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Abstract  
 

Sign Language Recognition (SLR) has become an essential area of research due to its potential to promote 

understanding between the deaf and hearing communities through communication. This paper provides an in-

depth study of various methodologies and models employed in SLR, focusing on Convolutional Neural Networks 

(CNN) and Recurrent Neural Networks (RNN). We analyze their application to datasets from various sign 

languages, such as Arabic Sign Language (ArSL), American Sign Language (ASL), and British Sign Language 

(BSL), and explore how these models improve the recognition of dynamic, multi-dimensional hand gestures. This 

research not only advances the understanding of deep learning applications in sign language recognition but 

also addresses critical challenges in data processing and real-time applications, paving the way for inclusive 

technologies in informatics and human-computer interaction. Despite the progress in applying deep learning 

techniques to SLR, several challenges remain, particularly in dataset limitations, handling large vocabularies, 

and ensuring consistent performance across diverse environments and signers. The paper also investigates the 

broader applications of SLR, such as virtual reality, healthcare, education, and accessibility, and discusses the 

integration of SLR with human-computer interaction systems. Furthermore, it highlights current limitations in 

the field, such as difficulties with video data handling, the need for standard datasets, and issues related to 

training computational models. Finally, the paper outlines future research directions, including developing more 

robust SLR systems that can function effectively in uncontrolled environments, improving data collection 

methodologies, and creating real-time, user-friendly applications to assist the community of deaf and hard-of-

hearing individuals. 

 

Keywords: Sign Language Recognition, Convolutional Neural Networks, Recurrent Neural Networks, Deep 

Learning. 

 

 

KAJIAN GLOBAL DALAM PENGENALAN POLA BAHASA ISYARAT ALFABET 

MENGGUNAKAN CONVOLUTIONAL DAN RECURRENT NEURAL NETWORK 
 

Abstrak 

 

Pengenalan Bahasa Isyarat (SLR) menjadi bidang penelitian yang sangat penting karena potensinya dalam 

memfasilitasi komunikasi dan meningkatkan pemahaman antara komunitas tuna rungu dan pendengaran. Artikel 

ini menyajikan kajian mendalam mengenai berbagai metodologi dan model yang diterapkan dalam SLR, dengan 

fokus pada penggunaan Convolutional Neural Networks (CNN) dan Recurrent Neural Networks (RNN). 

Penelitian mengkaji penerapan model-model tersebut pada dataset dari berbagai bahasa isyarat, seperti Bahasa 

Isyarat Arab (ArSL), Bahasa Isyarat Amerika (ASL), dan Bahasa Isyarat Inggris (BSL), serta mengeksplorasi 

bagaimana dapat meningkatkan pengenalan gerakan tangan yang dinamis dan multi-dimensional. Meskipun ada 

kemajuan dalam penerapan teknik deep learning untuk SLR, masih terdapat beberapa tantangan, terutama terkait 

keterbatasan dataset, pengelolaan kosa kata yang besar, dan memastikan kinerja yang konsisten di berbagai 

lingkungan serta pengguna isyarat. Artikel ini juga membahas aplikasi lebih luas dari SLR, seperti dalam realitas 

virtual, layanan kesehatan, pendidikan, dan aksesibilitas, serta menggali integrasi SLR dengan sistem interaksi 

manusia-komputer. Di samping itu, artikel ini menyoroti beberapa keterbatasan yang masih ada, seperti 

tantangan dalam penanganan data video, kebutuhan untuk dataset standar, serta masalah terkait pelatihan model 

komputasi. Artikel ini mengakhiri dengan menyarankan arah penelitian masa depan, termasuk pengembangan 

sistem SLR yang lebih kuat yang dapat beroperasi secara efektif dalam lingkungan yang tidak terkendali, 
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peningkatan metodologi pengumpulan data, dan pembuatan aplikasi real-time yang lebih ramah pengguna untuk 

membantu komunitas tuna rungu dan individu dengan gangguan pendengaran. 

 

Kata kunci: Sign Language Recognition, Convolutional Neural Networks, Recurrent Neural Networks, Deep 

Learning. 

 

 

1. INTRODUCTION 

Sign languages are rich, visual languages 

utilized by deaf communities across the globe, each 

featuring its distinct grammatical structures and 

vocabulary. Unlike spoken languages, which rely on 

auditory cues, sign languages communicate meaning 

through hand gestures, facial expressions, and body 

movements. This visual modality allows for nuanced 

expression and conveys sometimes untranslatable 

ideas in spoken form. Each sign language is 

culturally specific, reflecting the unique social and 

linguistic contexts of the communities that use them, 

making them vital for fostering identity and 

communication among deaf individuals. 

Between 138 and 300 unique sign languages 

are used globally, each characterized by its hand 

movements and facial expressions system. These 

languages possess distinct grammar rules and 

sentence structures, which can differ significantly 

from verbal languages. For instance, ASL has a 

different word order compared to English [1]. 

Additionally, sign languages typically rely on 

essential English word signals and do not include 

prepositional markers, complicating direct 

translation. Understanding these differences is 

critical for developing effective sign language 

translators that enable communication between sign 

language users and those unfamiliar with these 

languages [2]. 

Alphabet sign languages utilize specific hand 

shapes to represent individual letters of the alphabet, 

serving as a vital tool for bridging communication 

gaps between deaf and hearing individuals [3]. This 

fingerspelling system enables users to spell out 

names, places, or terms that may not have a 

designated sign, thus facilitating clear and accurate 

communication in various contexts, such as 

healthcare, education, and social interactions. By 

expressing words that lack established signs, 

alphabet sign languages enhance understanding and 

inclusion, allowing for more effective dialogue and 

fostering connections between diverse communities. 

 
Figure 1.  Taxonomy of Approaches and Methods in SLR 
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In SLR research, taxonomy refers to 

classifying methods, techniques, and challenges that 

define the field. Figure 1 shows the taxonomy 

diagram of SLR, which outlines the various 

categories that organize the diverse approaches and 

methods used in SLR research. The dataset type is a 

critical consideration in SLR, as it determines the 

form of data that will be used to train and test the 

recognition models. One significant distinction lies 

in the modality of the data, which refers to the type 

of input collected from the signer [4]. Image-based 

datasets focus on static images, capturing hand 

gestures or signs in a still frame [5]. These datasets 

are typically used for tasks involving the recognition 

of isolated signs, where the spatial configuration of 

the hand is the key feature. However, they cannot 

capture motion, making them less effective for 

recognizing dynamic or context-dependent signs. On 

the other hand, video-based datasets offer a dynamic 

perspective, capturing the motion of hand gestures 

over time [6]. This is especially crucial for 

recognizing continuous gestures or sentences, as it 

provides temporal information that allows the model 

to discern the progression of hand movements. 

Video datasets are more realistic but require more 

computational resources due to the large number of 

frames that need processing. 

Another important modality is sensor-based 

datasets, where data is captured using wearable 

devices such as gloves equipped with sensors or 

accelerometers. These sensors can precisely capture 

the hand’s position, shape, and movement, 

sometimes providing more detailed information than 

visual-based methods, especially regarding hand 

orientation and gesture accuracy [7]. Depth/3D-

based datasets, such as those captured by depth 

cameras (e.g., Microsoft Kinect), use 3D sensors to 

capture the spatial position of the hand in three-

dimensional space. These datasets are beneficial for 

recognizing complex gestures or subtle variations in 

hand position, as depth sensors can isolate hand 

movements from the background, overcoming issues 

like changes in lighting or cluttered backgrounds. 

Depth data is beneficial in handling occlusion and 

background interference challenges, providing a 

more robust solution for real-world SLR 

applications. 

Speaker variation addresses the differences 

between individuals in their way of signing, 

significantly impacting the generalization of SLR 

systems. Datasets can be categorized as either 

single-speaker or multi-speaker. Single-speaker 

datasets focus on the performance of one individual 

signer, often capturing how that person produces a 

particular set of gestures or signs. These datasets can 

be helpful in controlled experiments or developing 

models targeting a specific signer [8], [9], [10]. 

However, their primary limitation is that the model 

trained on such data may struggle to generalize to 

other signers due to the lack of variability in signing 

styles, hand shapes, and gesture executions. This 

restricts the model's adaptability when faced with 

new or unseen signers, making it less effective in 

real-world applications where the system needs to 

work for a wide range of users. 

In contrast, multi-speaker datasets capture a 

variety of signers, each with their unique sign style, 

physical characteristics (such as hand size and 

shape), and possibly even regional dialects of the 

same sign language. This broader representation is 

essential for training SLR systems that generalize 

across different users, making them more practical 

and robust in real-world scenarios. For example, 

American Sign Language (ASL) can vary between 

regions and communities, and multi-speaker datasets 

can help account for these variations [11]. Including 

multiple signers in the dataset ensures the model is 

not overfitted to a specific individual's 

characteristics, enhancing the system's ability to 

recognize signs from a diverse population [12]. 

Background variation refers to the environment 

in which the data is collected, and it plays a 

significant role in the performance of Sign Language 

Recognition systems [13]. Datasets can be 

categorized as controlled environment datasets or 

real-world datasets. In controlled environments, data 

collection is conducted in settings where external 

factors, such as lighting, background clutter, and 

other disturbances, are carefully controlled. This 

ensures that the focus remains solely on the gestures 

or signs being performed, which can help improve 

recognition accuracy. Controlled environments are 

ideal for early-stage model development, as they 

minimize variability, making it easier for models to 

learn the features of the gestures. However, such 

datasets often fail to capture the complexity and 

unpredictability of real-world situations, where signs 

may be performed under less-than-ideal conditions. 

In real-world datasets, data is collected in 

natural, uncontrolled environments where various 

background conditions can influence the data. For 

instance, signs might be performed in public spaces 

with varying lighting and backgrounds or even 

during different times of the day. This introduces 

complexity that is difficult to replicate in a 

laboratory setting. While real-world datasets present 

challenges, they are crucial for developing robust 

SLR systems that perform well outside controlled 

settings [14]. These datasets help models learn to 

deal with variations in background, lighting, and 

other environmental factors, making them more 

adaptable to practical applications, such as in public 

spaces or at home [15], [16]. Real-world datasets are 

often more extensive and diverse, making them 

essential for ensuring that SLR systems are helpful 

in daily interactions. 
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In the field of SLR, recognition tasks define how the 

system processes and interprets the data collected 

from signers. These tasks vary in complexity based 

on whether the system identifies isolated gestures, 

continuous sign language sequences, or combines 

different input modalities for more accurate 

recognition [17]. The primary types of recognition 

tasks are gesture recognition and multi-modal 

recognition, each serving specific purposes and 

presenting unique challenges. 

Gesture recognition is at the heart of SLR 

systems. The goal is to identify and interpret hand 

and body movements representing specific sign 

language signs or gestures. Gesture recognition tasks 

can be categorized into two subtypes: isolated 

gesture recognition and continuous gesture 

recognition [18]. 

Isolated gesture recognition involves the 

identification of a single, discrete gesture or sign, 

typically captured in isolation [19]. This task is more 

straightforward than continuous recognition because 

the system only needs to recognize one gesture at a 

time, with minimal temporal context. For instance, 

an SLR system might recognize a hand gesture such 

as the sign for "hello" or "thank you" in American 

Sign Language (ASL) without needing to account 

for the surrounding context or other signs. Isolated 

gesture recognition is helpful in applications where 

single signs must be translated or identified quickly, 

such as in a simple sign-to-text conversion system. 

However, it can be limited in handling more 

complex conversations, as it does not account for the 

flow of multiple signs or the interaction between 

gestures. 

Continuous gesture recognition, on the other 

hand, deals with recognizing gestures in a constant 

flow, where multiple signs are performed in a 

sequence, often forming sentences or phrases [20]. 

Unlike isolated gesture recognition, this task 

requires the system to identify individual signs and 

understand their temporal relationships and 

contextual meaning within the sequence. Continuous 

gesture recognition is much more challenging due to 

the need to capture transitions between gestures, 

account for variations in speed, and manage the 

complexity of interpreting sentences. This is crucial 

for real-world applications, such as real-time sign 

language translation or communication systems, 

where the context and flow of signs must be 

accurately interpreted. Continuous recognition 

systems must process temporal features in the data, 

making them computationally more demanding than 

isolated gesture recognition. 

Multi-modal recognition involves integrating 

data from multiple sources or modalities, such as 

combining visual data with sensor data (e.g., depth 

or motion sensors). This task is designed to improve 

the accuracy and robustness of SLR systems by 

leveraging complementary information from various 

input types [21]. 

In a multi-modal recognition system, the model 

typically combines data from visual sensors (such as 

cameras or depth sensors) and sensor-based inputs 

(such as accelerometers or IMUs) to capture a more 

comprehensive view of the signer’s gestures. For 

example, a system might combine visual data to 

track hand shapes and movements with sensor data 

to capture fine-grained details like hand orientation 

or wrist rotation. The advantage of multi-modal 

recognition is that it allows the system to 

compensate for limitations inherent in any single 

modality. For instance, visual data might struggle in 

low-light conditions or with occlusions, but sensor 

data can provide additional, accurate information to 

ensure reliable recognition. 

Multi-modal recognition is instrumental in 

complex or dynamic environments where a single 

input type is insufficient for accurate sign language 

recognition. By integrating different modalities, 

multi-modal systems can enhance performance, 

robustness, and accuracy, making them suitable for 

real-world applications, such as human-robot 

interaction, augmented reality, or assistive 

technologies for people with hearing impairments. 

However, the main challenge lies in fusing the data 

from different modalities to minimize noise and 

maximize the usefulness of each source [15]. Multi-

modal systems are computationally more demanding 

and require advanced algorithms for data fusion. 

Still, their ability to handle diverse environments 

and improve recognition accuracy makes them 

highly valuable in practical SLR applications. 

The recognition methods in Sign Language 

Recognition (SLR) involve various techniques for 

interpreting and classifying gestures based on the 

data collected from signers. These methods can be 

broadly categorized into feature extraction-based, 

machine learning, deep learning, and hybrid models. 

Depending on the type of data and the complexity of 

the recognition task, each of these methods uniquely 

improves the accuracy and efficiency of SLR 

systems [22]. 

Feature extraction-based methods are 

foundational in many traditional sign language 

recognition systems. These methods rely on 

extracting discriminative features from raw input 

data, which are subsequently used to classify or 

recognize specific gestures [23], [24]. The primary 

categories of features extracted are image processing 

features and motion features. Image processing 

features are derived from static images or video 

frames, where various image characteristics such as 

shape, texture, and contour are extracted to identify 

hand configurations. Techniques such as edge 

detection, corner detection, and keypoint extraction 

enable the system to map distinct hand landmarks, 
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such as the fingertips and joints, which serve as the 

basis for recognizing individual signs. This approach 

efficiently recognizes isolated hand gestures but fails 

to account for temporal information, critical for 

recognizing dynamic gestures or sign language 

sequences. Motion features, in contrast, are derived 

from the temporal progression of gestures, capturing 

the movement of hands or the body. Motion vectors, 

optical flow, and trajectory analysis are commonly 

used to quantify hand motion and provide a time-

dependent representation of gestures [25]. These 

features are essential for continuous gesture 

recognition, where the system must discern 

individual signs and their transitions within a 

sequence of gestures. Thus, motion features enable 

the recognition of sign language that spans multiple 

frames or even complete sentences. 

In parallel, machine learning methods have 

been widely applied to classify gestures based on the 

features extracted from raw data. Classical 

algorithms in machine learning, such as Support 

Vector Machines (SVM), K-nearest neighbors (K-

NN), Decision Trees, and Random Forests, are used 

to develop models that can accurately predict the 

class of a given gesture [26], [27]. Support Vector 

Machines are particularly effective for high-

dimensional feature spaces, as they construct an 

optimal hyperplane that maximally separates 

different gesture classes. K-Nearest Neighbors, by 

contrast, classifies gestures based on proximity to 

labeled instances in the feature space, providing a 

simple yet effective method for gesture recognition. 

Decision Trees create hierarchical models, 

partitioning the feature space through a series of 

decision nodes. At the same time, Random Forests 

improve upon this by combining multiple decision 

trees, thus reducing overfitting and improving 

generalization. These machine-learning techniques 

are particularly effective for tasks involving isolated 

gesture recognition. Still, they are often less efficient 

for continuous or complex sign language sequences, 

where temporal dependencies play a crucial role in 

understanding the meaning of signs. 

In recent years, deep learning models have 

emerged as a dominant approach in sign language 

recognition due to their ability to learn hierarchical, 

abstract features from raw data directly. 

Convolutional Neural Networks (CNNs) are 

primarily used for image-based recognition, where 

their convolutional layers automatically learn spatial 

patterns within visual data, such as hand shapes, 

orientations, and configurations. CNNs excel at 

recognizing isolated hand gestures from images or 

video frames by learning a series of spatial filters 

that capture low- and high-level features. However, 

sign language recognition frequently involves 

dynamic gestures, necessitating the modeling of 

temporal dependencies. Recurrent Neural Networks 

(RNNs), specifically Long Short-Term Memory 

(LSTM) networks, address this challenge by 

processing sequential data and capturing long-range 

dependencies between gestures in a sequence. RNNs 

are designed to handle sequential inputs, such as 

frames in a video, making them well-suited for 

dynamic gesture recognition [28], [29]. LSTMs, an 

advanced variant of RNNs, are specifically designed 

to alleviate the vanishing gradient problem and can 

retain information over long sequences, making 

them ideal for continuous gesture recognition. 3D 

CNNs and temporal networks are employed for 

spatial and temporal information tasks. 3D CNNs 

extend traditional CNNs by adding dimension and 

time, allowing the network to learn spatial and 

temporal patterns simultaneously. These networks 

are particularly effective for recognizing dynamic 

gestures and sign language sequences where the 

motion of the hands is integral to the sign's meaning. 

Temporal networks, designed to model sequential 

dependencies more effectively, further improve the 

ability of deep learning systems to process and 

understand sign language in continuous contexts. 

Hybrid models combine feature extraction, 

machine learning, and deep learning techniques to 

improve performance and robustness [30]. For 

instance, a hybrid model might integrate image-

based CNNs with RNNs to capture a gesture 

sequence's spatial and temporal aspects. By 

combining multiple methods, these models can 

overcome the limitations of individual approaches, 

such as the inability of traditional machine learning 

algorithms to handle complex, dynamic gestures. 

Hybrid models are beneficial in real-world 

applications, where systems must process diverse 

input data, such as video and sensor data, to ensure 

accurate recognition across different environments 

and signers. Integrating multiple recognition 

methods helps create more adaptable, correct, and 

efficient systems that perform well in various 

practical scenarios. 

In developing and accessing SLR systems, the 

choice of evaluation metrics plays a critical role in 

determining the effectiveness and efficiency of the 

models. These metrics quantify how well a system 

performs in terms of accuracy, reliability, speed, and 

robustness, offering insight into its practical utility 

for real-world applications [31]. Key evaluation 

metrics for SLR include accuracy, precision, recall, 

F1-score, real-time recognition accuracy, the 

confusion matrix, and time complexity/latency. 

Accuracy is one of the most commonly used 

evaluation metrics, representing the overall 

performance of the SLR system. It is calculated as 

the ratio of correctly predicted gestures to the total 

number of predictions made. In other words, 

accuracy measures the proportion of correct 

classifications relative to the total number of 
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samples [32]. While it provides a general sense of 

model performance, accuracy alone may not always 

be sufficient, especially in imbalanced datasets 

where certain classes (gestures) are more frequent 

than others. In such cases, accuracy can be 

misleading, as a model might achieve high accuracy 

by simply predicting the majority class while 

neglecting the minority class. 

In addition to accuracy, precision, recall, and 

F1-score are often used to provide a more detailed 

assessment of the model’s performance, particularly 

in scenarios where class imbalance or varying costs 

of false positives and false negatives are a concern 

[33]. Precision measures the proportion of accurate 

optimistic predictions (correctly identified gestures) 

of all instances predicted as positive. In the context 

of SLR, high precision indicates that the system does 

not frequently misclassify non-sign gestures as valid 

signs. On the other hand, Recall quantifies the 

proportion of accurate optimistic predictions out of 

all actual positive instances, providing insight into 

how well the system identifies all possible correct 

gestures. Recall is particularly useful when the goal 

is to ensure that no valid sign is missed. The F1-

score is the harmonic mean of precision and recall, 

offering a balanced measure of both metrics. It is 

particularly valuable in scenarios where precision 

and recall must be balanced, as it considers false 

positives and negatives. The F1 score provides a 

more nuanced evaluation than accuracy, especially 

in datasets with varying gesture frequencies. 

Real-time recognition accuracy is another 

critical metric, especially for applications that 

require immediate feedback, such as human-

computer interaction or real-time translation [34], 

[35]. It measures how well the SLR system performs 

in a live, interactive setting, where the system needs 

to process and classify gestures within strict time 

constraints. Real-time accuracy evaluates both the 

accuracy of gesture recognition and the time it takes 

to produce results [36]. It is an essential metric for 

assessing the system's feasibility in practical 

applications, as slow processing times may hinder 

the user experience, even if the model is otherwise 

highly accurate. 

The confusion matrix is a comprehensive tool 

used to evaluate the performance of classification 

models in a more granular way. It provides a table 

that summarizes the number of true positives, false 

positives, true negatives, and false negatives for each 

class, offering insights into how well the model 

distinguishes between different gestures. The 

confusion matrix can help identify common 

misclassifications, revealing patterns such as sure 

signs being frequently confused with one another 

[37]. This diagnostic tool is handy for fine-tuning 

models, identifying areas of improvement, and 

understanding specific weaknesses in gesture 

recognition. 

Time complexity and latency are important 

metrics when evaluating the efficiency of the 

recognition system. Time complexity refers to the 

computational cost associated with processing the 

input data, typically expressed in the number of 

operations required as a function of the input size. In 

the context of SLR, time complexity is a key 

consideration when the system needs to process 

large volumes of data, such as high-resolution video 

or 3D sensor inputs. A model with high time 

complexity may become impractical for real-time or 

large-scale applications. Latency, on the other hand, 

refers to the time delay between the input of a 

gesture and the system's response or output. In real-

time SLR systems, low latency ensures users receive 

prompt feedback on their gestures [38]. High latency 

can lead to a suboptimal user experience, especially 

in interactive scenarios such as sign language 

translation or communication with assistive devices. 

Both time complexity and latency are crucial for 

evaluating the system's practical performance in 

real-world conditions, where rapid processing and 

responsiveness are often paramount. 

One of the most impactful applications of SLR 

is in assistive technologies. For individuals who are 

deaf or hard of hearing, effective communication 

with non-signers is often a challenge, particularly in 

environments where interpreters are not readily 

available [39]. SLR systems can bridge this 

communication gap by translating sign language into 

spoken or written language in real time, allowing 

users to communicate more effectively in public 

spaces, workplaces, healthcare settings, and 

educational institutions [40]. For instance, real-time 

sign language translation tools, such as mobile apps 

or dedicated devices, enable deaf individuals to 

interact with hearing people, thus improving social 

inclusion and reducing isolation. Additionally, SLR 

systems can be integrated into devices like 

smartphones, smart glasses, or smart home systems, 

enhancing the accessibility of everyday technologies 

for deaf users. By incorporating SLR into assistive 

devices, individuals with hearing impairments can 

engage with technology, receive notifications, and 

even control their environment using sign language 

gestures. 

Human-computer interaction (HCI) is another 

significant area where SLR has considerable 

potential. As technology becomes increasingly 

intuitive and multimodal, there is a growing demand 

for interaction methods beyond traditional input 

devices like keyboards and touchscreens. SLR offers 

a natural, gesture-based mode of communication 

with computers, enabling users to interact with 

digital systems using sign language. This is 

particularly beneficial for deaf and hard-of-hearing 

individuals, who may find voice-based or text-based 
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interactions less accessible or inefficient. For 

instance, sign language-based interfaces could allow 

users to navigate digital environments, interact with 

virtual assistants, or control smart devices through 

hand gestures. Incorporating SLR into HCI not only 

enhances accessibility for the deaf community but 

also enables more inclusive user experiences for 

people of all abilities. Furthermore, sign language 

recognition could be integrated into immersive 

technologies, such as virtual and augmented reality, 

allowing users to perform natural, gesture-based 

interactions within these environments [41]. 

SLR systems are also being increasingly 

adopted in sign language learning tools, which serve 

as educational resources for learners and platforms 

for preserving sign language in digital formats. 

Learning sign language can be challenging, 

particularly for individuals who do not have direct 

exposure to the language or community. SLR-based 

tools provide an interactive and dynamic way to 

facilitate learning by offering real-time feedback on 

learners' sign production [42]. For example, these 

tools can assess whether the learner is making a sign 

correctly based on hand shape, orientation, and 

movement, thereby providing immediate corrective 

feedback. This helps learners improve their skills 

more efficiently and engagingly than traditional 

methods. Additionally, such tools can be used for 

language preservation, particularly for minority or 

endangered sign languages. By creating large 

datasets of sign language gestures and making them 

accessible digitally, SLR systems contribute to the 

documentation and standardization of sign language, 

ensuring its survival for future generations. 

Moreover, SLR-based applications can be integrated 

into educational institutions, offering students and 

educators a convenient and accessible medium for 

learning and teaching sign language. 

The paper's contribution lies in its 

comprehensive exploration and analysis of different 

approaches, techniques, and datasets used for 

alphabet SLR worldwide. The paper examines 

various sign languages' recognition systems and 

their effectiveness in recognizing alphabet-based 

signs, highlighting patterns and methodologies that 

have emerged across different countries and 

cultures. It provides an in-depth review of the state-

of-the-art SLR systems, identifying existing 

approaches' strengths, challenges, and limitations. 

Additionally, the study offers insights into the 

evolution of SLR technologies. It presents 

recommendations for future study guidelines, aiming 

to advance these systems' accuracy, efficiency, and 

applicability on a global scale. Overall, the paper 

serves as an important resource for researchers in the 

SLR field, contributing to the advancement of 

inclusive communication systems for the community 

of deaf and hard-of-hearing individuals. 

As technology continues to advance, the 

integration of pattern recognition methods for 

recognizing sign languages has become increasingly 

prominent. These methods significantly enhance 

accessibility and interaction for deaf and hard-of-

hearing individuals by utilizing sophisticated 

algorithms and machine learning techniques. These 

methods can analyze visual inputs—such as hand 

gestures and facial expressions—enabling real-time 

interpretation of sign language [43]. This 

technological progress not only streamlines 

communication between signers and non-signers but 

also supports the development of applications and 

devices that promote inclusivity, such as automatic 

translation tools and interactive learning platforms. 

By making sign language more accessible, these 

innovations foster greater understanding and 

collaboration across diverse communities. 

2. RELATED WORKS 

Sign language recognition has been a focus of 

research for years, with many studies examining 

ways to close communication gaps between the 

hearing-impaired community and the hearing 

population. A significant challenge in this field is the 

creation of precise and effective systems that can 

interpret hand gestures in real time. Several 

methodologies have been employed to recognize 

sign language, with deep learning techniques 

emerging as the most prominent approach. 

The data collection process for this study 

involved analyzing research articles and publicly 

available datasets to identify relevant studies on 

SLR. Research articles were selected based on their 

use of datasets from widely recognized sign 

languages, such as ASL, BSL, and ArSL, with a 

focus on studies employing CNN, RNN, or their 

combinations. Key details about datasets, such as 

sample size, signer diversity, and gesture types 

(static or dynamic), were extracted to inform data 

preparation. The collected data was standardized 

through preprocessing, including resizing, 

normalization, and data augmentation techniques 

such as rotation, scaling, and flipping. For video 

data, frame extraction and temporal alignment 

ensured consistency in representing dynamic 

gestures. 

The curated data was processed using a hybrid 

CNN-RNN architecture. CNN layers extracted 

spatial features like hand shapes and orientations, 

and RNN layers captured temporal dependencies in 

dynamic gestures [44]. The model was trained with 

optimized hyperparameters and evaluated against 

benchmarks reported in the research articles using 

metrics such as accuracy, precision, recall, and F1-

score. To test real-world applicability, latency, and 

computational efficiency were assessed on edge 
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devices like Raspberry Pi. Cross-validation ensured 

robust performance, demonstrating the system's 

ability to generalize across diverse scenarios while 

addressing challenges in dataset diversity and real-

time applications highlighted in prior studies. 

One of the early focuses in the field has been 

the recognition of sign language alphabets. Table 1 

shows various methodologies and models used in 

sign language recognition, with differing 

performance outcomes. For instance, the ASL 

alphabet has been effectively recognized using 

CNNs, a technique for efficiently classifying image 

data. Previous studies have highlighted the strong 

performance of CNNs in recognizing the ASL 

alphabet. This success is primarily attributed to 

CNNs' capability to capture intricate features from 

images, making them particularly effective for sign 

language recognition tasks. These advancements 

have spurred ongoing research on enhancing the 

models' performance and optimizing them for real-

time applications. 

 
Table 1. Comparison of Approaches for Sign Language Recognition: Methodologies, Models, and Performance 

Study Methodology Dataset Model Accuracy Challenges Key Contributions 

Hassanin, 

(2023). 

[45] 

Fast Gradient Sign 

Method (FGSM) 

with Keras and 

TensorFlow 

Arabic 

manuscript 

dataset 

CNN-based 

Region Proposal 

Algorithm for 

object detection 

99% Handling 

multilingual and 

varied document 

categories 

Proposed a new 

framework 

integrating 

adversarial training 

and RoI detection  

Batool, 

(2022). 

[46] 

EfficientNet models 

for lightweight deep 

learning 

Arabic Sign 

Language (ArSL) 

gestures 

Lightweight deep 

learning model 

using 

EfficientNet-Lite 

94% 

classification 

accuracy 

Designing 

lightweight models 

suitable for mobile 

devices 

Achieved high 

classification 

accuracy with 

reduced 

computational 

requirements 

Benjamin, 

(2023). 

[47] 

Comparative 

analysis of 

machine learning 

models 

Custom dataset 

of 24,300 images 

of Norwegian 

Sign Language 

alphabet signs 

Support Vector 

Machine (SVM), 

CNN, and K-

Nearest 

Neighbor (KNN) 

SVM and CNN 

achieved 99.9% 

accuracy 

Need for efficient 

and accurate 

models for NSL 

Demonstrated 

effective models 

(SVM and CNN) for 

NSL recognition with 

high accuracy 

Shagun, 

(2022). 

[26] 

Bag of Visual 

Words (BOVW), 

SURF, SVM, CNN 

Indian Sign 

Language 

alphabets include 

digits (0–9) and 

(A-Z) 

SVM and CNN 

for classification 

No specific 

accuracy was 

mentioned 

Predictions as 

text and speech 

Effective 

segmentation of 

hand signs amidst 

varying 

backgrounds 

Provides a real-time 

recognition system 

with text and speech 

output. 

Itsaso, 

(2021). 

[48] 

Hand landmarks 

extraction, 

Common Spatial 

Patterns (CSP), 

feature extraction 

LSA64 dataset 

(Argentinian Sign 

Language) 

Random Forest 

(RF), K-Nearest 

Neighbors 

(KNN), Multilayer 

Perceptron 

(MLP) 

Accuracy 

between 0.90 

and 0.95 on 42 

signs 

Communication 

barrier for the deaf 

and hard-of-hearing 

individuals without 

interpreters 

Argentinian Sign 

Language 

recognition scheme 

using hand 

landmarks and CSP 

for feature extraction 

Diponkor, 

(2021). 

[11] 

Convolutional 

Neural Network 

(CNN), dataset 

pre-processing 

(normalization) 

Sign Language 

MNIST (34,627 

images, 27,455 

training, 7,172 

testing) 

CNN for ASL 

(American Sign 

Language) 

alphabet 

recognition 

99.78% accuracy 

on unseen data 

Considerable inter-

class variation in 

sign language, 

complexity of 

recognition 

Using CNN to 

achieve high 

accuracy in 

recognizing ASL 

alphabets 

Tzeico, 

(2024). 

[49] 

Convolutional 

Neural Network 

(CNN), MediaPipe 

framework 

336 test images 

of Mexican Sign 

Language (MSL) 

dactylological 

alphabet 

CNN for static 

sign language 

recognition 

84.57% 

accuracy, 

83.33% 

sensitivity, 

99.17% 

specificity (for 

letter samples) 

Recognizing static 

signs with a limited 

dataset 

Real-time 

classification of MSL 

on low-consumption 

equipment, 

improving 

accessibility 

Jungpil, 

(2021). 

[24] 

MediaPipe hands 

algorithm, feature 

extraction 

American Sign 

Language 

Alphabet dataset 

SLR based on 

vision, utilizing 

hand images 

captured by a 

webcam 

99.39% 

(Massey), 

87.60% (ASL 

Alphabet), 

98.45% (Finger 

Spelling A 

dataset) 

Achieving high 

accuracy with a 

vision-based 

approach and web 

camera 

Cost-effective, 

inexpensive ASL 

recognition without 

the need for sensors, 

outperforming 

previous studies 

Kinanti, 

(2024). 

[50] 

Convolutional 

Neural Network 

(CNN) for finger 

spelling gesture 

recognition 

BISINDO finger 

spelling gestures 

CNN-based 

gesture 

recognition 

system, real-time 

prediction  

97.5% accuracy Inaccurate 

recognition of one 

letter, limited 

dataset size 

Development of a 

BISINDO finger 

spelling gesture 

recognition system 

with high accuracy 

and real-time 

prediction 

Zaraan, 

(2022). 

[51] 

Deep learning-

based real-time 

Arabic Sign 

Language Alphabet 

(ArSLA) 

recognition  

scientific ArSLA 

dataset 

AlexNet 

architecture 

94.81% accuracy 

in real-time 

recognition 

Not specified in 

detail, but real-time 

recognition in 

general 

Development of a 

real-time ArSLA 

recognition model 

using AlexNet, 

achieving high 

accuracy 

 

In the context of ArSL, a similar approach was  

 

taken, utilizing deep learning architectures like 
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AlexNet to achieve high accuracy in recognizing the 

ArSLA (Arabic Sign Language Alphabet) [51]. This 

study showed that the best-performing deep learning 

architecture for real-time recognition was AlexNet, 

with a reported accuracy of 94.81%. The research 

highlighted the importance of selecting appropriate 

architectures for real-time applications, particularly 

for ArSL, where sign language is represented by 

specific signs or fingerspelling. This effort to create 

a real-time system for ArSLA recognition 

contributes significantly to the field, as it addresses 

the unique challenges posed by the Arabic script and 

sign language structure [52]. 

Another significant contribution comes from 

studies focusing on Indian Sign Language (ISL), 

which has not received as much attention as ASL. 

Researchers developed a Bag of Visual Words 

(BOVW) model to classify ISL alphabets and digits 

in a live video stream [26]. This approach utilized a 

Support Vector Machine (SVM) and CNN for 

classification, achieving high accuracy for alphabets 

and digits, with CNNs outperforming other 

classifiers. Notably, this work contributed to the 

recognition of ISL in real-time, with a system that 

outputs both text and speech, providing an 

interactive and accessible solution for the hearing-

impaired community. 

For Mexican Sign Language (MSL), using 

CNNs was also explored to recognize static signs 

from video frames. The study employed the 

MediaPipe framework to detect hand landmarks and 

used these landmarks as input features for a CNN-

based model. The results showed an accuracy of 

83.63%, highlighting the potential of CNNs for real-

time MSL recognition [49]. The system also 

demonstrated high specificity, with the ability to 

classify signs even in varied conditions, such as 

different backgrounds, suggesting that CNNs can 

handle the diversity of hand shapes and positions 

inherent in sign language gestures. 

Finally, a recent study on Argentinian Sign 

Language (LSA) recognition leveraged hand 

landmarks and the Common Spatial Patterns (CSP) 

algorithm to improve the classification of signs from 

the LSA64 dataset. This method incorporated 

various classifiers like K-Nearest Neighbors (KNN), 

Random Forest (RF), and Multilayer Perceptron 

(MLP) to achieve accuracy rates varying between 

0.90 to 0.95 [48]. The study’s use of hand landmark 

extraction, combined with CSP for dimensionality 

reduction, represents an innovative way to address 

challenges in sign language recognition by 

improving feature extraction and classifier 

performance. 

3. METHODOLOGIES IN SIGN LANGUAGE 

RECOGNITION 

In SLR, CNNs have become one of the most 

popular methodologies, especially for static gesture 

recognition. CNNs are effective because they 

autonomously learn and extract features from raw 

image data, making them compatible with analyzing 

hand shapes, positions, and orientations. This 

method is beneficial when the sign language 

gestures are represented as images, as CNNs can 

accurately classify these gestures. By processing the 

data through multiple layers, CNNs capture 

hierarchical patterns crucial for distinguishing hand 

shapes and movements in sign language. 

RNNs are commonly used for dynamic 

gestures, which involve movements over time. They 

are highly effective at processing sequential data by 

recognizing temporal relationships, making them 

ideal for recognizing gestures that change over time. 

Specifically, Long-Short-Term Memory (LSTM) 

networks, a kind of RNN, are often employed in sign 

language recognition [53]. LSTMs can remember 

previous states over long sequences, making them 

more effective at interpreting continuous gestures 

and complete sentences [54]. Combining CNNs for 

feature extraction besides RNNs for sequence 

prediction allows for improved recognition of static 

and dynamic signs, enhancing the general 

performance of SLR systems. 

CNNs and RNNs are two robust models 

commonly used in SLR, each specializing in 

handling different aspects of sign language datasets. 

CNNs are particularly adept at processing spatial 

features, making them ideal for recognizing static 

gestures like hand shapes and orientations. When 

applied to datasets such as ASL, BSL, and ArSL, as 

shown in Figure 2, CNNs can effectively learn the 

visual characteristics of each sign. These datasets 

typically include images representing individual 

signs or letters of the alphabet. For instance, each 

letter in ASL or BSL, or the individual gestures in 

ArSL, can be captured in a single image frame, 

which CNNs process through convolutional layers to 

identify key features such as shapes, edges, and 

textures. This enables CNNs to classify each gesture 

based on its unique spatial attributes. 
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(ArSL-A) (ASL-A) (BSL-A) 
Figure 2. Visual Representation of Arabic (ArSL-A), American (ASL-A), and British (BSL-A) Sign Language Alphabets 

 

Conversely, RNNs, particularly Long Short-

Term Memory (LSTM) networks, are considered to 

handle sequential data and are well-suited for 

dynamic sign language recognition, where gestures 

involve motion and change over time [29]. Sign 

language often consists of sequences of gestures or 

continuous signs, which RNNs can understand due 

to their ability to learn temporal dependencies 

between frames in a video. In datasets like ASL, 

BSL, and ArSL, RNNs track the evolution of hand 

gestures from one frame to the next, understanding 

the flow and progression of movements in a sign 

language sentence or phrase. For example, the 

transition from one letter to another in a spelling 

sequence or the motion of a hand for a common 

phrase would be captured and processed by an RNN, 

enabling it to recognize the sequence of gestures. 

Example of SLA Datasets: 

1) ASL Dataset: The American Sign Language 

dataset contains hand gestures for each letter in 

the ASL alphabet and often includes static 

images for individual letters and dynamic 

sequences for entire phrases or sentences. This 

dataset trains models to recognize hand gestures 

as part of English, where a specific gesture 

represents each letter or word. 

2) BSL Dataset: Similar to the ASL dataset, the 

British Sign Language dataset includes gestures 

for the letters of the BSL alphabet. It may also 

contain gestures for common words and phrases 

in the UK. Like ASL, BSL signs are captured in 

both static images and video sequences to help 

train models to recognize letters and full 

expressions [55]. 

3) ArSL Dataset: The Arabic Sign Language 

dataset includes hand gestures representing the 

Arabic alphabet and some common phrases 

[56]. ArSL is used across Arabic-speaking 

regions so that the dataset may contain 

variations in the signs based on regional 

dialects. Like the other two datasets, it includes 

static and dynamic sign representations. 

CNNs are adequate for visual recognition tasks, 

such as identifying hand gestures in sign language 

[57]. CNNs automatically learn hierarchical features 

from images, making them ideal for recognizing 

patterns in sign language gestures. The process can 

be broken down into key steps, from preprocessing 

the input images to making estimates based on 

learned features. Figure 3 is a flowchart that 

illustrates the general process of how CNNs are 

applied in SLR. 

 

Figure 3. The Flowchart of CNN to recognize sign language 

 

The first step in applying CNNs to SLR is the 

collection of a suitable dataset. This dataset typically 

includes images or video frames representing 

different sign language gestures, such as those from 
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ASL, BSL, or ArSL [58]. Each image or frame in 

the dataset corresponds to a specific sign or 

alphabet, and the goal is to train the CNN to 

recognize these signs. The diversity in the dataset, 

such as variations in hand orientations, shapes, 

lighting conditions, and backgrounds, plays a crucial 

role in training a model that can generalize well to 

real-world scenarios [59]. 

After collecting the data, the images must be 

preprocessed to make them suitable for input into 

the CNN. Preprocessing typically involves resizing 

the images to a uniform size to ensure consistency 

across the dataset. Since CNNs work more 

efficiently with normalized data, the pixel values of 

each image are usually scaled to a range between 0 

and 1. This normalization helps the network 

converge faster during training. Furthermore, data 

augmentation procedures, such as rotating, flipping, 

and scaling images, are applied to artificially 

increase the dataset's size and variety. These 

techniques help the model generalize better and 

avoid overfitting, especially when training on 

smaller datasets. 

The core of a CNN lies in its convolutional 

layers, which are responsible for extracting features 

from the input images. In these layers, filters (or 

kernels) are applied to the image, detecting low-

level features such as edges, textures, and corners 

[60]. Each filter produces a feature map, 

highlighting different aspects of the image. For 

example, one filter may capture the outlines of a 

hand, while another could detect the shape of a 

finger. As the image moves through successive 

convolutional layers, the network develops 

progressively more abstract representations, 

allowing it to recognize more complex patterns 

critical for SLR, such as the shape and position of 

the hands. 

After the convolutional layers, pooling layers 

are used to reduce the spatial dimensions of the 

feature maps. Pooling serves to down-sample the 

information while retaining the most important 

features. This step helps reduce computational cost 

and decreases the risk of overfitting. Typically, max 

pooling is used, where the highest value from a 

group of neighboring pixels is retained. Pooling 

allows the network to focus on the most salient 

features of the image, such as the key points of hand 

gestures, and discard less important details. This also 

helps the network become more robust to variations 

like translation and minor image distortions. 

Once the feature maps have been pooled and 

reduced in size, the data is flattened into a one-

dimensional vector and passed through fully 

connected layers. These layers are responsible for 

interpreting the features and making the final 

classification decision. The fully connected layers 

map the extracted features to specific classes, such 

as different sign language symbols or letters. Each 

neuron in the fully connected layer corresponds to a 

potential output class, and the network learns to 

associate the feature vector with the correct sign 

language gesture [61]. This step is crucial as it 

combines the high-level features extracted by the 

convolutional layers and prepares them for 

classification. 

The output layer of the CNN provides the final 

prediction for the input image [62]. Based on the 

learned features and the classification performed by 

the fully connected layers, the output layer assigns a 

probability to each potential class. Typically, a 

softmax activation function is used, which outputs a 

probability distribution over all possible classes [63]. 

The class with the highest probability is selected as 

the model's prediction. In the case of SLR, this could 

be the letter or word represented by the input 

gesture. For example, the model may output "A" if it 

identifies the gesture as the ASL sign for the letter 

"A." 

RNNs are a class of neural networks that 

handle sequential data, making them compatible 

with speech recognition, language modeling, and 

sign language recognition from video frames [64]. 

Unlike CNNs, which specialize in spatial patterns in 

images, RNNs can learn temporal dependencies, 

making them ideal for interpreting sequences of 

frames or videos in sign language recognition [65]. 

Figure 4 shows a flowchart of the general 

process when using RNN for sign language 

recognition, illustrating the sequence from input 

frames to final prediction. The process includes 

steps such as frame extraction, feature extraction, 

sequence input into the RNN, and output prediction 

of the sign language gesture. 
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Figure 4. The Flowchart of RNN to recognize sign language 

 

1) Input Sequence: The initial step in the RNN-

based SLR model is to capture the sequence of 

frames. These frames are typically extracted 

from a video where the sign language gesture is 

performed. Each frame corresponds to a hand 

gesture at a specific time. The input could be a 

series of images or video frames representing 

the movement of the hands. These frames are 

collected and arranged in the correct temporal 

order. 

2) Preprocessing: Before feeding the frames into 

the RNN, preprocessing steps are performed to 

prepare the data for the model. This phase 

includes resizing the images, normalizing the 

pixel values, and augmenting the dataset by 

applying rotation, zooming, or shifting 

transformations to increase the variety of inputs 

and improve the model’s robustness. 

Normalization ensures that all pixel values lie 

within the same range, which helps the model to 

learn more effectively [66]. 

3) Feature Extraction: RNNs alone cannot 

effectively process raw pixel data. To address 

this limitation, feature extraction is performed 

before feeding the data into the RNN. CNNs are 

commonly used in this step to extract spatial 

features from each frame. CNNs help identify 

hand shapes, positions, orientations, and other 

spatial patterns critical for understanding 

gestures. Alternatively, hand-crafted features 

such as hand landmarks or motion descriptors 

may also be used. 

4) Sequence Input to RNN: After the spatial 

features are extracted from each frame, the 

sequence of frames is fed into the RNN [67]. 

Each frame’s features are passed into the RNN, 

and the network processes them in order, 

considering both the current and past frames in 

the sequence. This is where RNNs excel, as they 

have a memory mechanism that permits them to 

maintain information from former frames, 

allowing them to learn the temporal 

relationships between frames. 

5) RNN Layers (LSTM or GRU): The core of the 

RNN is composed of specialized layers, for 

instance, Long Short-Term Memory (LSTM) or 

Gated Recurrent Units (GRU). These units are 

designed to capture long-term dependencies in 

the sequential data, which is crucial for SLR. 

LSTM and GRU networks help mitigate the 

vanishing gradient problem and allow the model 

to retain important information over many time 

steps. For example, an RNN can learn how a 

hand shape changes over time and interpret how 

these changes contribute to the meaning of the 

sign. 

6) Fully Connected Layer: Once the RNN has 

processed the entire sequence of frames and 

learned the temporal patterns, its output is 

passed through one or more fully connected 

layers. These layers aggregate the features 

learned by the RNN and map them to the final 

output classes, which correspond to different 

signs, letters, or symbols in the sign language 

alphabet. The fully connected layer takes the 

learned temporal features from the RNN and 

produces the final prediction. 

7) Output: The output layer typically generates the 

final prediction using a softmax activation 

function. The softmax function turns the output 

into a probability distribution for the potential 

classes. The class with the highest probability is 

selected as the predicted sign language gesture. 

Depending on the complexity of the model, the 

output could represent a specific letter, word, or 

complete gesture. 

CNNs and RNNs are extensively used in SLR 

but differ significantly in their approach to 

processing data and handling the complexity of sign 

language gestures. CNNs are primarily designed to 

process spatial information in images. They apply 

convolutional layers to extract spatial features from 

images of hand gestures, allowing the model to learn 

local patterns like hand shapes, orientation, and 
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positioning. This makes CNNs particularly effective 

for recognizing individual signs based on visual 

features from static images or video frames[68]. 

On the other hand, RNNs are considered to 

handle sequential data, making them more 

appropriate for recognizing dynamic gestures in sign 

language. Unlike CNNs, which process individual 

frames or images independently, RNNs consider the 

temporal sequence of frames in a video. This enables 

RNNs to model the motion and changes over time, 

capturing the transitions between positions, hand 

movements, and gestures. RNNs are thus ideal for 

understanding the context of a sign language 

gesture, which often involves a combination of hand 

shape, movement, and location, with crucial 

temporal dependencies for accurate recognition. 

While CNNs excel at extracting spatial features 

from individual frames, they do not inherently 

capture the temporal relationships between frames. 

In contrast, RNNs, with their built-in memory 

mechanism (like LSTM or GRU), can retain 

information from previous frames, making them 

more adept at processing continuous sequences, such 

as a series of hand movements. This makes RNNs 

more suitable for recognizing dynamic and context-

dependent gestures in sign language, where the 

meaning is often derived from the entire sequence of 

actions rather than a single frame. 

In many sign language recognition systems, 

CNNs and RNNs are combined to take advantage of 

the benefits of both models. CNNs are initially 

employed to extract spatial features from each 

frame, and then RNNs are used to process these 

features over time, capturing the dynamics of the 

gesture. This combination allows for a more robust 

recognition system that can handle both the visual 

complexity of static hand shapes and the temporal 

complexity of dynamic movements [68]. 

4. DISCUSSION 

Sign language involves dynamic gestures, 

trajectory properties, and multidimensional feature 

vectors, making recognizing it challenging. Despite 

these complexities, researchers are focused on 

developing generalized, reliable, and robust SLR 

models. Incorporating multidimensional features is 

an emerging approach that has shown promise in 

enhancing recognition accuracy. 

This review paper seeks to provide a clear 

understanding and practical guidance to the SLR 

research community. Developing effective SLR 

models to support the hand-signing community 

remains a prominent research area within pattern 

recognition, computer vision, and natural language 

processing. 

The limitations of current datasets and their 

sizes present significant challenges for SLR. One 

major issue is the ambiguity and lack of 

comprehensive training datasets, which makes SLR 

systems vulnerable to errors. Large-scale and 

standardized datasets that include manual and non-

manual features are essential for effective SLR. 

However, the current datasets often face barriers due 

to inadequate recording, collection, and measuring 

equipment, leading to reduced performance. 

Several factors impact the quality of the 

datasets, including poor camera quality, improper 

camera setups, and issues with multi-camera 

synchronization. When camera resolution is low, the 

clarity of signs is compromised, decreasing the 

system's accuracy. Similarly, improper camera setup 

can result in losing important sign information, 

especially when signs are dynamic or static. If 

multiple cameras are used, a lack of synchronization 

may cause information loss, further degrading 

performance. Additionally, the devices' reliability, 

cost-effectiveness, and ease of maintenance are 

critical for consistent performance. The environment 

in which data is captured also plays a crucial role. 

Background noise, improper lighting, and poor 

illumination can all negatively impact the dataset's 

quality, leading to misclassifications and reduced 

recognition rates. The distance between the camera 

and the signer must also be optimal; too close or too 

far can significantly affect the system’s 

performance. 

The current trends in SLR face several 

limitations, which hinder their accuracy and 

performance. One major issue is the variability 

between different signers, affecting recognition. For 

instance, variations in the speed and continuity of 

signs make segmentation and feature extraction 

more challenging. Additionally, occlusions, such as 

hand-to-face or hand-to-hand overlap, and factors 

like long sleeves or colored gloves can obstruct sign 

recognition. There is also considerable variation in 

how signs are performed by different individuals, 

which complicates the process. 

Video-related challenges are another limitation, 

as handling video data often exceeds the capacity of 

limited GPU memory. Since many CNN techniques 

are image-based, videos, with their additional 

temporal dimension, pose problems. A simple 

resizing process can result in the loss of important 

temporal information, affecting the fine-tuning and 

classification of each frame. Network design 

challenges also impact performance, with location 

and illumination influencing recognition and 

classification abilities. Moreover, choosing the right 

batch size during training is critical, as a larger batch 

size can reduce local convergence, while smaller 

batch sizes increase training costs. The selection of 

appropriate loss functions and optimal 

hyperparameters also presents hurdles. Despite the 

advancements in deep learning networks, which 
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have enhanced SLR accuracy, these limitations 

remain significant, and addressing them is crucial 

for further development in SLR. 

SLR has many potential applications, 

particularly when integrated with human-computer 

interaction. One key application is virtual reality 

(VR), where users can experience artificial 

simulations of the real world, using SLR to 

communicate with virtual environments. In smart 

homes, SLR can be used to monitor, access, and 

control household devices through sign language, 

enhancing the accessibility of innovative 

technologies. In healthcare, SLR can assist patients, 

enabling better communication between patients and 

healthcare providers and improving the quality of 

life and healthcare services. Furthermore, SLR can 

be crucial in social safety, ensuring safe interactions, 

and minimizing social threats for individuals with 

hearing impairments. In telehealth, it allows for 

remote consultations, making healthcare services 

more accessible. 

SLR also has applications in virtual shopping, 

providing a more inclusive and comfortable 

shopping experience by enabling customers to use 

sign language to interact with virtual stores. In 

digital signatures, SLRs can authenticate 

information through electronic signs. The gaming 

and entertainment industry can benefit from SLR by 

providing users with a more immersive and 

interactive experience through sign language-based 

controls. In text and voice assistance, SLR can be 

combined with speech recognition to offer better 

communication, allowing users to interact through 

text and sign language. Education is another domain 

where SLR can be essential, facilitating enhanced 

learning and communication for students with 

hearing impairments. Moreover, one notable and 

impactful application of SLR could be in reciting 

verses from the Al-Quran [69]. By enabling 

individuals to recite Quranic verses in sign language, 

SLR can promote inclusivity and enhance the 

learning experience for the deaf and hard-of-hearing 

community, offering a meaningful way to engage 

with the sacred text. 

5. RESEARCH SCOPE AND FUTURE 

DIRECTION 

Compared to recent advancements in automatic 

speech recognition, SLR is still in its primary stages 

of development and lags significantly behind. Much 

research has been conducted in the field of SLR, 

with numerous studies focused on achieving higher 

performance using advanced techniques such as 

deep learning, machine learning, optimization, and 

experimentation with advanced hardware and 

sensors. Despite these efforts, several challenges 

remain unresolved. These include issues with 

distinctiveness and handling sign variations, 

difficulties related to the fusion of multiple sensors 

or cameras, managing multi-modal data, 

computational challenges, maintaining consistency, 

and effectively handling large vocabularies. 

Additionally, there is a need for standard datasets 

that can be used universally for training and 

evaluation. 

Future directions for SLR include the need for 

a better understanding of optimal hyperparameter 

estimation strategies for SLR model design. Most 

current models are developed using controlled lab-

based datasets, so building models that can function 

effectively in uncontrolled environments is a crucial 

area of focus. Another significant challenge lies in 

designing user-friendly, realistic, and robust sign 

language models that can be widely adopted. The 

development of high-precision capturing devices 

such as sensors and cameras and novel training 

strategies to reduce computational complexities will 

also play a key role in the progress of the field. 

Lightweight CNNs for SLR are an area of active 

research, along with integrating multi-modal data to 

enhance recognition accuracy [70]. Researchers are 

also striving to create a generic, automatic SLR 

model that can be applied across different sign 

languages and contexts. This review paper serves as 

a comprehensive guide for researchers, outlining the 

challenges, gaps, and future research directions in 

SLR, with the ultimate goal of developing 

innovative models that can assist the hand-talking 

community and contribute to social well-being. 

6. CONCLUSION 

In conclusion, this research paper highlights 

the significant progress made in the SLR field, 

focusing on applying advanced machine learning 

techniques such as CNN and RNN to improve 

accuracy and efficiency in recognizing sign 

languages. The integration of these deep learning 

models has shown promising results in overcoming 

the challenges associated with the dynamic, multi-

dimensional, and often ambiguous nature of sign 

language gestures. However, despite the 

advancements, several obstacles remain, such as the 

limitations of current datasets, the need for 

standardized and large-scale datasets, and the 

complexity involved in handling various sign 

languages with distinct characteristics. 

Furthermore, this paper has discussed the 

potential applications of SLR, particularly its 

integration with human-computer interaction in 

diverse fields like healthcare, education, and social 

safety. It also emphasized the importance of 

developing realistic, user-friendly systems that work 

in uncontrolled environments, which remains a 

significant challenge for future SLR models. The 
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research has underscored the importance of 

addressing the computational and data limitations, 

such as handling large vocabularies, achieving high 

recognition accuracy, and ensuring consistency 

across different signers and environments. Lastly, 

the future of SLR looks promising, with the need for 

continued innovation in model design, dataset 

development, and the integration of multi-modal 

systems to create more robust, real-time solutions 

that can benefit the hand-talking community and 

enhance accessibility across various sectors of 

society. 
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