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Abstract 

Background: The development of artificial intelligence (AI) technology, including Deep Reinforcement Learning 

(DRL), has brought significant changes in various industrial sectors, especially in autonomous systems. DRL 

combines the capabilities of Deep Learning (DL) in processing complex data with those of Reinforcement Learning 

(RL) in making adaptive decisions through interaction with the environment. However, the application of DRL in 

autonomous systems still faces several challenges, such as training stability, model generalization, and high data and 

computing resource requirements. Methods: This study uses the Systematic Literature Review (SLR) method to 

identify, evaluate, and analyze the latest developments in DRL for autonomous system optimization. The SLR was 

conducted by following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) 

framework, which consists of four main stages: identification, screening, eligibility, and inclusion of research articles. 

Data were collected through literature searches in leading scientific journal databases such as IEEE Xplore, MDPI, 

ACM Digital Library, ScienceDirect (Elsevier), SpringerLink, arXiv, Scopus, and Web of Science. Results: This 

study found that DRL has been widely adopted in various industrial sectors, including transportation, industrial 

robotics, and traffic management. The integration of DRL with other technologies such as Computer Vision, IoT, 

and Edge Computing further enhances its capability to handle uncertain and dynamic environments. Therefore, this 

study is crucial in providing a comprehensive understanding of the potential, challenges, and future directions of 

DRL development in autonomous systems, in order to foster more adaptive, efficient, and reliable technological 

innovations. 
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1. INTRODUCTION 

In recent decades, the development of artificial intelligence (AI) technology has brought 

significant changes in various industrial sectors, including transportation, manufacturing, and robotics. 

One branch of AI that is increasingly gaining attention is Deep Reinforcement Learning (DRL), which 

combines the advantages of Deep Learning (DL) in complex data processing with the ability of 

Reinforcement Learning (RL) in making adaptive decisions through interaction with the environment 

[1]. Autonomous systems, such as driverless vehicles, industrial robots, and traffic management 

systems, require adaptive, efficient decision-making mechanisms that are able to handle environmental 

uncertainty. In this context, DRL is one of the promising approaches to improve the performance and 

efficiency of autonomous systems. 

As the demand for autonomous systems increases, the global autonomous vehicle market is 

projected to reach USD 556.67 billion by 2026, growing at a compound annual growth rate (CAGR) of 

39.47% between 2019 and 2026 [2]. The smart manufacturing sector that relies on DRL-based industrial 

robots is predicted to experience rapid growth, driven by the need for smarter and more efficient 
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automation [3]. While DRL offers several advantages in optimizing autonomous systems, its real-world 

application still faces a number of technical and methodological challenges. 

In addition to the urgency at the global level, the development of DRL-based autonomous systems 

is also a priority in the Indonesian context. The Making Indonesia 4.0 Roadmap launched by the Ministry 

of Industry targets increasing automation and AI integration in the manufacturing and transportation 

sectors as one of the main strategies to improve the competitiveness of the national industry [4]. In 

addition, the 2017–2045 National Research Master Plan (RIRN) emphasizes the importance of 

developing AI technology and intelligent systems as part of the national digital transformation [5]. This 

research not only has academic relevance but also supports the direction of national policy in 

accelerating the application of AI and autonomous systems in various strategic sectors. 

One of the main challenges is the stability and efficiency of training. Training DRL models 

requires a large number of iterations to achieve optimal convergence, which is often very time-

consuming and computationally resource-intensive [6]. For example, Deep Q-Networks (DQN)-based 

models require millions of interactions with the environment before achieving adequate performance 

[7]. Generalization of DRL models to real environments remains a major problem, as models trained in 

simulation often experience performance degradation when applied in the real world due to differences 

in environmental dynamics [8]. Another crucial issue is the need for large amounts of data and 

computational resources. DRL requires a large amount of exploration to build optimal strategies for 

decision making, which often results in low data efficiency and slow learning processes [9]. This 

challenge is further exacerbated by the need for specialized hardware, such as graphics processing units 

(GPUs) or tensor processing units (TPUs), which adds to the financial burden for developers and 

researchers in this field. 

Various approaches have been proposed to address this issue, including the use of simulation-

based models to reduce the reliance on real-world data and transfer learning techniques that allow 

models trained in simulation to be adapted to real-world environments with less additional data [10]. In 

addition, integration with unsupervised learning and meta-learning techniques has been a potential 

strategy to improve the generalization of DRL models [11]. Many previous studies have discussed the 

application of DRL in autonomous systems, but there are still gaps in terms of optimizing training 

efficiency, improving model generalization, and adapting to real-world environments. Some previous 

studies have focused more on the technical aspects of DRL algorithm development, but not many have 

systematically evaluated the effectiveness of existing approaches and identified key challenges in their 

implementation in real-world autonomous systems [12]. Therefore, this study contributes by presenting 

a systematic review that not only examines the latest methods in DRL but also provides perspectives on 

future research directions and potential strategies to improve the efficiency and effectiveness of DRL-

based systems in real-world environments. 

Considering the existing challenges and potential solutions that have been proposed in previous 

studies, a more comprehensive study is needed to summarize the latest developments and design 

implementation strategies that are more efficient and can be widely adopted across industries. Based on 

the urgency of the problem, this study aims to conduct a systematic literature review of the latest 

developments in DRL for autonomous system optimization, identify the methods that have been used, 

the challenges that are still faced, and the direction of future research. Thus, this study is expected to 

provide a comprehensive picture of the evolution of DRL in autonomous systems and potential solutions 

to improve its performance and efficiency in the real world. 

2. METHOD 

This study adopts the Systematic Literature Review (SLR) method to identify, evaluate, and 

analyze recent advancements in Deep Reinforcement Learning (DRL) for autonomous system 
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optimization. SLR is a systematic and transparent approach for collecting and synthesizing relevant 

research findings, aiming to provide comprehensive research mapping while identifying current trends 

and research gaps in the field [13]. The implementation of this method follows the Preferred Reporting 

Items for Systematic Reviews and Meta-Analyses (PRISMA) framework, consisting of four main 

stages: identification, screening, eligibility, and inclusion of research articles [14].  

Data collection was conducted through comprehensive literature searches in reputable scientific 

journal databases such as IEEE Xplore, MDPI, ACM Digital Library, ScienceDirect (Elsevier), 

SpringerLink, arXiv, Scopus, and Web of Science. The search strategy involved combinations of 

keywords relevant to the research topic, including "Deep Reinforcement Learning" AND "Autonomous 

Systems", "Reinforcement Learning" AND "Optimization" AND "Autonomous Systems", and "Deep 

Learning" AND "Autonomous Control". The search was limited to publications from 2020 to 2024 to 

ensure the inclusion of only recent and relevant studies. 

Literature selection was based on inclusion and exclusion criteria. The inclusion criteria consisted 

of articles discussing the application of DRL in autonomous systems (e.g., autonomous vehicles, 

industrial robotics, traffic management systems), studies focusing on DRL optimization (e.g., training 

efficiency, transfer learning, real-world adaptation), and publications in reputable journals or 

conferences (Q1–Q3 according to Scopus rankings). The exclusion criteria included articles that were 

not available in full-text, studies focusing solely on Reinforcement Learning without Deep Learning 

components, and non-experimental or opinion-based publications. Articles meeting the inclusion criteria 

underwent manual screening to ensure their relevance to the research objectives [15]. 

In the data processing stage, key information from each selected article was extracted using 

reference management software such as Mendeley. The extracted parameters included the authors’ 

names and publication years, the DRL methods employed (e.g., DQN, PPO, A3C, SAC), application 

domains within autonomous systems, strengths and limitations of each method, and the main results and 

findings of the studies. A thematic analysis was then conducted to identify research patterns, trends, and 

evaluate the performance and effectiveness of various DRL approaches. The results were synthesized 

and presented in tables, PRISMA flow diagrams, and additional visualizations (where applicable) to 

offer a comprehensive overview of current developments, challenges, and potential research directions 

for DRL in autonomous systems. Where relevant, mathematical formulas such as reward function 

equations, convergence rate calculations, or model accuracy metrics were also incorporated to support 

the evaluation of DRL performance [16]. The results of this analysis were then synthesized to provide a 

comprehensive picture of the developments, challenges, and potential for future research in the field of 

DRL for autonomous systems. 

3. RESULT 

Recent Developments in DRL Applications for Autonomous Systems. 

3.1. Widespread Adoption Of Drl In Various Sectors 

Deep Reinforcement Learning (DRL) has seen increasing adoption in various industrial sectors, 

especially in autonomous systems that require adaptive decision-making capabilities. In the 

transportation sector, DRL has been used to optimize autonomous vehicle navigation to improve 

efficiency and road safety. The global autonomous vehicle market is projected to reach USD 556.67 

billion by 2026, with a compound annual growth rate (CAGR) of 39.47% between 2019 and 2026 [17]. 

This growth is largely driven by the increasing adoption of artificial intelligence technologies, including 

DRL, in vehicle control systems. The industrial robotics sector, DRL is being used to improve the 

operational efficiency of robots in smart manufacturing environments. DRL-based robots can reduce 

production time by up to 30% compared to conventional rule-based systems [18]. 
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Traffic management system sector, DRL is applied to adaptively optimize traffic light settings 

based on vehicle density, which can reduce congestion by up to 25% [19]. Meanwhile, in the 

manufacturing sector, DRL has enabled smarter automation, with studies showing that implementing 

DRL in manufacturing control systems can increase production throughput by up to 15% compared to 

traditional heuristic-based methods [20]. With the increasing application of DRL in various industries, 

this technology has become one of the main solutions in optimizing autonomous systems to improve 

operational efficiency and effectiveness.  

 

Table 1. DRL Performance in Various Sectors 

Sector Performance Indicator Reference 

Autonomous Vehicles Increase in object recognition accuracy to 94.3% [21] 

Industrial Robotics Reduction in production time by 30% [18] 

Manufacturing Increase in production throughput by 15% [20] 

Traffic Management Reduction in congestion by 25% [19] 

Predictive Maintenance (IoT) Reduction in machine downtime by 20% [22] 

 

Deep reinforcement learning (DRL) significantly improves performance across various sectors. 

In autonomous vehicles, it increases object recognition accuracy. Industrial robotics see a reduction in 

production time. Manufacturing experiences increased production throughput, while traffic 

management sees less congestion. Finally, predictive maintenance using IoT and DRL reduces machine 

downtime. These results demonstrate DRL's broad applicability and effectiveness in optimizing diverse 

industrial processes. 

3.2. Integration Of Drl With Other Technologies 

Along with the development of technology, DRL is increasingly combined with various other 

technologies such as Computer Vision (CV), Internet of Things (IoT), and Edge Computing to improve 

operational efficiency in autonomous systems. In the context of autonomous vehicles, the integration of 

DRL with Computer Vision allows the system to recognize and interpret objects in the environment in 

real-time, thereby improving navigation accuracy and obstacle detection. DRL model combined with 

CV can improve object recognition accuracy in autonomous vehicles up to 94.3%, compared to 

conventional methods which only reach 87.6% [21]. 

In the industrial sector, the integration of DRL with IoT enables the system to collect and analyze 

data from various sensors to improve production efficiency and early detection of anomalies. The 

combination of DRL and IoT in a predictive maintenance system can reduce machine downtime by up 

to 20% and increase energy efficiency by 12% [22]. In addition, Edge Computing plays a vital role in 

enabling DRL inference to be performed directly on local devices without having to rely on cloud 

computing, thereby reducing latency in decision making. The use of Edge Computing in a DRL-based 

system can reduce latency by up to 40%, making it a highly relevant solution for applications that require 

real-time response [23]. 

3.3. Improved Adaptability Of Drl In Dynamic Environments 

One of the major developments in DRL is its improved adaptability in dealing with environmental 

uncertainty. Current DRL models have been designed with more flexible learning mechanisms, allowing 

the system to dynamically adjust decision-making strategies based on changing conditions in the 

surrounding environment. For example, the use of Domain Randomization in DRL training has been 

shown to improve the model's generalization ability to unexpected environmental changes [24]. DRL 

models trained with this technique can maintain their performance in a variety of real-world scenarios 

with over 85% accuracy, compared to only 70% for models that do not use the technique [25]. 
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The development of the Meta-Reinforcement Learning method allows the DRL system to learn 

faster in new scenarios, without the need for extensive retraining. Meta-DRL-based model can adapt to 

new tasks 4–5 times faster than conventional models, making it a promising solution for autonomous 

systems operating in ever-changing environments, such as autonomous drones and search and rescue 

robots [26].  

3.4. Application Of Drl In Real-Time Decision Making 

The ability of DRL to perform real-time decision making has been significantly improved with 

the optimization of algorithms and improvements in computational efficiency. In intelligent 

transportation systems, DRL has been applied to dynamically manage traffic with low latency, allowing 

traffic regulation based on real-time data collected from road sensors. The use of DRL in adaptive traffic 

systems can reduce vehicle waiting time at intersections by up to 18% compared to rule-based methods 

[27]. 

In autonomous vehicles, DRL algorithms such as Soft Actor-Critic (SAC) and Proximal Policy 

Optimization (PPO) have been applied to improve the efficiency of decision-making in navigation and 

speed control. SAC enables more stable decision-making with low latency, reducing the navigation error 

rate by 15% compared to conventional DRL methods such as Deep Q-Network (DQN) [28]. 

3.5. Advances In Interpretability And Reliability Of Drl Models 

One of the main challenges in the application of DRL in autonomous systems is the limited 

interpretability of the model, which can hinder its adoption in critical applications such as autonomous 

vehicles and industrial robotics. To address this issue, recent research has focused on developing 

methods that increase the transparency of decisions made by DRL models. One of the widely developed 

approaches is Explainable Reinforcement Learning (XRL), which aims to provide clearer insights into 

how DRL models make decisions in a given environment. 

XRL method can increase user confidence in the DRL model by providing rule-based 

explanations for each decision taken by the agent. In addition, the application of Saliency Map and 

Attention Mechanisms techniques has allowed the visualization of the most influential factors in the 

decision-making process, thereby increasing the transparency of the system [29]. 

4. DISCUSSIONS 

4.1. Methods To Improve DRL Efficiency And Effectiveness In Real World Environments 

4.1.1. Transfer Learning And Few-Shot Learning To Reduce Training Data Requirements 

One of the main challenges in implementing Deep Reinforcement Learning (DRL) in autonomous 

systems is the high demand for training data. In real-world environments, collecting high-quality data is 

very expensive and time-consuming. Therefore, the Transfer Learning approach is used to transfer the 

knowledge gained from the simulated environment to the real world, thereby reducing the need for 

training data. A DRL model using Transfer Learning can accelerate the adaptation process in a new 

environment by up to 40%, compared to a model trained from scratch [30]. 

Few-Shot Learning allows the DRL system to learn with a limited amount of data through a better 

generalization mechanism. The use of Few-Shot Learning in DRL can increase training efficiency by 

30% while maintaining high accuracy in robotic navigation tasks. With this approach, autonomous 

systems can adapt more quickly to environmental changes without requiring a large amount of data, 

which is often a constraint in real-world applications [31]. 

Model-Agnostic Meta-Learning (MAML), showing that task-to-task transfer significantly 

reduces data requirements in robotics, emphasizing the relevance of these methods for operational 
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efficiency in real-world AI systems. The urgency of this approach in computer science lies in the 

increasing demand for adaptive AI systems in data-scarce environments, such as edge computing and 

sensor-based real-time monitoring. 

4.1.2.  Meta-Learning And Self-Supervised Learning For Faster Adaptation 

Meta-Learning and Self-Supervised Learning approaches have been used to improve the 

adaptation speed of DRL models to new environmental conditions. Meta-Learning, also known as 

“learning to learn,” allows DRL models to learn faster by adjusting model parameters based on previous 

experiences. Meta-Learning can improve training efficiency up to 5 times faster compared to traditional 

learning methods, especially in robotic control-based tasks [32]. 

On the other hand, Self-Supervised Learning allows systems to learn automatically without the 

need for explicit labels, thus reducing the reliance on expensive labeled data. Self-Supervised Learning 

method in DRL can improve learning efficiency by up to 25%, especially in scenarios where the amount 

of labeled data is very limited. The integration of these two techniques in DRL allows autonomous 

systems to learn more efficiently and adaptively in various dynamic environmental conditions [33]. 

Demonstrated that curiosity-driven self-supervision greatly improves exploration in reward-sparse 

environments, reinforcing the value of combining Meta-Learning and Self-Supervised Learning for 

robust adaptation in robotics, autonomous vehicles, and intelligent agents. 

4.1.3. Using Simulation-Based Models To Improve Training Efficiency 

One of the main strategies in improving DRL training efficiency is to use simulation-based 

models before applying them to the real world. Simulation allows DRL algorithms to learn in a safe and 

controlled environment, avoiding the risks associated with direct experiments in the physical world. 

DRL agents trained in simulation can achieve optimal performance up to 50% faster than agents trained 

only in real-world environments [34]. 

Some popular simulators used in DRL research include CARLA for autonomous vehicles, 

MuJoCo for robotics, and AirSim for drones. By using simulation, researchers can test various control 

and exploration strategies without having to face high cost and time constraints. The Domain 

Randomization technique in simulation can improve the generalization ability of the model by 

simulating a variety of diverse environmental conditions [35]. Who showed that domain randomization 

significantly mitigates the Sim-to-Real Gap, enhancing real-world performance reliability. In the context 

of computer science, this approach accelerates the prototyping of cost-effective and safe AI systems, 

crucial in applied informatics and intelligent automation. 

4.1.4. Exploration And Exploitation Optimization With PPO And SAC Algorithms 

In DRL the balance between exploration (finding new actions) and exploitation (leveraging 

previous experience) is an important challenge in achieving learning efficiency. Two main algorithms 

that have been developed to address this issue are Proximal Policy Optimization (PPO) and Soft Actor-

Critic (SAC). The PPO algorithm, uses a constraint-based approach in policy updating, thereby 

improving training stability. PPO can improve learning efficiency by up to 20% compared to previous 

DRL algorithms such as Trust Region Policy Optimization (TRPO) [36]. 

The SAC algorithm introduces an entropy-based exploration mechanism, which allows DRL 

agents to be more efficient in exploring new actions without losing training stability. SAC can improve 

convergence speed by up to 35% compared to classical methods such as Deep Q-Network (DQN). By 

adopting more optimal exploration techniques, DRL-based autonomous systems can learn faster with 

lower risks [37]. 
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4.1.5. Computational Resource Efficiency Through Model And Hardware Optimization 

One of the main obstacles in the implementation of DRL is the high computational requirements, 

which can lead to high power consumption and long training times. To overcome this problem, several 

strategies have been developed, including the use of lightweight architecture-based models and 

processing optimization with more efficient hardware such as GPUs (Graphics Processing Units) and 

TPUs (Tensor Processing Units). 

The use of lightweight neural network-based models can reduce power consumption by up to 30% 

without sacrificing accuracy in robotic navigation tasks. In addition, by utilizing hardware acceleration 

such as GPUs and TPUs, DRL model training can be accelerated up to 10 times compared to 

conventional CPUs [38]. 

Hardware optimization, approaches such as quantization and pruning have also been used to 

reduce model complexity without sacrificing performance. The pruning method can reduce model size 

by up to 90%, which significantly improves execution efficiency in resource-constrained autonomous 

systems [39]. 

4.1.6. Hybrid Approaches: Combining DRL With Other AI Techniques 

To improve the stability and generalization of DRL models, Hybrid Approaches that combine 

DRL with other artificial intelligence techniques have been developed. One method that is widely 

applied is the combination of DRL with Supervised Learning and Unsupervised Learning to improve 

learning efficiency and model stability. 

The combination of DRL with Supervised Learning in the AlphaZero model allows agents to 

learn faster by utilizing experience from historical data. As a result, this model is able to outperform 

traditional reinforcement learning-based systems in games such as chess and Go with an increase in 

learning efficiency of up to 50% [40]. 

The combination of DRL with Unsupervised Learning, such as in the Curiosity-Driven Learning 

method, allows agents to explore the environment more efficiently without having to rely on explicit 

feedback. This method can increase exploration efficiency by up to 35%, especially in environments 

with sparsity or unclear rewards [41]. 

4.2. Key Challenges In DRL Implementation In Autonomous Systems 

4.2.1. Training Stability In DRL 

One of the main challenges in applying Deep Reinforcement Learning (DRL) to autonomous 

systems is training stability. DRL algorithms often experience slow and unstable convergence, 

especially in dynamic and complex environments. Unlike traditional machine learning methods, DRL 

relies on exploration and interaction with the environment to update the policy, which can cause large 

fluctuations in training performance. DRL models require up to 10 million iterations to achieve near-

optimal performance in robotic navigation tasks, compared to supervised learning which can achieve 

similar results with only hundreds of thousands of iterations [42]. 

Sensitivity to hyperparameter selection is also a major challenge. Parameters such as learning 

rate, discount factor (γ), and exploration-exploitation balance have a significant impact on model 

performance. Mistakes in hyperparameter selection can lead to training instability, where the model fails 

to find the optimal strategy or gets stuck in a local optimum. That small changes in learning rate (e.g. 

from 0.001 to 0.0005) can cause model performance to drop by up to 35% in some DRL-based control 

tasks [43]. 

The balance between exploration and exploitation is a fundamental aspect of DRL training. If an 

agent exploits a learned strategy too much, it may miss opportunities to find better solutions. Conversely, 

excessive exploration without a clear strategy can lead to inefficient and time-consuming training. 
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Algorithms such as ε-greedy, Upper Confidence Bound (UCB), and Thompson Sampling have been 

developed to address this challenge, but still face obstacles in highly complex and noisy environments 

[44]. 

Another challenge that complicates training stability is the reliance on simulation. Most DRL 

models are trained in simulated environments before being deployed in the real world. Although 

simulation allows for safer and more efficient experimentation, the difference between the simulated 

world and the real world (Sim-to-Real Gap) often causes a performance drop of up to 40% when the 

model is deployed in real conditions [45]. Transfer learning or domain adaptation methods are needed 

to address this gap. 

4.2.2. Challenges Of DRL Model Generalization 

Generalizability or the ability of DRL models to adapt to various environments is a major 

challenge in autonomous systems. One of the main problems in generalization is the Sim-to-Real Gap, 

where models trained in simulation often experience performance degradation in the real world. This is 

caused by differences in physical dynamics, such as sensor imperfections, friction, or environmental 

disturbances that cannot be fully simulated. DRL models applied directly from simulation to physical 

robots experienced a decrease in accuracy of up to 30% in navigation tasks due to these factors [46]. 

DRL models are often less robust to noise and disturbances. Inaccurate sensors, unexpected 

environmental disturbances, or changes in operational conditions can cause the model to lose its 

effectiveness. That small changes in sensory input (e.g., 5% noise) can decrease model performance by 

up to 20% in object recognition tasks. Therefore, strategies such as domain randomization and 

adversarial training are used to improve model robustness to environmental variations [47]. 

Another challenge is overfitting to the training environment, where the DRL model is too well-

suited to a particular scenario and is less able to adapt when applied to a new environment. This 

phenomenon often occurs when the model is trained in an environment that is less varied or has high 

reward sparsity. DRL models that are only trained in one specific scenario experience a performance 

decrease of up to 50% when applied to an environment with little structural change. One solution to 

overcome this problem is unsupervised environment augmentation, where the model is trained with a 

variety of environments to improve generalization [48].  

4.2.3. Data And Computational Resource Efficiency 

DRL is known to require very large data to learn effectively. Unlike supervised learning that can 

learn from existing datasets, DRL requires direct interaction with the environment, which often results 

in inefficiencies in data collection. The Deep Q-Network (DQN) model requires more than 200 million 

interactions with the environment to achieve human performance in Atari games. This shows that 

without a good data management strategy, DRL training can be very expensive and inefficient. In 

addition to the large data requirements, DRL also has high computational costs. Training DRL models 

requires high-performance hardware such as GPUs or TPUs, which can be a barrier for many researchers 

and industries [49]. That training large-scale DRL models on Google TPUs can consume up to 2.5 kWh 

of energy per hour, which is equivalent to the power consumption of a small household. Optimizing 

model architecture, using distributed computing, and utilizing model compression techniques 

(quantization and pruning) are important steps in reducing the need for computing resources [47]. 

The problem of reward sparsity and credit assignment is also a challenge in many DRL 

applications. In many cases, agents only receive rewards after achieving a certain goal, making it 

difficult to determine which actions contributed most to the success. In a robot control task, an agent 

may only receive rewards after successfully completing a mission, but there is no direct feedback on 

which actions moved it closer or further away from the goal. To address this problem, several approaches 
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have been developed, such as reward shaping, hierarchical reinforcement learning (HRL), and intrinsic 

motivation that encourages agents to explore the environment more efficiently [50]. 

4.3. Strategies To Overcome Challenges In DRL For Autonomous Systems 

4.3.1. Improving Training Stability 

Training stability is a critical aspect in the development of Deep Reinforcement Learning (DRL) 

for autonomous systems. One of the main approaches used to improve stability is the implementation of 

more stable algorithms, such as Trust Region Policy Optimization (TRPO), Proximal Policy 

Optimization (PPO), and Soft Actor-Critic (SAC). TRPO controls policy changes by limiting the 

Kullback-Leibler (KL) divergence, thus preventing unwanted fluctuations in learning [51]. TRPO was 

shown to improve training stability by up to 35% compared to the vanilla policy gradient method [52]. 

PPO as an improvement of TRPO, optimizes the policy with a simpler and more efficient 

approach. PPO reduces variance by up to 20% compared to TRPO, while maintaining learning stability. 

Meanwhile, SAC introduces regulation entropy, which allows agents to continue exploring the 

environment without sacrificing exploitation performance [53].  

Regularization and experience normalization strategies are also applied to reduce instability 

during training. Techniques such as batch normalization help reduce fluctuations in the reward 

distribution, while reward clipping is used to limit extreme reward values that can lead to explosive 

gradients. The use of reward clipping in robotics simulations can increase the convergence rate by 25% 

[54]. 

A more efficient exploration strategy is also a key factor in improving the stability of DRL. 

Techniques such as curiosity-driven exploration and intrinsic motivation are used to overcome 

suboptimal exploration. Curiosity-driven learning-based models, such as the Intrinsic Curiosity Module 

(ICM) allow agents to explore the environment more actively, with a 30% increase in exploration 

performance in DRL-based video games [50]. 

4.3.2. Improve Model Generalization 

Generalizability is a major challenge in implementing DRL in the real world. One solution that 

has proven effective is domain randomization, which involves creating variations in the simulation 

environment to improve the model's resilience to changes in the real environment. Implementing domain 

randomization in robotics simulations, the success rate of model transfer from simulation to the real 

world increased by up to 40%, compared to models trained without environmental variations [24]. 

Meta-learning allows models to learn common patterns from various tasks, thereby accelerating 

adaptation to new environments. Algorithms such as Model-Agnostic Meta-Learning (MAML) have 

been shown to reduce model adaptation time by up to 50% in robotic navigation tasks. Continual 

learning, on the other hand, allows models to learn from experience incrementally without losing 

previous information [55]. Continual learning strategies can reduce catastrophic forgetting by up to 60% 

in multi-task learning scenarios [55]. 

To improve the model's resilience to environmental disturbances, adversarial training is applied 

in DRL training. This technique involves injecting noise or artificial disturbances into the training 

environment to improve the model's robustness to extreme conditions. Adversarial training in robotics 

increases resistance to sensory noise by up to 35%, which has a direct impact on improving the reliability 

of autonomous systems in the real world [50]. 

4.3.3. Data And Computational Efficiency Improvement 

Data and computational resource efficiency are critical aspects in DRL implementation, given the 

very high training costs. One of the main strategies in improving data efficiency is the application of 
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transfer learning and few-shot learning. By using a pre-trained model, the number of direct interactions 

with the environment can be significantly reduced. The application of transfer learning in the game of 

Go reduces the need for training data by up to 70%, without sacrificing model performance [53]. 

Model-based reinforcement learning (MBRL) is used to reduce the dependence on direct 

interactions with the environment. In this approach, predictive models are used to simulate experiences, 

thereby reducing the amount of real data required. Experimental results that the application of MBRL 

in the Deep Planning Network (PlaNet) is able to reduce the number of environmental interactions by 

up to 80%, while maintaining competitive performance [52]. 

Another approach used to improve efficiency is Hierarchical Reinforcement Learning (HRL), 

which divides complex tasks into smaller, easier-to-learn subtasks. By dividing the problem into 

multiple hierarchical levels, HRL can speed up the learning process and reduce data consumption. HRL 

can increase the convergence speed by up to 50% in robot navigation tasks [42].  

To overcome the challenges related to computational costs, the use of parallel computing and 

distributed reinforcement learning is an effective solution. DRL running in a distributed system can 

utilize multiple GPUs or TPUs, which allows the model to learn faster by dividing the workload. a 

distributed RL framework, shows that with parallel computing, the training speed increases by up to 30 

times compared to standard methods [55]. 

5. CONCLUSION 

The application of Deep Reinforcement Learning (DRL) in autonomous systems improves 

operational efficiency in various sectors, including transportation, industrial robotics, and traffic 

management. Challenges such as training stability, model generalization, and the need for high data and 

computing resources still remain, strategies such as transfer learning, meta learning, and the use of 

model-based simulations have proven effective in addressing these issues. The integration of DRL with 

other technologies such as Computer Vision, IoT, and Edge Computing further strengthens its ability to 

deal with uncertain dynamic environments. DRL is expected to provide better and more reliable 

solutions for autonomous system applications in the future. 
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