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Abstract 

Tuberculosis (TB) is an infectious disease that poses a global health threat. Early diagnosis through chest X-ray 

(CXR) imaging is effective in reducing transmission and improving patient recovery rates. However, the limited 

number of radiologists in high TB burden areas hampers rapid and accurate detection. This study aims to improve 

TB diagnosis accuracy using deep learning models. Convolutional Neural Networks (CNN) are applied to analyze 

CXR images to support automated detection in regions with limited radiology personnel. The method involves image 

processing using Contrast Limited Adaptive Histogram Equalization (CLAHE) to enhance image quality. A public 

dataset consisting of 2,188 images was used, with preprocessing steps including resizing, normalization, and 

augmentation. The DenseNet201 model was employed as the main architecture, trained for 10 epochs with various 

batch sizes to evaluate its performance. Results show that the combination of CLAHE and DenseNet201 achieved 

the highest accuracy of 94.84%. Image quality enhancement with CLAHE proved to improve accuracy compared to 

models without preprocessing. This research contributes to enhancing the efficiency of automated early TB detection, 

reducing reliance on radiologists, and accelerating clinical decision-making. 
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1. INTRODUCTION 

Tuberculosis (TB) is a highly contagious and potentially fatal disease. It is caused by the 

bacterium Mycobacterium tuberculosis, which primarily attacks the lungs and can spread through the 

air when an infected person coughs, sneezes, or spits [1]. Tuberculosis can cause serious respiratory 

problems, such as chronic coughing and shortness of breath [2]. Tuberculosis remains a significant 

global health challenge. In 2019, approximately 9.96 million TB cases were recorded worldwide, with 

the Southeast Asia region accounting for 44% of new cases, according to the World Health Organization 

(WHO) [3]. In Indonesia, TB is one of the major public health issues, with an estimated 351,936 new 

cases in 2020, mostly concentrated in the provinces of West Java, East Java, and Central Java [4]. Chest 

X-ray (CXR)-based TB diagnosis is a commonly used method; however, its interpretation still heavily 

relies on radiological expertise, which is limited in number, especially in high-prevalence areas. 

Deep learning utilizes artificial neural network concepts to recognize and learn patterns in data[5]. 

One of the most well-known deep learning architectures for image classification is the Convolutional 

Neural Network (CNN), which is highly effective in analyzing two-dimensional data such as images 

[6]. CNNs have been successfully applied in various fields with accuracy rates exceeding 90%, including 

medical image analysis [7], plant disease identification [8], handwriting recognition [9] and facial 

recognition [10] 

Previous studies have shown that CNNs are effective in tuberculosis (TB) analysis. For example, 

one study [11] employed ConvNet, Xception, ResNet50, and VGG16 models to detect TB, achieving 
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90% accuracy. Another study [12] applied transfer learning with CNNs and found that the DenseNet201 

model outperformed other CNN architectures on segmented datasets, with classification accuracy and 

precision of 98.6% and 98.57%, respectively. Research [13] further demonstrated that CNNs are 

effective in identifying complex patterns in medical images, including chest X-rays (CXR) for TB 

detection. A follow-up study [14] explored multiple EfficientNet models for TB diagnosis, with 

EfficientNet-B4 achieving the best results among its variants 92.33% accuracy on the Montgomery 

dataset and 94.35% on the Shenzhen dataset.  

However, these studies used relatively small datasets, which makes the models prone to 

overfitting. Although CNNs already demonstrate high accuracy, their performance can be further 

improved with preprocessing steps such as contrast enhancement [15]. The purpose of contrast 

enhancement is to adjust pixel brightness levels to improve visual quality, which is critical in digital 

image processing, pattern detection, and computer vision tasks [16]. Low-contrast images, often caused 

by poor equipment or inadequate lighting, can hinder analysis and object recognition. Thus, contrast 

enhancement becomes an essential step prior to further processing. 

In medical images such as X-rays, image quality is often affected by various factors including 

suboptimal equipment, operator errors, and patient conditions, which may result in blurred images with 

insufficient detail and poor contrast [17]. These issues can significantly impact the accuracy of CNN-

based analysis. Therefore, enhancing image quality prior to applying CNN is crucial. One effective 

technique is Contrast Limited Adaptive Histogram Equalization (CLAHE), which improves image 

contrast without causing over-enhancement [18] . CLAHE works by dividing the image into small 

regions (tiles) and enhancing the contrast of each part independently, resulting in improved overall 

image quality [19] [20]. Several previous studies have demonstrated the effectiveness of CLAHE in 

improving image quality, such as those in [21], [22], and [23]. For instance, [24] proposed a CNN model 

for pneumonia detection that achieved 94% accuracy, while [11] suggested the use of ResNet50 and 

VGG16 architectures. 

This study aims to implement CLAHE and CNN for tuberculosis classification in chest X-ray 

images [25]. By employing a more advanced CNN architecture, DenseNet201, the study seeks to 

improve diagnostic accuracy for TB. It is expected that this approach can facilitate the X-ray image 

analysis process for physicians and radiologists, minimizing interpretation errors and increasing the 

chances of patient recovery. 

2. RESEARCH METHODS 

The research method provides an overview of the stages of the study conducted from beginning 

to end. The research flow can be seen in the following Figure 1. 

The DenseNet201 model was chosen for this study due to its unique architecture designed to 

enhance the efficiency of information and feature flow through dense connectivity between layers. By 

directly connecting each layer to all previous layers, DenseNet201 not only reduces feature redundancy 

but also ensures optimal use of important information, which is particularly useful in handling the visual 

complexity of X-ray images. 

On the other hand, CLAHE (Contrast Limited Adaptive Histogram Equalization) was chosen 

because it can enhance contrast adaptively without causing noise overamplification, which often occurs 

with standard Histogram Equalization (HE) or Adaptive Histogram Equalization (AHE). By operating 

on small blocks of the image, CLAHE preserves local details, allowing for the detection of subtle 

features in the lungs that are crucial for tuberculosis diagnosis. This method is also more robust to 

lighting variations within X-ray datasets, resulting in more consistent images for feature extraction by 

DenseNet201. The combination of CLAHE and CNN ensures that contrast enhancement does not 
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compromise important information, thereby supporting the model’s accuracy in detecting abnormalities 

more effectively. 

 

 
Figure 1. Research Flow 

2.1. Dataset 

Data collection in this study was carried out by searching for relevant data through the internet, 

particularly datasets that are key elements of the research. The dataset used consists of chest X-ray 

images obtained from two main sources. The first source is the online platform Kaggle, while the second 

source is a collection of X-ray images obtained from the study [11]. Overall, this dataset includes 2,188 

X-ray images divided into two categories: normal and tuberculosis. Example X-ray images from both 

categories are shown in Figure 2 and Figure 3. 

 

  
Figure 2. Normal X-Ray Image Figure 3. X-Ray Image Of Tuberculosis 
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2.2. Preprocessing 

Data preprocessing is a crucial stage in this study to ensure the dataset quality is optimal before 

being used for training the classification model. The first step in preprocessing is resizing the images, 

as the original image sizes vary. All images are resized to 255×255 pixels to achieve consistent 

dimensions compatible with the architecture of the model. Next, data augmentation is applied to increase 

dataset variability, enabling the model to recognize a wider range of patterns and reducing the risk of 

overfitting. Augmentation techniques used include random horizontal and vertical flipping, random 

rotation, and conversion of images into tensors. These techniques enhance data diversity, allowing the 

model to learn object recognition across various orientations and conditions, which is essential for 

improving its generalization capability. Moreover, since deep learning models require inputs in the form 

of numerical tensors rather than standard images, converting the images to tensors ensures that the data 

is suitable for further processing by the model. The final step in preprocessing is image normalization, 

which is performed using the mean and standard deviation values calculated from a similar dataset. This 

normalization transforms pixel values to a more uniform distribution, helping to accelerate convergence 

and improve model accuracy. 

The dataset is then divided into three main subsets: training data (60% of the total), validation 

data (20%), and testing data (20%). This split is performed using the train_test_split parameter on the 

variables x and y. The training data is used to build the model, validation data is used to monitor model 

performance during training, and testing data evaluates final model performance on unseen, real-world-

like data.As an additional step, a visual exploration of the dataset is conducted by displaying sample 

images from each disease class to ensure data diversity, including after augmentation. The model is then 

trained for 10 epochs using varying batch sizes 16, 32, and 64. This number of epochs is chosen to 

balance training time and model convergence. A smaller batch size (16) leads to more frequent weight 

updates, while a larger batch size (64) speeds up training but increases the risk of overfitting. During 

training, training data is used for optimization, and validation data is used to monitor performance and 

prevent overfitting. Evaluation is conducted every few epochs, and after training, the model is assessed 

using the test data to measure its accuracy on previously unseen data. These steps are designed to ensure 

that the dataset used is of high quality, thus supporting optimal model training. 

2.3. Contrast Limited Adaptive Histogram Equalization (CLAHE) 

CLAHE (Contrast Limited Adaptive Histogram Equalization) is an advanced version of the 

adaptive histogram equalization method designed to enhance image contrast adaptively without losing 

essential details or introducing unwanted noise [26]. This technique operates by equalizing the 

histogram of small image blocks independently while applying limitations or clipping to the histogram. 

This prevents excessive contrast enhancement in homogeneous areas or regions with high noise levels. 

This approach effectively minimizes the risk of significant noise amplification, thereby preserving the 

overall quality of the image. 

The steps of CLAHE [27] can be described as follows:  

• Divide the input image into small, continuous, and non-overlapping blocks, typically 8×8 pixels 

in size or adjusted according to configuration. 

• Calculate the histogram for each image block and apply a threshold to clip the histogram before 

computing the PDF (Probability Density Function) and CDF (Cumulative Distribution Function), 

limiting the gradient of the transformation function. 

• Redistribute pixel values by allocating adjusted pixel values evenly across the histogram. 

• Perform local histogram equalization on each block. 

• Use linear interpolation to reconstruct pixel values based on the intensity level mapping of the 

surrounding sample points. 
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2.4. Convolution Neural Networks (CNN) 

Convolutional Neural Network (CNN) is a highly efficient deep learning algorithm for processing 

structured two-dimensional data, such as images [28]. With its hierarchical approach, CNN is capable 

of analyzing information from the initial convolution layers to the final layers, enabling classification 

with high accuracy, as seen in the context of Pekalongan batik pattern classification. Each convolutional 

layer uses the output of the previous layer as input, allowing the network to extract increasingly complex 

features as the depth of the network increases. Fully connected layers and activation functions like ReLU 

(Rectified Linear Unit) play an important role in processing these features to produce class predictions 

or image labels[29]. The workflow of CNN, as illustrated in Figure 3, provides a clear visual 

representation of how CNN works in this context, from the initial image processing to the final 

classification result. 

 

 
Figure 4. CNN Process 

2.5. DenseNet201 

After the data undergoes the necessary preprocessing steps, the next step is to train the CNN 

model, which involves feature extraction and classification. This study uses the Convolutional Neural 

Network (CNN) algorithm with the DenseNet201 architecture, which is well-known for image 

classification tasks. 

 

 
Figure 5. DenseNet architecture [30] 

 

DenseNet201 (Dense Convolutional Network) is one of the variants of the DenseNet architecture 

designed to deepen deep learning networks by optimizing training efficiency and feature utilization. 

Like other DenseNet architectures, DenseNet201 uses a dense connectivity approach, where each layer 

is directly connected to all subsequent layers. This means that the output of each layer is used as input 

for all deeper layers, without excessive redundancy. This approach allows for smoother data and gradient 
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flow throughout the network, addressing the vanishing gradient problem and improving the reuse of 

relevant features. With 201 layers, DenseNet201 provides stronger representational capabilities 

compared to versions with fewer layers, such as DenseNet121, making it highly suitable for handling 

datasets with high visual complexity, such as X-ray images in medical diagnosis. The image of the 

densenet architecture can be seen in figure 5. 

2.6. Testing Scenario 

In this study, two testing scenarios were implemented to evaluate the model's performance. The 

first scenario involves experimenting with the DenseNet201 model without using CLAHE, while the 

second scenario incorporates the use of CLAHE in the DenseNet201 model. Both scenarios were tested 

with various batch sizes to observe their impact on the model's accuracy and training stability. The early 

stopping technique was applied to prevent overfitting by halting training when the model's performance 

on the validation data begins to decline. This approach ensures efficient training while maintaining the 

effectiveness of the training process. These scenarios are designed to optimize training conditions, 

allowing for a deeper analysis of the model's ability to generalize across different settings. 

2.7. Model Evaluation 

Model evaluation is performed using a confusion matrix. The parameters analyzed include 

accuracy, precision, recall, and F1-score, which are calculated based on Equations (1), (2), (3), and (4). 

TP refers to True Positive, FP refers to False Positive, TN refers to True Negative, and FN refers to 

False Negative [31].  

Accuracy measures how close the obtained results are to the true values. Precision indicates the 

relevance of the data retrieved with the information needed. Recall reflects the success in identifying 

and retrieving relevant information. Meanwhile, the F1-score is the harmonic mean of precision and 

recall, providing a balanced view of the model's performance [32].  

Accuracy =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 (1) 

Precision =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (2) 

Recall =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (3) 

F1 − Score =
2𝑥 𝑅𝑒𝑐𝑎𝑙𝑙 𝑥 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑅𝑒𝑐𝑎𝑙𝑙+𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
 (4) 

3. RESULTS 

This chapter discusses the experimental results conducted to evaluate the performance of the 

DenseNet201 model in two different scenarios. The first scenario uses the early stopping technique and 

batch size variations without applying the CLAHE image preprocessing method. The second scenario 

also employs the early stopping technique and batch size variations, but with the CLAHE image 

preprocessing method applied. The model's performance is evaluated by measuring several metrics, 

including accuracy, loss, validation accuracy, and validation loss, as well as other evaluation metrics 

such as precision, recall, and F1-score. 

3.1. Dataset 

After the preprocessing process, the dataset consisting of 2.188 X-ray images of size 255x255 

pixels was prepared for the validation, training, and testing stages of the tuberculosis diagnosis model. 

In the first scenario, the model uses the original dataset without any modifications. Meanwhile, in the 

second scenario, the dataset is generated by applying a contrast enhancement method using Contrast 

Limited Adaptive Histogram Equalization (CLAHE) on the original dataset. This augmented dataset 
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contains the same number of images as the original dataset. The use of this contrast-enhanced dataset 

aims to evaluate the impact of the contrast enhancement method on classification accuracy and to 

compare the classification results between the two scenarios. 

3.2. Scenario 1 

The first experiment was conducted by varying the batch size (16, 32, 64) and using the early 

stopping technique for the DenseNet201 model without using CLAHE. The results of this experiment 

can be seen in Table 1. 

 

Table 1. Densenet201 Model Without CLAHE Implementation 

Batch 

Size 

Epoch 

Stop 
Accuracy Loss 

Accuracy 

Validation 

Loss 

Validation 

Densenet201 

Accuracy 

16 10 93.58% 0.1901 88.72% 0.3218 91.25% 

32 10 97.61% 0.0646 90.24% 0.4870 90.01% 

64 10 98.70% 0.0326 86.29% 0.5340 92.42% 

 

Based on the results of the experiment in Scenario 1, the DenseNet201 model with a batch size 

of 64 performed the best, achieving the highest validation accuracy of 92.42%. This result indicates that 

increasing the batch size does not consistently improve the performance of the DenseNet201 model. 

3.3. Scenario 2 

The second experiment was conducted by varying the batch size (16, 32, 64) and using the early 

stopping technique for the DenseNet201 model with CLAHE. The results of this experiment can be seen 

in Table 2. 

 

Table 2. Densenet201 Model With CLAHE Implementation 

Batch 

Size 

Epoch 

Stop 
Accuracy Loss 

Accuracy 

Validation 

Loss 

Validation 

Densenet201 

Accuracy 

16 10 96.30% 0.1027 89.33% 0.2608 94.84% 

32 10 96.62% 0.0875 85.06% 0.5405 90.33% 

64 10 99.08% 0.0288 65.24% 2.6764 88.18% 

 

Based on the results of the experiment in Scenario 2, the DenseNet201 model with the application 

of CLAHE and a batch size of 16 performed the best, achieving the highest validation accuracy of 

94.84%. This result indicates that increasing the batch size tends to reduce the performance of the 

DenseNet201 model. 

3.4. Test Results 

This experiment was conducted using two main scenarios: applying the DenseNet201 model with 

and without the use of CLAHE (Contrast Limited Adaptive Histogram Equalization) to analyze the 

effect of preprocessing on model performance. Additionally, the experiment involved variations in batch 

size to evaluate how this parameter impacts model accuracy under each scenario. The results indicate 

that applying CLAHE to DenseNet201 significantly improves classification performance, with the 

highest accuracy of 94.84% achieved at a batch size of 16. The CLAHE technique enhances image 

quality by improving contrast and sharpening details, which is particularly useful for detecting subtle 
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visual patterns. This allows the model to learn more effectively from image features, leading to a notable 

increase in accuracy. 

In contrast, in the scenario without CLAHE, the model’s accuracy tends to be lower, indicating 

that advanced preprocessing plays a critical role in enabling the model to capture more relevant features. 

This significant improvement in accuracy is further highlighted when comparing these results with a 

previous study conducted by [11], where the model achieved only 90% accuracy. That study did not 

provide detailed precision and recall values for each class, while in this study, the application of CLAHE 

not only improved accuracy but also enhanced the model’s consistency when handling validation data. 

DenseNet201 with CLAHE demonstrated higher accuracy and more stable performance, despite 

variations in batch size. The batch size of 16, though smaller, yielded the best performance, indicating 

that more frequent weight updates helped the model learn more effectively. 

The experimental results also show that the model did not suffer from significant overfitting or 

underfitting. In the scenario with CLAHE, although there was an increase in training accuracy, the 

validation accuracy showed similar improvements, suggesting that the model was able to generalize 

well without overfitting. This is also reflected in the comparison of loss and accuracy, where the training 

and validation curves followed a similar and convergent trend by the end of training. If overfitting had 

occurred, the validation loss would have remained high while the training accuracy continued to increase 

something not observed in this experiment. Conversely, signs of underfitting, where training loss 

remains high and accuracy stays low, were also absent. The model demonstrated good convergence, and 

the highest accuracy achieved with a batch size of 16 further supports the indication that the model 

learned effectively and was not hindered by training parameters. 

3.5. Visualization of Results 

To provide a deeper understanding of the performance of the tested model, several visualizations 

are presented to illustrate various aspects of the model evaluation. Figure 6 shows the accuracy graph 

during the training and validation processes, illustrating how the model learns from the data and 

gradually reaches convergence. This graph provides insights into the model's stability during training 

and its reliability when tested with unseen data. On the other hand, Figure 7 presents the loss graph, 

showing how the loss value progressively decreases during training and validation. This information is 

crucial for understanding whether the model is experiencing underfitting or overfitting, as well as 

evaluating how well the model minimizes prediction errors. Next, Figure 8 displays the confusion 

matrix, which offers a visual representation of the model's prediction distribution across the test data for 

each class. The confusion matrix helps analyze errors by showing the number of correct and incorrect 

predictions for each class, making it possible to identify the classes that are most challenging for the 

model to predict. Furthermore, Figure 9 presents the AUC-ROC curve, which demonstrates the model's 

ability to distinguish between positive and negative classes. This curve visualizes the relationship 

between sensitivity and specificity, providing a strong indicator of how well the model handles class 

imbalance. 

Based on the overall evaluation results, the DenseNet201 model with the application of CLAHE 

achieved the best performance with a batch size of 16, reaching the highest validation accuracy of 

94.84%. This indicates that preprocessing with CLAHE has a significant positive impact in improving 

the model's ability to understand patterns in the data. For more detailed information, the evaluation 

results related to precision, recall, and F1-score can be found in Table 3. 
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Table 3. Model performance Based on Precision, Recall, and F1-Score 

Class Precision Recall F1-Score 
 

Normal 96.13% 0.9351 94.80% 

Tuberculosis 93.59% 0.9618 94.87% 

 

These visualizations not only provide information about the model's accuracy and stability during 

training, but also show how well the model predicts data and distinguishes between classes overall. 

These visualizations can be seen in more detail in Figures 6, 7, 8, and 9. 

 

  

Figure 6. Accuracy Graph Figure 7. Loss Graph 

 

The graphs in Figures 6 and 7 illustrate the performance of the DenseNet201 model during the 

training and validation processes. In Figure 6 (accuracy graph), the blue line represents the training 

accuracy, which steadily increases, indicating that the model is learning well from the training data. The 

orange line shows the validation accuracy, which initially improves well but experiences fluctuations at 

epoch 6, before showing improvement again in the following epochs. 

Meanwhile, in Figure 7 (loss graph), the blue line represents the training loss, which consistently 

decreases as the epochs increase, indicating a reduction in prediction errors on the training data. The 

orange line represents the validation loss, which experiences a slight spike at epoch 2 but then decreases 

significantly, reflecting the model's improved generalization ability. Overall, the DenseNet201 model 

demonstrates excellent performance with high accuracy and low loss, highlighting its ability to learn 

data patterns and make effective predictions. 

 

 
Figure 8. Confusion Matrix 
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The model evaluation using the confusion matrix aims to assess the performance of the deep 

learning or machine learning model in determining whether the predictions made are correct or incorrect 

based on the entire dataset used [33]. The confusion matrix in Figure 8 shows the performance of the 

DenseNet201 model in classifying two categories: Normal and Tuberculosis. The model successfully 

identified 140 samples in the Normal category and 160 samples in the Tuberculosis category. However, 

there were 16 samples from the Normal category that were misclassified as Tuberculosis (False 

Positives) and 13 samples from the Tuberculosis category that were misclassified as Normal (False 

Negatives). These results indicate that the model achieved a high accuracy level, demonstrating strong 

performance in distinguishing between the two categories. 

 

 
Figure 9. DenseNet201 Model AUC-ROC Curve 

 

The AUC-ROC curve is an evaluation tool used to assess the performance of a model in 

classification tasks across various threshold settings. ROC (Receiver Operating Characteristic) is a curve 

that represents prediction probabilities, while AUC (Area Under the Curve) measures the model's ability 

to distinguish between classes. The AUC value provides an overview of how well the model can 

differentiate between categories. A higher AUC value indicates that the model is more effective in 

identifying class 0 as 0 and class 1 as 1, or, analogously, the better the model is at distinguishing one 

category from another [34].  

Figure 8 illustrates the ROC curve for the DenseNet201 model in classifying two categories: 

Normal and Tuberculosis. Both curves show excellent performance, with an AUC value of 0.99 for each 

category. This value reflects the model's very high classification capability, with optimal sensitivity and 

specificity across various thresholds. These results confirm that the DenseNet201 model performs 

exceptionally well in distinguishing between the Normal and Tuberculosis categories. 

4. DISCUSSION 

Research on tuberculosis diagnosis using CNN has also shown promising results. A study by [11] 

using CNN with several architectures for tuberculosis diagnosis achieved an accuracy of 90%. A study 

conducted by [14] explored the application of CNN with five variants of EfficientNet architectures 

implemented on two datasets and achieved the highest accuracy with the EfficientNet-B4 model, 

92.33% and 94.35%, respectively. 

Research on the DenseNet201 model has also shown promising results. A study by [35] developed 

an algorithm using ensemble techniques to improve the accuracy and reliability of the DenseNet201 

model in diagnosing lung diseases. A study by [36] used the DenseNet201 model to detect COVID-19 
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and pneumonia from chest X-ray images, achieving an accuracy of 99.1%. Another study by [37] used 

a modified DenseNet201 model with additional convolutional layers for detecting skin cancer, achieving 

an accuracy of 95.50%. In [30], a study on disease classification in rice leaves using DenseNet201 

achieved an accuracy of 88.33%. 

Research on contrast enhancement with CLAHE has also shown promising results. A study by 

[15] improved medical image segmentation accuracy using CLAHE, showing accuracy improvement 

on chest X-ray and CT-Scan lung datasets. A study by [38] used CLAHE to enhance fundus retinal 

image quality, resulting in significant accuracy improvements in CNN models such as VGG16, 

InceptionV3, and EfficientNet. A study by [21] used CLAHE for brain cancer diagnosis, achieving an 

accuracy of 90.37%. 

These findings are consistent with those conducted by [21], [15] and [38], which show that 

contrast enhancement methods improve the effectiveness of model classification. In this study, testing 

results indicated a 2.62% accuracy improvement using the CLAHE method. Previous research, as 

reported in [15], found that CLAHE improved accuracy by 2.73% on chest X-ray datasets and 0.66% 

on CT-Scan lung datasets. Another study, reported in [39], also showed that CLAHE could increase 

accuracy by 0.1%. 

The results of this study suggest that CNN holds great potential in disease diagnosis based on 

medical images, but its application in real-world medical systems requires several considerations. 

Models must be tested with real-world data reflecting various patient conditions and image quality to 

ensure reliability. Furthermore, although the model shows high performance on specific datasets, further 

testing on datasets from different hospitals and regions is necessary to assess generalizability. 

Implementation in electronic medical record (EMR) systems also requires supporting infrastructure and 

compliance with data security and privacy regulations. Additionally, factors such as image quality 

variation, image artifacts, and data distribution across hospitals can impact model performance. 

Therefore, models must be developed with these aspects in mind to be accurate not only in laboratory 

testing but also effective in clinical practice. 

5. CONCLUSION 

Based on the results of applying CLAHE and the DenseNet201 architecture, as well as the 

analysis conducted, this study demonstrates that the application of effective preprocessing techniques, 

such as CLAHE, can have a significant positive impact on model performance in image classification 

tasks. The dataset with CLAHE applied showed better results compared to the dataset without CLAHE, 

as indicated by the improved performance of the model on the dataset with CLAHE. Additionally, 

experiments showed that batch size affects various training metrics, such as training accuracy, training 

loss, validation accuracy, and validation loss. While larger batch sizes can speed up training, smaller 

batch sizes do not always result in worse performance and often provide the best accuracy, as seen with 

a batch size of 16, which resulted in the highest accuracy. The model with CLAHE applied at the 10th 

epoch and batch size 16 showed the best test results, with an accuracy of 94.84%, indicating that the 

right combination of preprocessing and optimal model configuration is crucial for achieving more 

accurate and stable results. However, there are some limitations, such as the limited dataset variety used 

and the focus on a single model architecture. Therefore, further development could include exploring 

more diverse datasets, testing other model architectures, and applying additional preprocessing 

techniques to optimize model performance. This study contributes significantly to the fields of 

Informatics and Computer Science, especially in the development of deep learning models for medical 

image classification, and opens up opportunities for further research that could enhance the accuracy 

and generalization ability of models in real-world applications. 
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