85.9% accuracy achieved in this study on expert-validated field data provides a realistic 

performance benchmark. This contrasts with our previous work [13], which reported 98.86% accuracy 

on a different dataset, highlighting the increased challenge and importance of validation on new, diverse 

field-collected images. The broader field of CNN-based rice disease detection has seen various 
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approaches. For instance, [27] explored optimized CNNs combined with SVMs for six common rice 

diseases using a dataset of 6,330 images, aiming for enhanced detection. Research [28] implemented a 

pretrained VGG16 model with image segmentation for classifying rice leaf diseases, emphasizing 

CNNs' efficiency. Study [15] presented a real-time detection framework using Faster R-CNN for 

multiple rice diseases and pests, showcasing architectural adaptability. While these studies demonstrate 

the capabilities of different CNN architectures, direct performance comparison is nuanced due to 

variations in datasets, the number and types of diseases, and validation methodologies. 

Several studies have also focused on mobile application development for plant diseases. Research 

[31] developed a mobile phone application leveraging deep learning for both rice disease and insect pest 

detection, illustrating the practical deployment of such technologies. Similarly, [12] created an Android 

application using DCNNs for identifying fall armyworms in maize, and [13] utilized CNNs in a mobile 

app for detecting Tuta Absoluta damage in tomatoes, both emphasizing accessibility for farmers. While 

not exclusively on rice, these works underscore the trend and utility of mobile-based diagnostic tools. 

Our research contributes to this area by not only developing a mobile interface (Figures 5 and 6) but 

also by rigorously validating the integrated CNN model's performance on new field data specific to rice 

diseases prevalent in the Indonesian context. The need for such validated, accessible tools is further 

supported by [32] who evaluated existing plant disease detection apps and stressed the necessity of 

ensuring quality and effectiveness to meet farmers' needs. 

The challenges identified in our study, such as distinguishing diseases with similar symptoms, 

align with general findings in CNN-based plant disease detection research. Research [33] also noted 

gaps in previous rice disease detection research, including suboptimal accuracy and unbalanced datasets, 

issues that data augmentation strategies, as explored by [34], aim to mitigate. Our use of expert 

validation, as underscored by [35] regarding the necessity of integrating human expertise, adds a layer 

of robustness to our findings compared to studies relying solely on public dataset splits without field 

expert oversight. 

4.2. Interpretation of Findings and Contributions to Computer Science 

The selection of EfficientNetB0 proved suitable for balancing accuracy and computational 

efficiency, a critical consideration for mobile deployment. The transfer learning approach facilitated 

model development, particularly valuable when dealing with specialized agricultural datasets that may 

be limited compared to general image datasets like ImageNet [15]. This study's primary contribution 

lies in the development and rigorous field-data validation of a mobile-accessible diagnostic tool. From 

an informatics and computer science perspective, this research demonstrates a practical application of 

machine learning and mobile computing to address real-world agricultural challenges. It contributes to 

applied computer vision by tackling image-based classification in complex, uncontrolled field 

environments, which often present greater variability than laboratory conditions. Furthermore, it 

illustrates the design and potential of mobile decision support systems for delivering timely, data-driven 

insights to end-users like farmers in resource-constrained settings. The integration of an expert 

validation loop within the application (Figure 6) also highlights a pathway for human-AI collaboration, 

where expert knowledge refines AI models, a growing area of interest in applied AI. The performance 

variations across disease classes suggest that visual symptom similarity remains a challenge, pointing 

to the need for more sophisticated feature extraction techniques or multi-modal data integration in future 

iterations. 

4.3. Limitations of the Study 

Despite the promising results, this study has several limitations that should be acknowledged. The 

scope of the dataset, while including a new 1,000-image expert-validated field set, could be expanded; 
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larger datasets encompassing greater geographical diversity, more rice varieties, varying growth stages, 

and multiple seasons might further enhance model robustness and generalization. The initial training 

relied on a public Kaggle dataset, which may carry inherent biases and not fully represent all local field 

conditions in Indonesia. Furthermore, evaluation of the mobile application's performance—such as 

image upload times across different network conditions, task success rates for farmers, and system 

resource consumption on various devices—was not conducted in this research phase. The current 

evaluation also did not include Receiver Operating Characteristic (ROC) curve or Area Under the Curve 

(AUC) analysis. Finally, the model's applicability is currently limited to the 10 specific rice leaf diseases 

(and healthy leaves) included in this study. 

4.4. Future Research Directions 

Building upon the current findings and addressing the identified limitations, future research will 

focus on several key areas. Model enhancement will be a priority, aiming to further improve accuracy 

and recall, especially for diseases that are currently harder to distinguish; this will involve exploring 

advanced data augmentation techniques, incorporating larger and more diverse training datasets from 

various Indonesian regions and seasons, and potentially investigating more sophisticated CNN 

architectures or ensemble methods. Another direction is to expand the disease and pest repertoire, 

extending the model's capability to identify a wider range of rice diseases and common pests to provide 

a more comprehensive diagnostic tool. The integration of IoT and environmental data also presents a 

promising avenue, where data from IoT sensors (e.g., monitoring weather conditions, soil moisture, 

temperature) could enable predictive analysis of disease outbreaks, serving as additional input to the 

model or triggering alerts for proactive crop management. Significant effort will also be directed towards 

enhancing the user interface and experience by conducting usability studies with farmers to gather 

feedback for refining the mobile application's interface, with a focus on accessibility for users with 

varying levels of digital literacy and incorporating features based on their practical needs. Finally, 

conducting rigorous quantitative application performance evaluation, including testing 

upload/processing times under different network conditions and task success rates, will be essential for 

assessing real-world viability. 

5. CONCLUSION 

This research successfully developed and validated a mobile-based system integrating an 

EfficientNetB0 model for rice leaf disease diagnosis, achieving a global accuracy of 85.9% on a 

challenging set of 1,000 new images independently validated by agricultural experts. While performance 

varied across disease classes, this result demonstrates a significant capability for practical field 

application. The key contributions of this study include: (1) the development of an accessible mobile 

diagnostic tool tailored for common rice leaf diseases; (2) the rigorous validation of the EfficientNetB0 

model on a novel, expert-annotated field dataset, providing a realistic performance benchmark; and (3) 

the design of a system architecture (integrating mobile, cloud/server, and database technologies) that 

facilitates this diagnostic process. The application developed has the distinct potential to empower 

farmers, particularly in resource-constrained regions like Indonesia, by providing an easily accessible 

and rapid diagnostic tool. Such a system can lead to more timely and accurate disease identification, 

enabling targeted interventions, potentially reducing reliance on broad-spectrum pesticides, minimizing 

crop losses, and ultimately contributing to improved yields and sustainable rice farming practices. This 

work forms a basis for the continued modernization of agricultural practices through accessible 

technology. 

From a computer science perspective, this research contributes significantly to the field of applied 

artificial intelligence in agriculture. It demonstrates the practical deployment of deep learning models 
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(EfficientNetB0) on mobile platforms for complex image recognition tasks within challenging, real-

world agricultural environments. Furthermore, the study underscores the importance of robust validation 

methodologies, including expert verification, for building trustworthy and effective AI systems. The 

development of the backend infrastructure also offers insights into creating scalable and maintainable 

solutions for agricultural data management and diagnostic delivery. This work showcases how mobile 

technology can bridge the gap between advanced AI capabilities and the practical needs of end-users in 

critical sectors such as food production, providing a foundation for further data-driven agricultural 

innovations. Future development will focus on enhancing model accuracy and recall, particularly for 

difficult-to-distinguish diseases, through advanced data augmentation, expanded and more diverse 

datasets, and potential architectural adjustments. Plans also include broadening the application's 

diagnostic scope to include a wider range of plant diseases and pests, integrating predictive analytics 

using environmental data from IoT sensors, and improving usability through formal farmer-led studies 

and offline functionality. These advancements are anticipated to maximize the system's impact on 

agricultural productivity and sustainable disease management. 
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