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Abstract 

Breast cancer is one of the most prevalent malignancies and a leading cause of mortality among women worldwide. 

Mammography plays a crucial role in early detection, yet challenges in manual interpretation have led to the adoption 

of Convolutional Neural Networks (CNNs) to improve classification accuracy. This study evaluates the performance 

of Visual Geometry Group (VGG19) and Densely Connected Convolutional Networks (DenseNet121) in 

mammogram classification. It examines the impact of data augmentation and image enhancement techniques, 

including Contrast-Limited Adaptive Histogram Equalization (CLAHE), Median Filtering, and Discrete Wavelet 

Transform (DWT), as well as the influence of varying epochs and learning rates. A novel approach is introduced by 

assessing data augmentation effectiveness and exploring model adaptations, such as layer incorporation and freezing 

during training. Classification performance is enhanced through fine-tuning strategies combined with image 

enhancement techniques, reducing reliance on data augmentation. These findings contribute to medical imaging and 

computer science by demonstrating how CNN modifications and enhancement methods improve mammogram 

classification, providing insights for developing robust deep learning-based diagnostic models. The highest 

performance was achieved using VGG19 with DWT, a learning rate of 0.0001, and 20 epochs, yielding 98.04% 

accuracy, 98.11% precision, 98% recall, and a 97.99% F1-score. Data augmentation did not consistently enhance 

results, particularly in clean datasets. Increasing epochs from 10 to 20 improved accuracy, but performance declined 

at 30 epochs. The confusion matrix showed high accuracy for Benign (100%) and Cancer (99.5%), with more 

misclassifications in the Normal class (94.5%). 
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1. INTRODUCTION 

Cancer is a condition characterized by the abnormal growth of cells in the body, often caused by 

genetic mutations. This condition can arise due to various physical, chemical, or environmental 

factors[1]. One of the most concerning types of cancer is breast cancer, which often begins as either 

benign or malignant tumors. Benign tumors, such as fibroadenomas or cysts, do not spread to 

surrounding tissues and are generally not life-threatening. In contrast, malignant tumors are invasive and 

can spread to nearby tissues, posing a significant threat to life. Key risk factors for breast cancer have 

been identified in a study conducted at Dr. Moewardi Hospital, including age over 40 years, a family 

history of breast cancer, alcohol consumption, obesity, and exposure to cigarette smoke, all of which 

have been associated with an increased risk of developing the disease[2]. A study conducted at RSUD 

Prof. Dr. H. Aloei Saboe, Gorontalo, revealed that genetic factors, menarche before the age of 12, 

prolonged use of hormonal contraceptives, and early menopause are significantly correlated with breast 

cancer, emphasizing the importance of early detection and public education in its prevention[3]. 

Other studies also highlighted the relationship between dietary patterns and breast cancer risk has 

been highlighted in previous studies. It has been suggested that a high-carbohydrate diet combined with 

calorie restriction may be associated with a lower risk of breast cancer. Both genetic predisposition and 
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dietary factors seem to play a role in breast cancer development, and adopting a low-calorie diet with a 

high carbohydrate ratio may help mitigate certain genetic risk factors[4]. According data from the Global 

Burden of Cancer (GLOBOCAN) 2020 indicate that breast cancer was the most frequently diagnosed 

cancer worldwide, with over 2.3 million new cases reported in 2020. This cancer was responsible for 

approximately 16% of all cancer-related deaths among women, with an estimated 685,000 fatalities 

recorded that year[5]. The International Agency for Research on Cancer, a part of the World Health 

Organization (WHO), estimated that in 2020, there were 65,858 new cases of breast cancer among 

women in Indonesia, resulting in 22,430 deaths due to the disease[6]. 

Mammography is a medical procedure that utilizes X-rays to detect abnormalities in breast tissue, 

including breast cancer. This procedure involves compressing the breast to produce clear and detailed 

images, which are then examined by radiologists to identify early signs of cancer, such as lumps or other 

abnormal changes[7]. Breast cancer mortality rates have been significantly reduced through the 

utilization of mammograms[8]. In developed countries, such as the United States, mammography 

screening is widely implemented, particularly among women aged 40 and older[9]. Early diagnosis 

significantly improves survival rates, reinforcing the importance of breast cancer screening programs[8]. 

Despite the effectiveness of mammography in early breast cancer detection, the manual 

interpretation of mammogram images presents several challenges. The complexity of mammographic 

images requires a significant amount of time and a high level of expertise from medical professionals to 

achieve an accurate diagnosis. Breast tumors and cancers are particularly challenging to detect and treat 

due to their variability[10], this has led to the development of artificial intelligence (AI)-based 

technologies to support medical image analysis. The potential of AI in prognosis and therapeutic 

response prediction has been demonstrated through the direct linkage of histological tumor features to 

analysis models[11]. By processing vast amounts of data, patterns and abnormalities that may not be 

detectable to the human eye can be identified by AI algorithms, facilitating earlier cancer detection, 

improved diagnostic accuracy, and the development of personalized treatment plans for patients[12]. 

Convolutional Neural Networks (CNNs) have been extensively utilized for medical image 

classification, including breast cancer detection. However, ongoing debates persist regarding the 

effectiveness of various CNN architectures, emphasizing the necessity of understanding the impact of 

data augmentation techniques on CNN model performance in enhancing classification accuracy. 

Numerous studies have explored the application of AI, particularly deep learning, in automatic 

mammogram classification using CNN architectures, incorporating data augmentation techniques and 

architecture comparisons. For instance, a study by Aditi Kajala, Sandeep Jaiswal, and Rajesh Kumar 

(2023), titled Comparative Analysis of CNN Architectures for Breast Histopathology Image 

Classification, aimed to compare the performance of various CNN architectures in classifying breast 

histopathology images[13]. Similarly, a study by Deshan Fonseka and Christos Chrysoulas (2020), titled 

Data Augmentation for Enhancing CNN Performance in Image Classification, discussed the application 

of CNNs on small datasets, exploring data augmentation, feature extraction, and fine-tuning to improve 

model accuracy[14]. Data augmentation plays a crucial role in improving model generalization and 

performance across different datasets and architectures[15]. 

Previous studies have implemented data augmentation techniques on the Digital Database for 

Screening Mammography (DDSM) dataset and its derivatives, such as Curated Breast Imaging Subset 

of the Digital Database for Screening Mammography (CBIS-DDSM) and Miniature Digital Database 

for Screening Mammography (Mini-DDSM), to enhance accuracy in mammogram classification. 

Youness et al. (2024) applied augmentation techniques such as rotation, flipping, and zooming on the 

CBIS-DDSM dataset, consisting of 10,239 images, achieving 76.71% accuracy with the DenseNet121 

model[16]. Sanassi et al. (2024) augmented the CBIS-DDSM dataset (4,560 images) using rotation at 

various angles and a 3×3 median filter, improving DenseNet121’s accuracy to 94.36%[17]. Meanwhile, 

Subasish et al. (2022) utilized the Mini-DDSM dataset (9,752 images) with rotation, flipping, zooming, 

and a 3×3 median filter, but only achieved 65% accuracy with VGG16[18]. Conversely, Sumyat Thwin 

et al. (2024) employed rotation, flipping, and scaling on the DDSM dataset (55,890 images), successfully 

increasing the accuracy of the ECS-A-Bersih model to 96.50%[19]. However, it has been indicated by 

several studies that data augmentation should be carefully adapted to the specific characteristics of the 

images utilized, as accuracy improvements are not always achieve. While data augmentation can 

enhance average accuracy, its application can reduce accuracy in certain classes by up to 20%, 
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particularly in ambiguous or highly similar classes, exacerbating misclassification errors[20]. Excessive 

augmentation in skin lesion images has been shown to cause models to learn irrelevant features, 

ultimately decreasing classification accuracy, highlighting that improper augmentation can introduce 

noise and artifacts that disrupt model learning[21]. 

Image enhancement techniques also play a critical role in improving breast cancer classification 

accuracy, such as the application of CLAHE to enhance contrast while preserving image details. The 

use of this technique in mammogram preprocessing can significantly improve the performance of CNN-

based CAD systems, making image enhancement methods crucial for achieving more accurate 

detection[22]. Denoising techniques are widely implemented to enhance accuracy, particularly in 

medical image analysis, as research has demonstrated that denoising can clarify important details, 

thereby supporting more precise and reliable diagnoses. For example, Rasheed et al. (2022) employed 

hybrid filtering that combines median filtering and statistical techniques to reduce salt-and-pepper noise, 

improving image quality and PSNR performance[23]. Christudhas & Fathima (2024) developed a 

Modified Min-Max Median (MMM) Filter using a Tritonic Sorter to detect and process noisy pixels, 

minimizing excessive smoothing while preserving important image details[24]. Meanwhile, Qu et al. 

(2024) optimized the Black Widow Optimization (BWOA) algorithm with Tent mapping and a 

combination of median, mean, Gaussian, and bilateral filters, significantly improving medical image 

quality[25]. 

This study investigates the implementation of two Convolutional Neural Network (CNN) 

architectures, VGG19 and DenseNet121, for mammogram classification in breast cancer detection. It 

provides an in-depth analysis of the effects of various data augmentation techniques both individually 

and in combination on the Mini-DDSM dataset, evaluating their impact on CNN model performance. 

Additionally, this study examines the role of image enhancement techniques, such as noise removal, in 

improving classification accuracy. The key contribution of this research lies in optimizing VGG19 and 

DenseNet121 architectures through layer freezing and adding new layers such as Flatten, Dense, and 

Dropout to enhance model generalization. This study also explores the impact of learning rate 

adjustments and increased epoch counts, conducting multiple experiments to identify the optimal 

parameter combinations for improving model performance. 

This approach demonstrates that achieving high accuracy is not solely dependent on data 

augmentation but can also be attained through a combination of model refinement strategies, optimal 

image preprocessing techniques, and well-tuned training parameters. By utilizing the Mini-Digital 

Database for Screening Mammography (DDSM) dataset, this research aims not only to determine the 

best-performing architecture and training configurations but also to provide new insights into the 

application of deep learning in breast cancer classification. 

1. METHOD 

This study evaluates the performance of two Convolutional Neural Network (CNN) architectures, 

VGG19 and DenseNet121, in classifying mammogram images from the Mini-DDSM dataset. The 

model performance is comprehensively assessed using metrics such as accuracy, precision, sensitivity 

(recall), and F1-score to ensure more accurate and efficient classification results. The research workflow 

is illustrated in Figure 1. 

 
Figure 1. Research Methods 

https://jutif.if.unsoed.ac.id/
https://doi.org/10.52436/1.jutif.2025.6.3.4397


Jurnal Teknik Informatika (JUTIF)  Vol. 6, No. 3, Juni 2025, Page. 1131-1146 
P-ISSN: 2723-3863  https://jutif.if.unsoed.ac.id                                       

E-ISSN: 2723-3871  DOI: https://doi.org/10.52436/1.jutif.2025.6.3.4397 

 

 

1134 

The study consists of several key stages for mammogram image classification: data collection, 

preprocessing, data augmentation, modeling, and evaluation, as depicted in Figure 1. 

1.1. Mini DDSM Dataset 

The data used in this study is derived from the Database for Screening Mammography (Mini-

DDSM), a simplified version of the Digital Database for Screening Mammography (DDSM). Mini-

DDSM is widely utilized in research on breast cancer detection and diagnosis using mammography. It 

was developed to improve accessibility and usability by reducing the size of the DDSM dataset without 

compromising data quality[26]. The Mini-DDSM dataset consists of three classes: Normal, Benign, and 

Cancer, as shown in Figure 2.  

 
Figure 2. Mini-DDSM Class Label 

 

This study only utilizes MLO (Medio-Lateral Oblique) images of the left and right breasts, with 

200 images from each class, resulting in a total of 600 images. This approach was taken to reduce the 

dataset size, making it suitable for analyzing the effects of data augmentation. 

1.2. Preprocessing 

Preprocessing data refers to the process of transforming raw data into quality data through steps 

such as normalization, outlier detection, missing data imputation, and dimensionality reduction. This 

process aims to ensure data compatibility as input for AI models and improve the quality of analytical 

outcomes[27].  

1.2.1. Filtering 

Image preprocessing in this study employs Contrast-Limited Adaptive Histogram Equalization 

(CLAHE) to enhance image quality by improving local contrast and highlighting details in areas with 

low contrast. However, its application may also introduce noise[26]. The focus of this preprocessing 

step is on noise removal using Discrete Wavelet Transform (DWT) and a 3x3 Median Filter, which are 

combined with CLAHE and subsequently compared for analysis. This approach leverages CLAHE to 

adaptively enhance contrast, DWT for better noise separation and multi-resolution analysis, and the 

Median Filter to effectively reduce noise without blurring edges. The method provides a balance 

between enhancing image clarity and preserving important details, making it highly effective for 

comparative performance analysis in image enhancement tasks.  

The formula for calculating CLAHE is defined as: 

𝛽 = 𝑝

𝑞
1 + (1 +

𝑎

100
𝑆𝑚𝑎𝑥)   (1) 

Where β is the result of CLAHE, p is the number of pixels in each block, q is the dynamic range of the 

block, 𝑆𝑚𝑎𝑥 is the maximum slope, and α is the clipping factor[28] 

The formula for calculating DWT is defined as: 

𝐷𝑊𝑇(𝑘) =
1

√𝑎0
𝑚 + ∑ 𝑓(𝑘)𝜓𝑘 (

𝑘−𝑛𝑏0𝑎0
𝑚

𝑎0
𝑚 )  (2) 

https://jutif.if.unsoed.ac.id/
https://doi.org/10.52436/1.jutif.2025.6.3.4397


Jurnal Teknik Informatika (JUTIF)  Vol. 6, No. 3, Juni 2025, Page. 1131-1146 
P-ISSN: 2723-3863  https://jutif.if.unsoed.ac.id                                       

E-ISSN: 2723-3871  DOI: https://doi.org/10.52436/1.jutif.2025.6.3.4397 

 

 

1135 

Where 𝑎0 represents the scale parameter, and 𝑏0 represents the translation parameter. Additionally, both 

mm and nn are integers belonging to the set of integers Z. The discrete ECG signal is then represented as 

f(k) [29].  

The 2D median filter is applied on 𝐼2 as: 

𝐼2(𝑖, 𝑗) = 𝑚𝑒𝑑𝑖𝑎𝑛{𝐼2(𝑖, 𝑗)|(𝑖, 𝑗) ∈ 𝑤}  (3) 

where, 𝐼2 is outcome of the median filtering and w is the size of the window. The neighbour’s pattern is 

decided by the size of the window, the window size of a 3 × 3 neighborhood has been used inthis work[30]. 

 Numerous studies have employed DWT and median filters as primary methods for noise removal 

in digital images. The median filter is particularly effective in addressing salt-and-pepper noise, as it 

preserves important details such as edges and corners. On the other hand, DWT allows for the separation 

of frequency components, reducing noise without sacrificing image detail quality[31]. Furthermore, 

CLAHE has been applied in various studies to enhance image quality, especially in medical imaging, by 

improving contrast, making previously difficult-to-see details clearer[32]. Examples of images processed 

with CLAHE, DWT, and the Median Filter are shown in Figure 3. 

 
Figure 3. Daubechies Wavelet Transform Output and Median Filter 3x3 

1.2.2. Resize Image 

In image classification studies using CNN architectures such as VGG19 and DenseNet121, 

resizing images to 224x224 pixels is performed to ensure compatibility with model architectures 

designed to accept inputs of these dimensions. Additionally, this size aligns with the parameters of pre-

trained models on large datasets such as ImageNet, enabling the use of optimal initial weights. This 

resizing process also reduces computational load, particularly for mammogram images, which typically 

have high resolutions, without losing critical information. By standardizing the image size, the model 

can consistently recognize patterns and features across the dataset, thereby improving training efficiency 

and accuracy in detecting breast cancer[33]. This makes resizing a crucial step in preparing data for 

processing by CNNs. This study adopted a data-splitting approach with 80% allocated for training and 

20% for testing. Such a strategy is widely applied by researchers in various studies[34]. One of the main 

advantages of this method is its ability to provide more accurate estimations for the testing data 

compared to using the entire dataset solely for training. Furthermore, the 80%-20% split ratio has been 

demonstrated to yield better performance compared to other partitioning proportions[35].  

1.2.3. Augmentation 

Data augmentation is a technique used to increase the diversity of training data by modifying the 

original data without changing its labels. By employing data augmentation, the model can learn from a 

wider variety of images, thereby improving classification accuracy[18]. Several studies have 

emphasized that data augmentation is crucial in image-based research with small datasets, as it helps 

enhance training data diversity, reduce overfitting, and improve model generalization. Techniques such 

as rotation, flipping, zooming, and adding noise generate new variations[36],[37].  
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Figure 4. Data Augmentation 

 

Figure 4 illustrates the three data augmentation techniques used in this study: flip augmentation, 

where images are flipped horizontally and vertically to provide variations in perspective, allowing the 

model to learn a broader range of patterns; rotation by 15°, which simulates variations in image 

orientation and reflects potential differences in capture angles in real-world scenarios; and translation 

augmentation, which shifts the image to ensure the model can still recognize objects even when their 

relative positions change within the frame. Additionally, a combined augmentation approach 

incorporating all three techniques is used to evaluate whether the combination enhances model 

performance more effectively than applying each technique individually. 

1.2.4. Modification of VGG 19 and DenseNet121 model 

VGG-19 is a neural network architecture in deep learning consisting of 19 layers, including 16 

convolutional layers designed to extract image features such as patterns and textures, and 3 fully 

connected layers for classifying images based on the extracted features. Max-pooling layers are 

employed to reduce data dimensions, improve computational efficiency, and prevent overfitting without 

compromising essential information. This combination of layers enables VGG-19 to analyze and 

classify images with high accuracy, making it widely popular for various image analysis 

applications[38],[39].  In this study, the VGG-19 model was modified by freezing most layers to ensure 

that their parameters remained unchanged during training. Additional layers were also incorporated, to 

further enhance the model's performance. 

In this implementation, only the last six layers are left unfrozen, while the remaining layers are 

frozen. The frozen layers include the first 13 convolutional layers (from five blocks) and all pooling 

layers. In addition to freezing the layers, several new layers were added after the feature extractor part 

of VGG-19, as shown in Figure 5, these additions include: 

1. Flatten layer 

2. Dense layer (512 neurons) 

3. Dropout layer (rate 0.5) 

4. Dense layer (output)  

 
Figure 5. Modified VGG19 Model 
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DenseNet121 is a deep learning neural network architecture consisting of 121 layers, including 

108 convolutional layers that function to extract image features by connecting each layer to all previous 

layers. This connectivity allows for feature reuse and reduces the number of parameters 

required[40],[41]. In this study, DenseNet121 was modified by freezing most of the layers, with only 

the last four layers left unfrozen.  

In addition to freezing the layers, as shown in Figure 6 several new layers were added, including: 

1. Flatten layer 

2. Dense layer (512 neurons) 

3. Dropout layer (rate 0.5) 

4. Dense layer (output) 

 
Figure 6. Modified DenseNet121 Model 

 

At this stage, the model’s performance is evaluated using a confusion matrix. Several parameters 

are employed, including accuracy, recall, precision, and F1 score. This evaluation aims to identify the 

best augmentation techniques, image quality enhancement methods, and architectures for breast cancer 

classification on mammogram images. These evaluation metrics provide diverse approaches to assessing 

the performance of classification models. Accuracy offers an overall measure of the model’s correct 

predictions but is sensitive to class imbalance. Recall assesses the model's ability to capture all instances 

of a specific class, making it crucial for minimizing omission errors. Precision evaluates the accuracy 

of positive predictions, helping to avoid an excessive number of false positives. F1 score, a harmonic 

combination of precision and recall, is ideal for assessing model performance on imbalanced datasets. 

Together, these metrics facilitate a comprehensive analysis of the model’s strengths and weaknesses 

across various application contexts[42].  

2. RESULT 

The testing was conducted progressively based on combinations of models (VGG19 or 

DenseNet121), noise removal methods (DWT or Median Filter), and data augmentation techniques. The 

initial hyperparameter settings included 10 and 20 epochs with a learning rate of 0.0001 for all scenarios, 

including the baseline and all types of augmentation. The best-performing combinations were further 

tested by increasing the number of epochs to 30 and the learning rate to 0.0005 to optimize model 

performance. This approach ensured that every combination of preprocessing, augmentation, and model 

parameters was comprehensively evaluated, providing valuable insights into the contribution of each 

factor to the model's accuracy in breast cancer classification. 

2.1.1. Testing Model 

Testing began with the baseline, which involved no augmentation, to understand the model's basic 

performance with preprocessing methods such as DWT and the 3x3 Median Filter. Subsequently, the 

flip augmentation technique was applied, where the images were flipped horizontally and vertically to 

provide important variations in perspective, allowing the model to learn broader patterns. A 15° rotation 

was performed to simulate variations in image orientation, reflecting potential differences in capture 

angles in real-world scenarios. Finally, translation augmentation was applied to ensure the model could 

still recognize objects, even if their relative position shifted within the frame. 

Table 1 and Table 2, present the results of the model combination testing, which consists of eight 

main scenarios. These model combinations involve two CNN architectures, VGG19 and DenseNet121, 

with two different preprocessing methods: DWT and Median Filter 3x3. Each combination was tested 
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using a learning rate (LR) of 0.0001 and two epoch settings, 10 and 20, resulting in eight primary testing 

configurations: 

1. VGG19 + DWT + LR 0.0001 + Epoch 10 

2. VGG19 + DWT + LR 0.0001 + Epoch 20 

3. VGG19 + Median Filter 3x3 + LR 0.0001 + Epoch 10 

4. VGG19 + Median Filter 3x3 + LR 0.0001 + Epoch 20 

5. DenseNet121 + DWT + LR 0.0001 + Epoch 10 

6. DenseNet121 + DWT + LR 0.0001 + Epoch 20 

7. DenseNet121 + Median Filter 3x3 + LR 0.0001 + Epoch 10 

8. DenseNet121 + Median Filter 3x3 + LR 0.0001 + Epoch 20 

Additionally, these models were tested on data with five different approaches: augmentation 

(Rotation, Flip, and Translation), no augmentation (baseline), and combinations of augmentations. Each 

main scenario was tested with three augmentation approaches, bringing the total number of test scenarios 

to 40. 

Table 1. Test Results of the VGG19 Architecture 

 

 

Table 2. Test Results of the DenseNet121 Architecture 
Architecture Image 

Enhancement 

Augmentation Epoch LR Accuracy precision Recall F1 Score 

Densenet121 DWT  Baseline 10 0.0001 96.41 96.43 96.34 96.34 

Densenet121 DWT Flip  10 0.0001 89.23 89.89 89.1 89.05 

Densenet121 DWT Rotate 15° 10 0.0001 96.08 96.04 93.87 93.87 

Densenet121 DWT Translation 10 0.0001 94.61 95.02 96.00' 96.01 

Densenet121 DWT Combined 10 0.0001 92.16 91.57 91.34 91.31 

Densenet121 DWT Baseline 20 0.0001 96.73 96.71 96.68 96.68 

Densenet121 DWT Flip  20 0.0001 96.41 96.38 96.36 96.35 

Architecture Image 

Enhancement 

Augmentation Epoch LR Accuracy precision Recall F1 

Score 

VGG19 DWT   Baseline 10 0.0001 97.71 97.77 97.67 97.66 

VGG19 DWT Flip  10 0.0001 93.96 93.96 93.90 93.90' 

VGG19 DWT Rotate 15° 10 0.0001 96.08 96.27 96.04 96.02 

VGG19 DWT Translation 10 0.0001 95.92 96.05 95.90 95.89 

VGG19 DWT Combined 10 0.0001 95.92 95.98 95.90 95.89 

VGG19 DWT   Baseline 20 0.0001 98.04 98.11 98.00 97.99 

VGG19 DWT Flip  20 0.0001 97.76 97.76 97.68 97.67 

VGG19 DWT Rotate 15° 20 0.0001 97.59 97.59 97.52 97.51 

VGG19 DWT Translation 20 0.0001 96.85 96.85 96.84 96.84 

VGG19 DWT Combined 20 0.0001 96.26 96.26 96.18 96.20' 

VGG19 Median 3x3   Baseline 10 0.0001 96.57 96.63 96.53 96.54 

VGG19 Median 3x3 Flip  10 0.0001 91.68 91.61 91.63 91.62 

VGG19 Median 3x3 Rotate 15° 10 0.0001 93.80 93.84 93.75 93.77 

VGG19 Median 3x3 Translation 10 0.0001 93.31 93.78 93.19 93.23 

VGG19 Median 3x3 Combined 10 0.0001 78.79 82.53 78.91 78.99 

VGG19 Median 3x3   Baseline 20 0.0001 95.43 95.38 95.38 95.38 

VGG19 Median 3x3 Flip  20 0.0001 92.16 92.23 92.03 91.99 

VGG19 Median 3x3 Rotate 15° 20 0.0001 96.08 96.22 96.03 96.04 

VGG19 Median 3x3 Translation 20 0.0001 95.75 95.87 95.72 95.73 

VGG19 Median 3x3 Combined 20 0.0001 94.45 94.44 94.41 94.4 
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Densenet121 DWT Rotate 15° 20 0.0001 96.24 96.29 96.01 96.01 

Densenet121 DWT Translation 20 0.0001 96.24 96.23 94.52 94.53 

Densenet121 DWT Combined 20 0.0001 94.94 92.14 92.05 92.03 

Densenet121 Median 3x3  Baseline 10 0.0001 96.90 96.91 96.87 96.85 

Densenet121 Median 3x3 Flip  10 0.0001 90.70 90.98 90.70' 90.71 

Densenet121 Median 3x3 Rotate 15° 10 0.0001 94.94 94.98 94.89 94.90' 

Densenet121 Median 3x3 Translation 10 0.0001 94.94 94.97 94.93 94.92 

Densenet121 Median 3x3 Combined 10 0.0001 89.88 90.12 89.82 89.82 

Densenet121 Median 3x3 Baseline 20 0.0001 96.83 96.9 96.83 96.83 

Densenet121 Median 3x3 Flip  20 0.0001 95.16 95.38 95.16 95.18 

Densenet121 Median 3x3 Rotate 15° 20 0.0001 95.99 96.17 96 96.01 

Densenet121 Median 3x3 Translation 20 0.0001 96.66 96.78 96.66 96.66 

Densenet121 Median 3x3 Combined 20 0.0001 95.33 95.37 95.33 95.32 

 

Based on the test results in Table 1 and Table 2, the baseline model (without augmentation) 

consistently showed the best performance compared to models using individual or combined 

augmentation techniques. The model with the configuration VGG19 + DWT + LR 0.0001 at 20 epochs 

achieved the highest accuracy of 98.04%, with supporting metrics of precision 98.11%, recall 98%, and 

F1 score 97.99%. This indicates that data augmentation does not always improve model performance, 

particularly when the dataset is already clean and sufficiently representative. The superior performance 

of the baseline model may be due to the minimal additional interference from augmentation, allowing 

the model to focus on learning the patterns within the original data. The increase in epochs from 10 to 

20 also contributed to the improvement in accuracy. Given the excellent results, the next step in this 

testing will involve increasing the number of epochs and raising the learning rate to 0.0005 to evaluate 

whether these adjustments can further enhance the model's performance without causing overfitting. 

The results of these tests are presented in Table 3. 

 

Table 3. Further Testing for the Best Model 

 

Table 3. shows a decline in model performance after 30 epochs compared to 20 epochs, as 

indicated by the decrease in Accuracy, Precision, Recall, and F1 score. At epoch 20 with a learning rate 

of 0.0001, the model achieved an accuracy of 98.04%. However, when the number of epochs was 

increased to 30, accuracy dropped to 97%, precision decreased from 98.11% to 97.05%, recall declined 

from 98.00% to 97%, and F1 score reduced from 97.99% to 96.99%. The decreases were 1.06% for 

Accuracy, 1.08% for Precision, 1.02% for Recall, and 1.02% for F1 score. In the experiment with a 

learning rate of 0.0005 and 20 epochs, the model achieved an accuracy of 94.99%, precision of 95.00%, 

recall of 95.00%, and F1 score of 94.99%, showing a decline compared to the previous experiment. The 

decrease was 3.05% in Accuracy, 3.11% in Precision, 3.00% in Recall, and 3.00% in F1 score. This 

result suggests that a higher learning rate can accelerate convergence but risks reducing the final model 

performance. 

In the experiment with a learning rate of 0.0005 and 30 epochs, the model achieved an accuracy 

of 96.16%, precision of 96.23%, recall of 96.16%, and F1 score of 96.16%, showing a performance 

decline. The decrease was 0.84% in Accuracy, 0.82% in Precision, 0.84% in Recall, and 0.83% in F1 

score. This indicates that although increasing the number of epochs provides more time for the model 

to learn, a higher learning rate can still hinder overall model performance. The best-performing model 

Architecture Image 

Enhancement 

Augmentation Epoch LR Accuracy precision Recall F1 

Score 

VGG19 DWT Baseline 20 0.0001 98.04 98.11 98.00 97.99 

VGG19 DWT Baseline 30 0.0001 97 97.05 97 96.99 

VGG19 DWT Baseline 20 0.0005 94.99 95 95 94.99 

VGG19 DWT Baseline 30 0.0005 96.16 96.23 96.16 96.16 

https://jutif.if.unsoed.ac.id/
https://doi.org/10.52436/1.jutif.2025.6.3.4397


Jurnal Teknik Informatika (JUTIF)  Vol. 6, No. 3, Juni 2025, Page. 1131-1146 
P-ISSN: 2723-3863  https://jutif.if.unsoed.ac.id                                       

E-ISSN: 2723-3871  DOI: https://doi.org/10.52436/1.jutif.2025.6.3.4397 

 

 

1140 

proposed is the combination of VGG19 + DWT + Learning Rate 0.0001, which achieved the highest 

accuracy of 98.04% at epoch 20. Additionally, the model's performance was supported by other 

evaluation metrics: precision of 98.11%, recall of 98%, and F1 score of 97.99%, demonstrating the 

model's excellent ability to handle the classification task.  

 
Figure 7. Graph of the Best Model 

 

Figure 7 shows the model's performance during the training process based on the Accuracy 

metric. The blue line represents Training Accuracy, indicating how well the model learns patterns from 

the training data. The orange line represents Validation Accuracy, which measures the model's 

performance on validation data to evaluate its generalization ability. Meanwhile, the dashed red line 

represents Testing Accuracy, reflecting the model's performance on unseen test data. 

At baseline, the model demonstrates excellent performance, with Training Accuracy reaching 

99.99%, indicating that the model almost perfectly recognizes patterns in the training data. Validation 

Accuracy reaches 89.16%, suggesting that the model maintains stability without significant signs of 

overfitting. Furthermore, the high Testing Accuracy of 98.04% shows that the model generalizes very 

well to new data, making it reliable for classification tasks. This graph shows a consistent improvement 

in the early stages of training, followed by stability in subsequent epochs, indicating that the model has 

achieved good convergence. Overall, these results reflect a good balance between the model's learning 

from training, validation, and testing data. The observed decline may occur due to several factors, such 

as changes in model parameters or the model's reduced ability to generalize well to more complex data. 

The model may have reached its optimal point in earlier epochs, and further training could result in a 

decrease in performance on validation or test data. 

2.1.2. Accuracy Improved Analysis  

The accuracy comparison in this study focuses on analyzing the performance of the best model, 

which is VGG19 with the application of DWT as a noise removal technique, a learning rate (LR) of 

0.0001, and varying epoch counts. This model serves as a reference to evaluate the impact of factors 

such as the increase in epoch count, the application of median filters, DWT noise reduction, and the 

combination of all three on improving accuracy and other performance metrics, such as precision, recall, 

and F1 score, as seen in Table 4.  

Table 4. Percentage of Accuracy Improvement from Each Factor 

 

Architecture Factor Epoch Accuracy precision Recall F1 

Score 

VGG19 Model Modification 10 95.24 95.6 95.23 95.24 

VGG19 Model Modification + Epoch Improvement 20 95.99 96.1 96 96 

VGG19 Model Modification + Median 3x3 10 96.08 96.24 96.12 96.08 

VGG19 Model Modification + DWT 10 97.83 97.93 97.83 97.83 

VGG19 Model Modification + DWT + Epoch 

Improvement 

20 98.04 98.11 98 97.99 
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Figure 8. Percentage of Accuracy Improvement 

 

Figure 8 illustrates the percentage improvement in the model's accuracy, influenced by several 

factors, including the increase in the number of epochs, the application of the median filter, noise 

reduction using DWT, and the combination of all these factors. The measurements were taken by 

comparing the performance of the initial model (without applying noise removal and increasing the 

number of epochs) with the performance of the model after applying each factor individually as well as 

in combination. The baseline model used the VGG19 architecture with a learning rate of 0.0001 and 10 

epochs. 

1. Increase in Epochs: Contributed between 0.75% and 0.84% to the performance metrics, such as 

accuracy, precision, recall, and F1 score. 

2. Median Filter: Had a more significant impact on precision, with an improvement of 2.93%. 

3. DWT: Showed consistent contributions to performance improvement, with the highest increase 

in recall, at 2.77%. 

4. Combination of All Factors: Delivered the best results, with a 2.80% improvement in accuracy 

and a 2.79% increase in F1 score. 

These results emphasize that the combination of these factors had the most significant impact on 

enhancing model performance compared to the application of individual factors. 

2.1.3. Testing Class 

After obtaining the best model based on overall accuracy during testing, the next step is to use the 

model to analyze accuracy for each class. This process is crucial for understanding how well the model 

performs in classifying each class, particularly in datasets with varying class distributions or levels of 

complexity. The proposed model achieves an overall accuracy of 98.04%, with remarkably high per-

class accuracies: 100% for the Benign class, 99.5% for the Cancer class, and 94% for the Normal class. 

These results indicate that the overall accuracy is closely aligned with the per-class accuracies, 

demonstrating the robustness of the model in classifying each class effectively.  
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Figure 9. Confusion Matrix for Each Class 

 

Figure 9 illustrates the performance of the classification model with three classes: Benign, 

Cancer, and Normal. The model demonstrates excellent performance, with the following results: 

1. For the Benign class, all 200 samples were correctly classified without any errors. 

2. For the Cancer class, 199 samples were correctly classified, but 1 sample was misclassified as 

Normal. 

3. For the Normal class, 189 samples were correctly classified, but 11 were misclassified as 

Benign. 

Overall, the model shows high accuracy, with minimal errors in classifying the Cancer and 

Normal classes, particularly for the Normal class, which has more significant misclassifications 

compared to the other courses. The confusion matrix reveals that the dataset for each class contains an 

equal number of samples, indicating that the dataset is balanced. With a balanced dataset, the model can 

be evaluated fairly without any bias towards a specific class, both for the baseline and for experiments 

with augmentation. 

3. DISCUSSIONS 

Table 5 presents several previous studies that utilized the DDSM dataset and its derivatives, such 

as CBIS-DDSM and Mini-DDSM, as benchmarks for analyzing model accuracy. These studies 

employed various augmentation techniques, including rotation, flipping, zooming, scaling, and filtering, 

to enhance model performance. The models used in these studies include DenseNet121, VGG16, and 

ECS-A-Net, achieving accuracy rates ranging from 65% to 96.50%. In contrast, the proposed model in 

this study utilizes the Mini-DDSM dataset with a significantly smaller number of images (600 samples) 

and does not incorporate additional augmentation techniques. Instead, it leverages image enhancement 

methods such as CLAHE and DWT for data preprocessing. These approaches resulted in a higher 

accuracy of 98.04% using DenseNet121, making it a superior baseline compared to previous studies. 

This research provides valuable insights into the effectiveness of augmentation techniques and image 

enhancement methods for developing detection models based on the DDSM dataset. 

 

Table 5. Previous Research 
Previous Research Dataset Augmentation Image 

enhancement 

Accuracy 

Youness, et al.2024[16] CBIS-DDSM (10.239 

Image) 

Rotation, flipping, 

and zooming. 

  DenseNet121: 

76.71%  

Sannasi, et al. 2024[17] CBIS-DDSM (4.560 

Image) 

Rotation 45°, 90°, 

135°, 180°, 235°, 

270°, and flipping. 

Median Filter 

3x3 

DenseNet121: 

94.36% 

 

 

Subasish, et al. 

2022[18] 

Mini-DDSM (9752 

Image) 

Rotation, flipping, 

and zooming 

Median Filter 

3x3 

VGG16: 65% 
 

 

 

Sumyat Thwin, et al. 

2024[19] 

 

DDSM (55.890 Image) 

 

Rotation, flipping, 

and scaling 

   

ECS-A-Net: 96.50% 

 

 

 

Proposed Model 

 

Mini-DDSM (600 

Image) 

 

Baseline 

 

DWT 

 

VGG19: 98.04% 

 

 

 

The limitations of this study include several aspects. First, the research only compares two 

architectures, DenseNet121 and VGG19, leaving the potential of other, possibly more optimal 

architectures unexplored. Second, the Mini-DDSM dataset used is a simplified version of DDSM, which 

may not fully capture the diversity and complexity of real-world data. Third, the model’s performance 

evaluation is limited to metrics such as Accuracy, Precision, Recall, and F1 Score, without incorporating 

additional metrics like ROC-AUC, which could provide a more comprehensive analysis. Fourth, this 

study focuses solely on developing a model without extending it into a system that can be directly 

implemented, limiting its practical application in clinical settings. Lastly, the preprocessing methods, 
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such as DWT and a 3x3 Median Filter, are relatively basic and may not be sufficient for handling more 

complex noise. 

However, the proposed study demonstrates that model accuracy can still be improved without 

employing data augmentation techniques and by utilizing a smaller dataset. This improvement was 

achieved through model modifications during the training process with several key focuses. One of the 

techniques applied is DWT, which effectively reduces noise in the images, improving the quality of the 

data used without requiring additional augmentation processes. Additionally, this study optimizes 

critical aspects of model training, such as adaptively adjusting the learning rate and determining the 

optimal number of epochs. This approach enables the model to achieve a good balance between accuracy 

and training efficiency, avoiding overfitting and maximizing performance even with a limited amount 

of data. 

This research contributes significantly to the field of computer science, particularly in the domain 

of medical image analysis and deep learning. By demonstrating the effectiveness of  DWT in enhancing 

image quality and optimizing training strategies without relying on extensive data augmentation, this 

study provides valuable insights for developing more efficient deep learning models for medical 

applications. Moreover, the findings emphasize the importance of balancing model complexity and data 

preprocessing techniques to achieve high accuracy with limited data resources. These results can serve 

as a foundation for future research aimed at improving automated breast cancer detection systems, 

potentially advancing clinical decision support tools, and aiding radiologists in early diagnosis. The 

implications of this study extend beyond mammogram classification, offering a framework for applying 

similar optimization strategies to other medical imaging tasks, thus contributing to the broader field of 

artificial intelligence in healthcare. 

4. CONCLUSION 

This study demonstrates that data augmentation does not always enhance the performance of CNN 

models. While augmentation techniques can be beneficial in certain cases to increase the diversity of 

training data, the findings of this study reveal that a non-augmentation approach or improper 

augmentation techniques can lead to lower performance. The results show that the baseline VGG19 

model, with the best configuration (learning rate of 0.0001, 20 epochs, and image quality enhancement 

using DWT), achieved an overall Accuracy of 98.04%, Precision of 98.11%, Recall of 98%, and F1 

Score of 97.99%. This confirms that augmentation is not always necessary when image quality and 

model architecture are already optimized. 

The findings also indicate that DWT combined with CLAHE is more effective than augmentation 

techniques in supporting the performance of CNN models for breast cancer classification. Applying 

DWT to the dataset resulted in high per-class Accuracy: 100% for the Benign class, 99.5% for the 

Cancer class, and 94% for the Normal class. This study suggests that enhancing image quality through 

DWT significantly contributes to the model's ability to recognize complex patterns in medical images, 

surpassing the contributions of data augmentation techniques. 

The comparison between VGG19 and DenseNet121 architectures shows that VGG19 outperforms 

DenseNet121 in breast cancer classification tasks under optimal settings. Through fine-tuning and layer 

modifications, VGG19 achieves higher Accuracy and evaluation metrics compared to DenseNet121. 

Furthermore, the study reveals that excessive epochs and learning rates can lead to decreased model 

performance, highlighting the importance of selecting appropriate hyperparameters to ensure optimal 

performance for both architectures. Overall, this study demonstrates that an approach focusing on higher 

image quality (using CLAHE+DWT), combined with fine-tuning and architectural modifications 

(VGG19), is the most effective strategy for achieving superior performance in breast cancer 

classification tasks. 
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