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Abstract 

Diabetic retinopathy (DR) is a pressing global health issue that affects the retina and is closely linked to diabetes, 

leading to vision impairment and blindness, particularly in adults. With the rising incidence of diabetes, the need for 

efficient and accurate DR screening is critical for early intervention and improved patient outcomes. Automated 

screening solutions can streamline this process, allowing healthcare professionals to focus more on patient care.In 

this study, we harnessed advanced deep learning techniques, specifically 3D convolutional neural networks (3D-

CNNs), to classify DR into binary categories (presence or absence) and five multiclass categories: mild, moderate, 

no DR, proliferative DR, and severe DR. Our goal was to enhance diagnostic Precision in ophthalmology. To 

optimize our models, We embraced two methods transformative data augmentation: random shifting and random 

weak Gaussian blurring, empowering our model to reach new heights,as well as their combination. Our results 

showed that, for binary classification, the combined augmentation achieved significant success, The multiclass model 

was trained without any data augmentation excelled in Precision. These findings highlight the importance of large, 

high-quality research datas in deep learning algorithms. By leveraging advanced methodologies and robust data, we 

can transform diabetic retinopathy screening, promoting earlier detection and better treatment outcomes for those 

affected.  
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1. INTRODUCTION 

The disorder of diabetes affects the internal sugar-regulating mechanism of the body. In 2017, 

over 451 million people suffered from the condition. High blood sugar levels cause serious harm to the 

body's organs and are responsible for severe complications such as heart attacks, blindness, cataracts, 

glaucoma, retinal detachments, and dementia. An increasing number of individuals suffering from any 

irrespective age group of diabetic retinopathy, or DR, are experiencing vision problems [1], [2], [3], [4]. 

While retinal damage does not show up in gross examination, their diagnosis tends to become 

quite obvious through a simple clinical examination. One can say, in a sense, that retinal injuries may 

be classified into four stages: mild, moderate, severe, and proliferative retinopathy. Microaneurysms, 

which are outpouching-like formations, develop in very small retinal veins in early phases, while the 

same vein would be found completely occluded in moderate stage. The most severe one may cause 

retinal detachment [2].  

The literature presents an excellent number of descriptors in the extraction of aspects from DR 

scans [5], [6], [7]. Almost always, these methods are focused on automatic detection of the DR lesions 

[8], [9], [10]. CNNs were also used in this research [11] and they were able to define images of DRs 
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trained in data augmentation/an enhancement technique, achieving Precision of 75% on the validation 

data. Shanthi and Sabeenian [12] used a customized AlexNet architecture to classify ophthalmoscopic 

images from the Messidor research data. 

Khanish et al. in [13] applied knowledge transfer models like the VGGNet, AlexNet, ResNet and 

GoogleNet and achieved a recognition rate of 95.68% vis-a-vis the publicly accessible Kaggle hub. In 

[14], A complete patch-based convolutional neural network (CNN) framework is developed utilizing a 

mere 28 ophthalmoscopic images and reaches An Precision rate of 94.0%. In [2], an attempt was made 

by the authors to developed a 3D capsule network and confirmed its effectiveness using the Messidor 

research data. Their model achieved an impressive Precision of 98.64% when tested At stage-3 in 

ophthalmoscopic images. In [4], the authors developed a very deeply unified network to classify 

EyePACS and Messidor-2 research datas achieving an Precision rate of 88% for EyePACS  and 95% 

for Messidor-2. In [15], some researchers used CNNs that 87% on the Messidor-2 research data and 

achieved 90% true positive rate on the EyePACS research data. Sayres et al.  showed utilization of DL 

models which achieved a True positive rate of 91% on the Messidor-2 research data and a true positive 

rate of 94.5% on the EyePACS Research data. In [16], the authors applied the VGG-19 architecture in 

knowledge transfer techniques on 9 retinal pathologies and a single normal retina class, achieving a total 

Precision of 30.5% on confounding factors such as Transformation, orientation, and luminance 

adjustment alteration notwithstanding a limited sample size. The investigator applied A deep neural 

network (DNN) with convolutional layers model in 23 to the EyePACS research data and achieved a 

whopping A detection rate of 98% by using several augmentation techniques like shearing, flipping, 

rotation, cropping, zooming, translation and Krizhevsky augmentation. Shankar et al. had developed the 

deep learning model using a collaborative network and histogram analysis-based segmentation that 

achieved an Precision of 99.28% for the grouping activity against the Messidor research data.  Beede et 

al. examined the clinical characterization surrounding distributed eye screening processes. Multiple 

algorithms have been suggested to explain scan reports [5], [6], [7] to diagnose diabetic retinopathy. 

Typically investigators have focused predominantly on the automated detection of lesions relating to 

diabetic retinopathy. 

Knowledge transfer models were used by the authors in [13]: VGGNet, AlexNet, ResNet and 

GoogleNet-to achieve a recognition Precision of 95.68% with the publicly available research data 

repository on Kaggle. A whole patch-oriented CNN network is created In [14], with the use of only 28 

ophthalmoscopic images to achieve a true positive rate value of 0.940. The authors developed A 3D 

capsule architecture in [2] and tested it using the Messidor research data, obtaining Precision of up to 

98.64% from ophthalmoscopic images from stage 3. In [4], an extensively connected and deep network 

was built for the grouping of EyePACS and Messidor-2 research datas, achieving a accuracy of 88% for 

EyePACS and 95% for Messidor-2. In [15], investigators employed CNNs and noted a true positive rate 

of 87% on the Messidor-2 research data, and of 90% on the EyePACS research data. Sayres et al [17] 

exploited Deep Learning models that attained a true positive rate of 94.5% on the EyePACS research 

data and a true positive rate of 91% on the Messidor-2 research data. The research highlighted in [16] 

used a knowledge transfer method with the VGG-19 framework to detect 9 retinal conditions along with 

One class of normal retina an Precision of 30.5% over all ten classes while performing brightness 

modification augmentation, rotation, and translation methods, despite a low sample size. The researcher 

utilized a deep neural network with convolutional layers framework [18] on the EyePACS research data 

and achieved a true positive rate of 98% while applying methods such as shearing, rotation, zooming, 

flipping, cropping, translation to enhance the data, and Krizhevsky augmentation. Shankarel al. [19] 

presented a deep learning model utilizing Histogram analysis-based segmentation alongside a 

collaborative network to classify the Messidor research data with 99.28% precision.. Beede et al. [20] 

investigated the clinical details of eye screening methods. A variety of techniques have been devised for 
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examining Analyze reports for identify DR [5], [6], [7]. In general, the focus of researchers has been 

automatic lesion detection related with DR [8], [9], [10]. In [11], a CNN has been used to classify 

diabetic retinopathy images, obtaining 75% Precision on the validation database using computational 

data data enhancement techniques. Sabeenian and Shanthi in [12] categorized ophthalmoscopic images 

using a customized AlexNet architecture framework tested with the Messidor database. The researchers 

in [13] achieved a recognition rate of 95.68% by employing knowledge transfer paradigms such as 

VGGNet, GoogleNet, ResNet and AlexNet on the public Kaggle hub. A comprehensive patch-oriented 

CNN frameworkcreated in [14] working with just those 28 ophthalmoscopic images, achieving a true 

positive rate of 0.940. Referring to [2], the authors created 3D capsules and showed the Messidor-based 

model research data, attaining 98.64% Precision for phase 3 ophthalmoscopic photographs. In [4], a 

comprehensive and intricately tied the architecture was established To assign between the Messidor-2 

and EyePACS research datas, achieving a precision of 88% for EyePACS and 95% for Messidor-2. In 

[15], CNNs were employed to yield a true positive rate of 87% on the Messidor-2 research datas and 

90% on the EyePACS research datas. Sayres et al. [17] implemented DL models that yielded a high true 

positive rate of 94.5% on the EyePACS, and a higher true positive rate of 91% on Messidor-2 research 

datas. The research in [16] applied a knowledge transfer-based VGG-19 architecture method for The 

grouping of 9 retinal pathologies and a single healthy retina class by using a limited sample size, and 

reported an Precision of 30.5% across all ten categories by using brightness alteration,  translation, and 

rotation as data enhancement techniques. The researcher implemented An advanced CNN framework 

[18] on the EyePACS research datas, attaining true positive rate of 98% utilizing shearing, rotation, 

zooming, flipping, cropping, translation as augmentation, and Krizhevsky data enhancement techniques.  

Shankar et al. [19] used ntensity-based segmentation with a Collaborative network attaining 

99.28% precision in classifying the Messidor research data. Beede et al. [20] carried out research 

characterizing workflows for ophthalmic screening. Minimal example learning has become the subject 

Of great significance because it concerns classifying categories with very few examples, notably 

categories that do not appear Throughout the training process [21], [22], [23]. Optimization forms the 

basis of few-shot learning approaches. Such systems rely on gifted inductive bias and need intricate 

inference techniques. Typical methods for this form of learning include meta-learning, 

augmentation/generative techniques, knowledge transfer, and semi-supervised approaches. In addition 

to health-related opportunities, the academic researchers and industrial scholars have explored other 

scientific, technological, and engineering subjects through Deep learning-based approaches [24], [25], 

[26], [27], [28], [29], [30], [31], [32], [33], [34], [35], [36], [37], [38]. Though the analyses presented 

provide all workable means for 2-class and Multiple-class classification of DR, the bulk of them have 

leveraged data in the humble 2D realm. Higher dimensions, on the other hand, 3D come along with 

copious scale and geometric information, posing some challenging opportunities for image recognition 

algorithms [39], [40], [41]. Research, therefore, must bear in mind to exploit higher-dimensional data in 

the aforementioned tasks.  

To implement representation learning techniques with a low sample size [42] with data expansion, 

we employed a 3D-convolutional neural network design [43] In the spatial realm for both multi-category 

classification tasks using the DR research datas. Different data augmentation techniques, weak random 

Gaussian blurring, and random shifting were used in different combinations in order to analyze the 

various effects these kind of augmentation techniques would pose on a classification activity. This 

research plays a useful part in contributing to the current literature on DR classification. As far as the 

authors are aware, very few works available in academic literature have attempted to resolve this 

problem in three-dimensional space. This research mainly performs what performs and benefits itself 

from two different aspects of discussions taken simultaneously regarding spatial and temporal. Finally, 

it is worth elaborating to find out what impact different data data enhancement techniques have more 

https://jutif.if.unsoed.ac.id/
https://doi.org/10.52436/1.jutif.2025.6.3.4387


Jurnal Teknik Informatika (JUTIF)  Vol. 6, No. 3, Juni 2025, Page. 1517-1538 
P-ISSN: 2723-3863  https://jutif.if.unsoed.ac.id                                       

E-ISSN: 2723-3871  DOI: https://doi.org/10.52436/1.jutif.2025.6.3.4387 

 

 

1520 

significantly on 3D classification performance. Another promising area for research is few-shot 

learning, where only a limited number of images may be available for working with in performing any 

DL technique. The remaining paper is properly structured as follows: Section 2 has a short description 

on the research datas, Section 3 is a discussion on the methods applied in the research, Section 4 gives 

the detailed descriptions with respect to all experiments being conducted, Section 5 includes findings 

with discussion, and Section 6 proposes conclusions from the work discussed. 

1.1. Research data Description 

For experimentation and evaluation of retinal image analysis and diabetic retinopathy 

identification, we used two independent research datas in our study. The first research data, known as 

TeleOphta, contains an array of ophthalmoscopic images that showcase specific pathological features, 

namely microaneurysm lesions and exudates. From this rich collection, we meticulously constructed an 

additional 83 3D volumes representing subjects  and  99 3D volumes representing healthy subjects with 

visible signs of disease, such as exudates and microaneurysms. Most importantly, each of these volumes 

was organized at the subject level, ensuring that the data reflected each patient conditionally without 

overlap. In order to have a more robust data-set and improve our results, we used augmentation 

techniques, namely random shifting and weak Gaussian blurring. These approaches allowed for 

increased variety and volume of data to analyze. Sample images from the TeleOphta research data can 

be seen in Figure 1. To explore the retinal structures in a neighbour hood around the measurement area, 

each volume in this research data is acquired over 210 × 210 × 12 voxels. 

 

   
(a) Sick category (b) Sick category with arbitrary 

weak Gaussian blurring 

enhancement 

(c) Sick category featuring ransom-

adjusted enhancement 

   
(d) Fit category (e) Fit category with randomly 

applied probabilistic translation 

augmentation 

(f) Fit Category with table  and 

Class with probabilistic translation 

augmentation. 

 

Figure 1. Discover a collection of sample images from the TeleOphta database that showcase 

innovative augmentation techniques. 

 

https://jutif.if.unsoed.ac.id/
https://doi.org/10.52436/1.jutif.2025.6.3.4387


Jurnal Teknik Informatika (JUTIF)  Vol. 6, No. 3, Juni 2025, Page. 1517-1538 
P-ISSN: 2723-3863  https://jutif.if.unsoed.ac.id                                       

E-ISSN: 2723-3871  DOI: https://doi.org/10.52436/1.jutif.2025.6.3.4387 

 

 

1521 

The second research data includes images from retina scans filtered with a Gaussian process to 

assist different computer vision tasks; these images are pivotal in the diagnosis of diabetic retinopathy. 

This research data has five label levels: (no retinopathy, Minor, Intermediate, Critical and Complicated 

proliferative retinopathy. In short, we managed to construct 262 3D volumes per category, and to 

achieve more clarity and avoid subject duplicity, we also split the samples at the subject level. Figures 

2–4 show sample images that highlight these varying degrees of diabetic retinopathy. Similarly to the 

TeleOphta research data, we performed random shifting and weak Gaussian blurring augmentations to 

this research data, so that the research data variability and capability of training would increase. The 

research data was obtained from Kaggle, a popular website with many research datas for different 

machine learning tasks. 

 

   
(a) Minor DR (b) Minor DR with sporadic 

subtle Gaussian improvement 

(c) Minor DR with sporadic 

shifted improvement 

   

d) Intermediate DR (e) Intermediate DR using 

random low Gaussian blurred 

enhancement 

(f) Intermediate DR with 

randomly altered enhancement 

Figure 2. Illustrative examples of Minor and Intermediate classes from the Kaggle DR database, 

showcasing the effectiveness of randomly altered and lightweight Gaussian blurred enhancement. 

 

3D volumes to values in the common range of 0 to 255 intensity values. This process was integral 

for structuring the data in a format conducive for the next steps of analysis and data processing, leading 

to better model training and evaluation 

2. METHOD 

In this study we utilized a variety of 3D-CNN models to deep dive into 2-class and Multiple-

classclassification tasks, with a focus on the complex structures of these models. The application of 3D-
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CNN architectures and their configurations is best exhibited through figures 5 and 6, alongside various 

other experiments, this is the reason why these figures hold critical importance in this research.  

Figure 5 displays a brief yet concise analysis of the attributes of the models under consideration 

– data augmentation, a combination of multiple techniques, as well as shifted weak Gaussian blurring. 

The number of convolutional layers in feature map is adjusted by these models, all while utilizing a 

combine augmentation scheme that incorporates 10 convolutional feature maps, which is then enhanced 

with 8 and 9 feature maps through weakening and shifting algorithms respectively. The difference in 

feature maps account for the slight differences in architectural layout. 

The input cubic data of the volumetric data that is provided to the model has a prime size of 210 

x 210 x 12. This data is first subjected to a combination of rescale and zero one normalization which 

takes all the input values between 0 and 1.A normalization process is done based on the specific 

minimum and maximum values for each specific channel and ensures that the data is clean enough to 

be processed and analyzed. We employ the recurrent structural unit, block-A, after the said 

normalization process has been applied. Such blocks incorporate vital parts appended several times 

which in case of block-A is five. Block-A has a 3D convolution layer which helps build meaningful and 

spatial features from the data provided as an input. Also noticeable is the batch normalization layer 

which normalizes the output of multiple previous layers to complete the process with the aim to stabilize 

and speed up the entire training time. After that, there is a rectified linear unit layer which brings an 

appealing feature that enables the network to learn complicated data patterns, that feature chance-level 

element as non-linearity will be incorporated. Finally, a downsizing 3D max pooling layer is introduced 

and added which aids in retaining the relevant features and reducing the dimensionality mods even 

further. 

Upon completing Block A, we bring forward block B which we only do once. This block has 

three fully connected FC layers having neuron counts of 300, 150 and 2. These layers are integrated into 

the model as well, since they aid in the grouping decision making. To reduce the risk of overfitting, we 

apply a dropout layer with a 0.1 rate. This layer changes the state of some training units which helps to 

train a more generalized model. The architecture ends with the a classification layer and softmax 

function that accomplishes the last stage of the binary classification task. The model defined as the 

ReLU activation function mathematically as max(x, 0) enables the model to hardly learn with negative 

values as in this only positive activations are brought to use. 

To boost the effectiveness of the learning procedure even more, we apply batch normalization 

which minimizes the variation among the fundus volumes. This method improves the rate of training by 

making the learning environment more uniform thereby enabling a very fast convergence with less 

dependence on the starting conditions. In addition, the dropout policy is a particular regularization 

strategy that is useful to address the problem of overfitting to the training research data and consequently 

helps the model get adapted to new data that has never been seen before. Moreover, L2 regularization 

is also introduced to the weight and bias values to yield smaller values by penalizing large sizes of 

weights and biases. The output post-processing with the softmax is performed such that the output values 

are considered as probabilities making it simple to understand what the outputs of the particular 

classification are. Discover the crucial hyperparameters of our architecture of the novel 3D-CNN model 

intended for the outstanding results during a binary classification by the aid of the eight characteristic 

maps in the convolutional layers which are highlighted in Table 1. 

The Architectural Differences Between Models Using Different Data Augmentation Techniques 

is Further Expounded in Figure 6, Providing Key Insights into Our Approaches. These convolutional 

layers have different input feature map sizes based on the augmentations that are being used in each of 

the respective architectures: 12 feature maps through each of the architectures that employed combined 

augmentations, 10 feature maps for the architectures that were augmented with no augmentations at all, 
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and 11 appear through classifications With probabilistic translation augmentations and random weak 

Gaussian blurring. Other than these couple of variants, the core components of the architectures remain 

the same, providing confidence in the robustness of our design paradigm. 

 

   
(a) Complicated proliferative 

retinopathy 

(b) Complicated proliferative 

retinopathy featuring arbitrary 

weak Gaussian blur 

enhancement 

(c) Complicated advanced 

retinopathy using randomly 

adjusted augmentation 

   

(d) Critical DR (e) Critical DR With Weak 

randomized Gaussian 

augmentation 

(f) Critical DR with 

probabilistic displacement 

augmentation 

Figure 3. Definitive samples of critical and Complicated advanced retinopathy from the Kaggle DR 

database, utilizing randomized shifted and incidental mild Gaussian blur augmentations. 

 

   

(a) Fit Category (b) Fit Category with incidental 

mild Gaussian blurred 

enhancement 

(c) Fit Category randomized 

shifted enhancement 
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Figure 4. Sample images from the "Fit Category" class in the Kaggle Diabetic Retinopathy database. 

These images have been altered using with incidental mild and randomized shifted enhancement to 

enhance the research data and improve model robustness. 

 

Being built around this architecture, an input layer of the network is capable of accepting 

volumetric data of dimensions 512 × 512 × 2, operating with a zero center normalization onto the 3D 

input. In this architecture, block-A is yet again repeated six times, same as in the previous model, where 

this A convolutional layer within the block performs feature extraction, followed by an exponential 

linear unit (ELU) activation layer and batch normalization layer. This avoids the vanishing gradient 

problem. Just like before, a max-pooling layer is used to condense and refine the extracted features for 

further processing. 

 

 
Figure 5. Binary classification (sick/healthy) set-ups with random Gaussian blurred augmentations and 

random shift applied without any augmentation, along with combined augmentations. Augmenting 

features will be selected utilizing a tenfold cross-validation method for examining hyperparameter 

configurations. 

 

After our familiar block-A, we can see that there is another block, let's call it block B, which 

contains three fully connected layers with number of neurons 500, 300, 5. There is a dropout layer in 

the same block with a probability of 0.1 that was also implemented to prevent overfitting. The 

architecture ends with a classification layer and a softmax function designed for the multi-class 

classification problem of which there are five classes. Using ELUs is especially beneficial, as it enables 

the model to deal with negative values, thus tackling the issues related to the vanishing gradient problem 

while simultaneously ensuring a reduction in computational complexity. 

ELU(0 < ∝): {
∝ (ex − 1), x < 0,

x, x ≥ 0.
 (1) 

The detailed specification of the hyperparameters to ascertain the architecture used is given in 

Table 2 concerning the 3D-CNN architecture applied in the multiclass classification problem. Therefore, 
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this architecture contains 10 feature maps in the 3D convolutional layer, where these maps capture 

different features from the input data to produce better classification performance. 

2.1. Experiments 

In a spatial domain study, we conducted experiments on 2-class and Multiple-classclassifications 

for effective discrimination among various classes of Diabetic Retinopathy (DR). We transformed the 

original research data in terms of quantity using random shifting and random mild Gaussian blurring as 

our techniques for data enhancement. The applied amount of random weak Gaussian blurring was set at 

a value of σ = 1.5, and a random shifting of either 1 or 2 pixels was applied. We then combined training 

samples produced by both data enhancement techniques. 

The experiments were carried out with the following key tasks: 1) Binary classification without 

augmentation for accurate distinction between healthy and diseased categories; 2) Auxiliary experiments 

performing random weak Gaussian blurring on the healthy and diseased categories; 3) Binary 

classification using random shifting for healthy and diseased samples; 4) Normal binary classification 

testing healthy and diseased categories using both random blurring and shifting augmentations; 5) 

Simple classification of multiple classes without augmentation; 6) Basic classification of different 

classes using applied random weak Gaussian blurring; 7) Classification with multiple classes using 

various translations 8) Finally, simple multiclass classification that includes both random translations 

and random weak Gaussian blurring augmentations. 

The research data For the activity of binary classification thus consisted of 72 samples for each 

respective class; 8 samples worked as a validation set. Therefore, we kept in the test split 19 healthy and 

3 diseased among a total of 140 samples available. During testing experiments carried on this subset, 

we trained using the whole research data made of a total of 80 samples per class; the validation was 

made on previously unseen instances of the test partition. Such a meticulous approach allowed to test 

the efficiency of our methods with highest scrutiny. 

 

 
Figure 6. Innovative constructs for multi-class classification tasks capitalize on random shifts and the 

scarcely discernible, yet highly artistic, random weak Gaussian blur with some dynamic combined 

augmentation strategy. Cross-validation enabled meticulous consideration of hyperparameters using a 

ten-times repeated methodology 
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Table 1. Summary of the hyperparameters for the 3D-CNN model, which is aimed at binary 

classification and includes 8 maps from the convolutional layers. 

Layer Name Type 
Kerne

l Size 

Numb

er of 

Kerne

ls 

Ste

p 

Siz

e 

Padd

ing 

Rate 

of 

dropo

ut 

Input 

Dimensions 

Output 

Dimension

s 

Conv1+BN+R

eLU 

Convoluti

on + BN 

3 × 3 

× 3 

8 1 Same N/A 210 × 210 × 

12 

210 × 210 

× 8 

MaxPool1 Max 

Pooling 

2 × 2 N/A 2 N/A N/A 210 × 210 × 

8 

105 × 105 

× 8 

Conv2+BN+R

eLU 

Convoluti

on + BN 

3 × 3 

× 3 

8 1 Same N/A 105 × 105 × 

8 

105 × 105 

× 8 

MaxPool2 Max 

Pooling 

2 × 2 N/A 2 N/A N/A 105 × 105 × 

8 

53 × 53 × 8 

Conv3+BN+R

eLU 

Convoluti

on + BN 

3 × 3 

× 3 

8 1 Same N/A 53 × 53 × 8 53 × 53 × 8 

MaxPool3 Max 

Pooling 

2 × 2 N/A 2 N/A N/A 53 × 53 × 8 27 × 27 × 8 

Conv4+BN+R

eLU 

Convoluti

on + BN 

3 × 3 

× 3 

8 1 Same N/A 27 × 27 × 8 27 × 27 × 8 

MaxPool4 Max 

Pooling 

2 × 2 N/A 2 N/A N/A 27 × 27 × 8 14 × 14 × 8 

Conv5+BN+R

eLU 

Convoluti

on + BN 

3 × 3 

× 3 

8 1 Same N/A 14 × 14 × 8 14 × 14 × 8 

MaxPool5 Max 

Pooling 

2 × 2 N/A 2 N/A N/A 14 × 14 × 8 7 × 7 × 8 

FC 1 Fully 

Connecte

d 

N/A 300 N/

A 

N/A N/A 7 × 7 × 8 300 

FC 2 Fully 

Connecte

d 

N/A 150 N/

A 

N/A N/A 300 150 

FC 3 Fully 

Connecte

d 

N/A 2 N/

A 

N/A 0.1 150 2 

Dropout Regulariz

ation 

N/A N/A N/

A 

N/A 0.1 N/A N/A 

Softmax Activatio

n 

Function 

N/A N/A N/

A 

N/A N/A 2 2 

 

FC (Fully Connected): Involves the connections of every neuron to all others in the next layer. 

MaxPool: Reduces the size by taking the maximum value from certain areas of an image. BN: Batch 

Normalization; sets the input values to improve the speed and stability in the training process. ReLU 

(Rectified Linear Unit): This is an activation function that outputs the same value for positive input or 

0 if not. Conv: A convolution operates with a filter applied to detect patterns in the data. 
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Table 2. Hyperparameters for multi-class classifications in the proposed 3D-CNN model with ten 

layers of convolution feature maps were established. 

Layer Name Type 
Kerne

l Size 

Numb

er of 

Kernel

s 

Step 

Size 

Rate of 

dropou

t 

Input 

Dimensions 

Output 

Dimensions 

ELU+ BN 

+Conv1 

Convolution 

+ BN 

3 × 3 × 

3 

10 1 N/A 512 × 512 × 

2 

512 × 512 × 

10 

MaxPool1 Max Pooling 2 × 2 N/A 2 N/A 512 × 512 × 

10 

256 × 256 × 

10 

MaxPool2 Max Pooling 2 × 2 N/A 2 N/A 256 × 256 × 

10 

128 × 128 × 

10 

Conv2+BN+E

LU 

Convolution 

+ BN 

3 × 3 × 

3 

10 1 N/A 256 × 256 × 

10 

256 × 256 × 

10 

Conv3+BN+E

LU 

Convolution 

+ BN 

3 × 3 × 

3 

10 1 N/A 128 × 128 × 

10 

128 × 128 × 

10 

MaxPool3 Max Pooling 2 × 2 N/A 2 N/A 128 × 128 × 

10 

64 × 64 × 10 

Conv4+BN+E

LU 

Convolution 

+ BN 

3 × 3 × 

3 

10 1 N/A 64 × 64 × 10 64 × 64 × 10 

MaxPool4 Max Pooling 2 × 2 N/A 2 N/A 64 × 64 × 10 32 × 32 × 10 

Conv5+BN+E

LU 

Convolution 

+ BN 

3 × 3 × 

3 

10 1 N/A 32 × 32 × 10 32 × 32 × 10 

MaxPool5 Max Pooling 2 × 2 N/A 2 N/A 32 × 32 × 10 16 × 16 × 10 

Conv6+BN+E

LU 

Convolution 

+ BN 

3 × 3 × 

3 

10 1 N/A 16 × 16 × 10 16 × 16 × 10 

MaxPool6 Max Pooling 2 × 2 N/A 2 N/A 16 × 16 × 10 8 × 8 × 10 

FC 1 Fully 

Coupled 

N/A 500 N/A N/A 8 × 8 × 10 500 

FC 2 Fully 

Coupled 

N/A 300 N/A N/A 500 300 

FC 3 Fully 

Coupled 

N/A 5 N/A N/A 300 5 

Dropout Regularizatio

n 

N/A N/A N/A 0.1 N/A 5 

Softmax Activation 

Function 

N/A N/A N/A N/A 5 5 

 

BN indicates batch normalization; Conv represents convolutional layers; FC stands for fully 

connected layers; ELU refers to exponential linear unit; and MaxPool is shorthand for maximum 

pooling. 

For the multi-category classification problem, the research datas were divided into training, 

validation, and test sets for convenience in modeling. The training partition consisted of 225 samples 

for each category, which is a reasonable number to furnish the model with considerable attributes for 

learning emanating from several instances. The model was validated using 25 samples per category. 

This enables the assessment of model performance on unseen data during training. A test split was also 
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developed that included 12 samples for each class, which would be employed to estimate the final 

performance of our model once it underwent training and validation. 

In attempts to boost performance in binary classification activity, several parameters were 

adjusted. The minibatch size was set at 2, allowing model parameters to be updated frequently, and 

perhaps motivate the process of training. The starting value of the learning rate was again selected to be 

0.001 in order to balance speed of learning versus stability. We determined a total of epochs to be fixed 

at 50, which would provide enough time for the model to converge to learn features of training data 

properly. In the training, we employed a piecewise learning rate schedule with the Adam optimizer, 

widely employed for its adaptive learning characteristics. Cross-entropy was used as the loss function, 

suitable to classification problems. Conducting 41 experiments, the entire process took a little less than 

642 min (or 10.7 h), further manifesting the hard work and dedication we expended through the 

refinement and thorough assessment of the performance of our model. 

For multi-class classification tasks, we created a similar setting to retain consistency and utilize 

our previous insights. The configuration involved a minibatch size of 2 and an initial learning rate of 

0.001, effective according to our previous attempts. We reduced the total number of epochs to 30 to 

reduce time consumption while still obtaining satisfactory performance. A piecewise learning rate 

schedule was applied using the same reliable Adam optimization method, still with categorical cross-

entropy for the use of our loss function since it handles the multi-class nature of our activity very 

appropriately. In total, there were 41 experiments run for this setting, requiring approximately 8448 

minutes, or approximately 140 hours. This is a very great deal of time to spend on a task and shines a 

light on our commitment to persevering and doing all we can for the best possible results in our 

classification tasks. 

3. RESULT 

The findings that pertain to our research on dichotomizing states of health into healthy and sick 

categories are summarized in Tables 3 and 4, with the visual representation of the findings being covered 

by Figures 7 and 8. 

 

 
Figure 7. A Compelling Overview Of Metrics Used To Evaluate The Performance Of Binary 

Classification Models. 
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Figure 8. A Comprehensive Ranking Of Binary Classification Methods, Based On The Performance 

Metrics Outlined 

 

We performed various experiments with different architectures of 3D-CNN trained from scratch 

and evaluated them from the perspective of performance characteristics, including such measures as 

Precision, F1-score, (MCC) Matthews correlation coefficient, True positive rate, precision and 

specificity. 

This evaluation can be defined mathematically by: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁′ (2) 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =
2𝑇𝑃

2𝑇𝑃+𝐹𝑃+𝐹𝑁′  (3) 

𝑀𝐶𝐶 =
𝑇𝑃 ×𝑇𝑁−𝐹𝑃×𝐹𝑁

√(𝑇𝑃+𝐹𝑃)(𝑇𝑃+𝐹𝑁)(𝑇𝑁+𝐹𝑃)(𝑇𝑁+𝐹𝑁)
′ (4) 

𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑟𝑎𝑡𝑒 =
𝑇𝑃

𝑇𝑃+𝐹𝑁′
 (5) 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁+𝐹𝑃′
 (6) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃′
 (7) 

Substituting TN for true negative, TP for true positive, FN for false negative samples, and, FP for 

false positive the ranking of methods for binary classification in relation to metrics is shown in Table 4. 

We applied the various augmentation techniques in the training of the validation split, as shown in 

Tables 3 and 4. Now, with regards to the effects, today there are winning combination techniques which 

outperformed all the others like one for weak Gaussian noise and Shift-based image augmentation. A 

Random weak Gaussian noise model for augmentation is presented first, followed by the Random 

Shifted augmentation model. The model with no augmentation was least effective. Hence, all 

performance measures, with the exception of specificity, gave similar rankings, hence demonstrating a 

pretty strong correlation among the performance measures. 

 

Table 3. Showcases Quality measures for binary image analysis, comparing results from weak 

Gaussian blur, no augmentation, random shift, and their combination. 
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Task MCC Precision F₁-score Specificity 

True 

positive 

rate 

Precision 

With Weak randomized 

Gaussian augmentation 

0.1876 59.38% 60.12% 57.5% 61.25% 59.04% 

Without augmentation 0.1126 55.63% 56.44% 53.75% 57.5% 55.42% 

With blended augmentation 

operations (plus test split) 

0.1908 59.89% 63.32% 55.42% 63.64% 63% 

With probabilistic translation 

augmentation 

0.1502 57.5% 58.54% 55% 60% 57.14% 

 

Table 4. Ranks the different methods applied to the Binary image analysis tasks, highlighting their 

performance based on the same augmentation strategies: no augmentation weak randomized Gaussian 

blur, random probabilistic translation, and blended augmentation operations. 

Performance 

Metric 
Rank 1 Rank 2 Rank 3 Rank 4 

Precision With blended 

augmentation 

operations(59.89%) 

With Weak 

randomized Gaussian 

augmentation(59.38%) 

With probabilistic 

translation 

augmentation(57.5%) 

Without 

augmentation 

(55.63%) 

F₁-score With blended 

augmentation 

operations(63.32%) 

With Weak 

randomized Gaussian 

augmentation(60.12%) 

With probabilistic 

translation 

augmentation(58.54%) 

Without 

augmentation 

(56.44%) 

MCC With blended 

augmentation 

operations(0.1908) 

With Weak 

randomized Gaussian 

augmentation(0.1876) 

With probabilistic 

translation 

augmentation(0.1502) 

Without 

augmentation 

(0.1126) 

True positive 

rate 

With blended 

augmentation 

operations(63.64%) 

With Weak 

randomized Gaussian 

augmentation(61.25%) 

With probabilistic 

translation 

augmentation(60%) 

Without 

augmentation 

(57.5%) 

Specificity With Weak 

randomized Gaussian 

augmentation(57.5%) 

With blended 

augmentation 

operations(55.42%) 

With probabilistic 

translation 

augmentation(55%) 

Without 

augmentation 

(53.75%) 

Precision With blended 

augmentation 

operations(63%) 

With Weak 

randomized Gaussian 

augmentation(59.04%) 

With probabilistic 

translation 

augmentation(57.14%) 

Without 

augmentation 

(55.42%) 

Overall 

Effectiveness 

Using integrated 

enhancements 

Applying a slight 

Gaussian blur 

augmentation 

randomly 

By using random shift Without 

augmentation 

 

For multiclass classification, we mainly look at overall Precision, MCC, RCI, index of balanced 

Precision (IBA), index of balanced Precision (IBA), confusion entropy (CEN) and GM. Overall 

Precision is the ratio of correctly predicted values to the total values. In Tables 5 to 8, one finds the 

details of the various statistics that were tabulated for multiclass classification. Additional details include 

class-wise  for IBA, CEN, MCC, RCI and GM as well as values of overall Precision across there are 

four situations: no enhancement, randomly shifted enhancement, randomly weak Gaussian blurred 

enhancement, and merged enhancement methods. Merged augmentation is defined as an inclusion of 
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both weak Gaussian noise and Shift-based image augmentation at the same time. We include test subset 

statistics from a model trained without augmentation. 

 

Table 5. Outlines values for multiclass classification tasks, the overall Precision, (RCI) Relative Class 

Importance, and class-wise Class Entropy (CEN) assessed across the four augmentation scenarios. 

Metric Method with Highest Value 
Highest 

Value 

Overall Precision (%) Without augmentation 36.64% 

RCI The model trained on original research data was used to 

perform the validation of the test set 

0.1522 

(Weak) CEN With probabilistic translation augmentation 0.8259 

(Medium) CEN With probabilistic translation augmentation 0.8834 

(Normal) CEN The test set was evaluated using a model that was developed 

without any augmentation 

0.9175 

(Increase) CEN Utilizing random weak Gaussian blur augmentation 0.7008 

(Significant) CEN Without augmentation 0.8015 

 

Table 6. Presents the Importance-Bias-Agnostic (IBA) values for each class in the multiclass 

classification tasks, providing a comparative view of the different augmentation conditions. 

Method with Highest Value Metric 
Highest 

Value 

Validation of the test set was carried out on the model that was 

trained without any augmentation 

(Weak) IBA  0.1475 

Validation of the test set was carried out on the model that was 

trained without any augmentation 

(Medium) IBA 0.1974 

Without augmentation (Normal) IBA 0.1232 

Without augmentation (Increase) IBA 0.4747 

Validation of the test set was carried out on the model that was 

trained without any augmentation 

(Significant) IBA 0.1388 

 

Table 7. Values for multiclass classification tasks Class-wise Geometric Mean with and without 

augmentation randomly selected combined and Gaussian Blur with random shift augmentations for the 

mentioned approaches. 

Metric Highest Value Method with Highest Value 

(Weak) GM 0.5297 Without augmentation 

(Medium) GM 0.6038 Validation of the test set was carried out on the model that 

was trained without any augmentation 

(Normal) GM 0.5131 Without augmentation 

(Increase) GM 0.7558 Without augmentation 

(Significant) 

GM 

0.527 Validation of the test set was carried out on the model that 

was trained without any augmentation 

 

Table 8. Class-specific Matthews correlation coefficients are provided for each class-specific 

classification in the tasks treated through the same augmentation conditions 

Method with Highest Value Metric 
Highest 

Value 

Without augmentation (Weak) MCC 0.1803 
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Validation of the test set was carried out on the model that was 

trained without any augmentation 

(Medium) MCC 0.3015 

Without augmentation (Normal) MCC 0.1599 

Without augmentation (Increase) MCC 0.4756 

Validation of the test set was carried out on the model that was 

trained without any augmentation 

(Significant) MCC 0.1666 

 

Table 9 The summarizes performance metrics Multi-class predictive modeling used, whereas 

Figure 9 visually represents this data. In this table, IBA, CEN, MCC, and GM were averaged Calculating 

the mean by summing the class values and then dividing by 5. These scores for overall Precision and 

the reliability classification index were consistent with those presented in Table 5. The ranking of 

multiclass classification tasks from Table 9 is presented in Table 10. Figure 10 shows a visual 

representation of the data found in Table 10. This table provides a ranking for each performance measure 

and a composite ranking, based on all measures together. For overall Precision, larger values for RCI, 

IBA, GM, and MCC indicate better classification, while smaller values for CEN indicate better 

classification. 

 

Table 9. An overview of the performance metric statistics for multiclass classification tasks We 

proceed unevasively to report the results not using augmentation, mild Gaussian random blur, random 

shifts, and both augmentations combined.. 

Augmentation Method 
Precision 

(%) 
RCI 

Avg. 

CEN 

Avg. 

IBA 

Avg. 

GM 

Avg. 

MCC 

Without Augmentation 36.64 0.0867 0.75462 0.18354 0.54408 0.20144 

Mild Gaussian Random Blur 31.04 0.038 0.8043 0.12924 0.50348 0.13692 

Random Shift 30.56 0.0546 0.79836 0.1327 0.49558 0.13084 

Combined Augmentations 33.12 0.0647 0.77726 0.14634 0.5209 0.16424 

 

The best-performing model, according to Table 10, was trained without data augmentation, with 

combined weak Gaussian noise and Shift-based image augmentation, following closely behind. The 

without-augmentation model celebrates the strength of simplicity, while the combined augmentation 

itself proves that ingenuity can indeed yield brilliant overall performance. The balanced performance of 

random weak Gaussian and random shifting leveling brings to mind the whole journey of exploration 

and adaptation. It is interesting to see the close wedge of performance metrics, which shows that 

sometimes clarity comes from focus alone. If we dig down into specific metrics further, the wealth of 

insights revealed is nothing less than stunning; random shifted methods choke up the GM, MCC, and 

overall Precision, while random weak Gaussian methods suffer from a RCI, CEN, and IBA. These 

differences paying tribute to the fact that various performance metrics embody distinct perspectives 

serves as a reminder that they often provide very separate avenues towards achieving success. In 

addition, such discrepancies highlight how CNN perfectly fit and work effectively to the trials posed by 

minor image transformation techniques that complement growth and endurance [44]. 

Deep learning architectures have demonstrated greater advantages in terms of performance not 

only in binary classification tasks compared to multiclass classification tasks according to the 

comparison presented in some work. These findings can be accounted for by the fact that binary 

classification context models have a simpler and commonly different decision boundary to learn. The 

binary classification context also denotes a boost in performance by models when they utilize a mixed 

data augmentation method compared with those based on one augmentation method. Less surprisingly, 

it came out that the architecture utilizing mild probabilistic Gaussian blur outperformed the probabilistic 
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displacement augmentations. This is attributable to the fact that convolutional operations greatly depend 

on the invariance of feature maps to translation, and, thus, bad handling of translation would weaken 

model generalization. It is also interesting that the structural design of model architectures hugely affects 

classification performance. For binary classification tasks, the more feature maps used by a model in the 

convolutional layers, the more likely it is to achieve high performance. This seems to suggest that richer 

feature representations are helpful to these learning processes. It is clear that combined augmentation 

strategies that employ a combination of multiple augmentation techniques make for larger 

Convolutional feature maps in the model architecture while providing enhanced performance. On the 

contrary, multiclass classification tasks have shown that fewer feature maps can offer overall better 

performance. This could indicate that, in certain situations, simpler models are just as effective or more 

so, given that they are not overly burdened by excessive data augmentation. Work in the reverse 

direction and analyze whether or not augmenting the data would work better than the other models. The 

models which are not held to data augmentation perform better only if they have a comparatively lesser 

number of feature maps. However, it should also be noted that, in multiclass classification tasks 

employing mixed data enhancement techniques, models with more feature maps tend to achieve higher 

performance. This illustrates that the complex optimization of model architecture makes simplicity a 

boon in certain cases, while complexity might yield favorable results in other cases. To summarize, our 

findings corroborate the assertive contention of deploying deeper models compared to shallower 

counterparts in binary as well as multiclass classification tasks. Of note is that it is the sample size for 

training and validation during the experiments that had been small and possibly retarded the models' 

power to generalize well enough, thus putting a limit on the performance of the DL architectures. 

 

 
Figure 9. A graphical expression summarizing the indicator performances for the tasks studied in 

multi-label image classification 

 

Table 10. Ranking of performance for methods used in multi-label image classification random weak 

Gaussian blur augmentation without augmentation, mixed, and random shift augmentations. 

Scenario RCI 

Ranking 

CEN 

Ranking 

IBA 

Ranking 

GM 

Ranking 

MCC 

Ranking 

Overall 

Ranking 

Without 

Augmentation 

1 1 1 1 1 1 

With Weak 

randomized Gaussian 

Blur 

4 4 4 4 4 3 
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With probabilistic 

translation 

augmentation 

3 3 4 4 4 3 

With blended 

augmentation 

techniques 

2 2 2 2 2 2 

 

 
Figure 10. A visual display ranking methods according to their performance metrics for tasks 

involving multiclass classification 

4. DISCUSSIONS 

The authors are very confident that the 3D-CNN models proposed by them marked a great 

improvement in diabetic retinopathy (DR) detection and classification with an emphasis on augmented 

methods for binary classifications in improving model generalization and robustness through combining 

weak Gaussian blurring augmentations with random shifting. Interestingly, they highlight their 

multiclass classification task as working without augmentation-the assertion is probably along the lines 

of "example research datas and architectures on quite simpler parameter settings could prove fruitful 

sometimes." 

The authors state that their results are qualitatively in line with prior works demonstrating the 

efficacy of deep learning in DR detection, such as works using knowledge transfer and convolutional 

networks for the high-precision classification task. They feel, however, that their additional 

augmentation strategies provided unique advantages in assuaging the challenge of variability in the 

research data often encountered in medical imaging studies. Different from prior research that had larger 

research datas or less complex models, this study shows small data compensated for by novel data 

augmentation strategies and architectural improvements. Similar to AlexNet and knowledge transfer, 

the study highlights the first application of 3D-CNN to classifying volumetric data, thus capturing retinal 

structures better than 2D models. 

More specifically, they did find that with single augmentation techniques (Gaussian blurring or 

random shifting alone), they did not achieve the desired performance; hence, the need for combining 

different strategies was accepted. The findings of the study reveal that this trade-off occurs between 

model complexity and task-specificity, aligning with earlier observations in the field but demanding 

more work. 
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5. CONCLUSION 

This research journey has embarked on an incredible adventure, applying varied deep learning 

(DL) techniques to solve the great challenges associated with 2-class and Multiple-classclassification 

intended toward the recognition of distinct stages of diabetic retinopathy (DR). The rigors of a 10-fold 

cross-validation approach have empowered each of the processes behind hyperparameter searches as we 

achieve with certainty in our classification assignments. 

With that, a remarkable and clear win for the model applied innovative combined data data 

enhancement techniques and outperformed others in the binary classification problem. Surprisingly, the 

multiclass problem saw the unflattering model without changes soar to the top, proving that sometimes 

simplicity reigns supreme. At the other end of the spectrum, the reliance on single data enhancement 

techniques was not enough to salvage models, reminding one of the great power that cooperation and 

holistic approaches have. 

The exciting notion is that we would be eager to extend our sight toward inquiries involving other 

retinal diseases, especially the likes of retinal detachment, with good quality ophthalmoscopic images. 

Our great ambition is putting into effect new-age data augmentation techniques-across elastic and plastic 

deformations-inclusive of cutting-edge arcane deep learning architecture like graphs convolution 

networks. 

The wide panorama of eye. disease encompasses a great deal of territory affecting millions of 

world over-from age-related macular degeneration to retinitis pigmentosa. Yet, with such insistence on 

timely and accurate detection through deep learning methodologies, we see causes for hope. 

Empowering healthcare practitioners to intervene with care and treatment, thus changing lives, instilling 

hope and fostering the resilience of a human spirit. 
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