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Abstract 
 

Decision Support Systems (DSS) have a crucial role in real-time decision-making, especially in the digital era 

that demands high speed and accuracy. Managing criterion weights in a dynamic environment presents 

significant challenges due to rapid and unpredictable changes in conditions. However, determining an accurate 

weight becomes difficult due to uncertainty, incomplete data, and subjective factors from decision-makers. In 

addition, changes in the external environment, such as market trends, regulations, or customer preferences, can 

affect the relevance of each criterion, thus requiring a real-time weight adjustment mechanism. The purpose of 

this study is to develop and explore the dynamic weight allocation method in symmetry point- multi-attributive 

ideal-real comparative analysis (S-MAIRCA) to support more accurate and responsive real-time decision-

making in a dynamic environment. This research contributes to the understanding of how the weights of criteria 

can be adjusted automatically and responsively to changing conditions or new data, which increases the 

relevance and accuracy of decisions in a dynamic environment. The urgency of S-MAIRCA research is important 

because it often involves real-time, dynamic, and complex data. This development not only improves the 

adaptability of the S-MAIRCA method, but also contributes significantly to creating computer science-based 

applications that are more intelligent, flexible, and relevant to the evolving needs of the system. The results of 

the alternative ranking comparison using the CRITIC-MAIRCA, LOPCOW-MAIRCA, ROC-MAIRCA, and S-

MAIRCA methods showed variations in the ranking order generated for each alternative using spearman 

correlation. The results of the correlation value of CRITIC-MAIRCA and LOPCOW-MAIRCA have a very high 

correlation of 0.993, which shows that these two methods provide almost identical rankings in alternative 

evaluation. Likewise, CRITIC-MAIRCA and S-MAIRCA had a high correlation of 0.979, signaling a strong 

similarity in ranking results despite slight differences in the approaches used by the two methods. The results of 

the application of the MAIRCA-S method in the development of DSS based on real-time data have a significant 

impact on improving the speed, accuracy, and adaptability of decisions. MAIRCA-S strengthens the validity of 

decision results by considering a variety of attributes on a more comprehensive scale, providing added value in 

the development of DSS for various industrial sectors. 
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1. INTRODUCING 

Decision Support Systems (DSS) have a crucial 

role in real-time decision-making, especially in the 

digital era that demands high speed and accuracy[1]. 

DSS helps process complex and large data quickly 

to produce relevant and reliable information for 

decision-makers. With advanced analytical 

capabilities, such as data modeling, simulation, and 

criteria weighting, DSS enables organizations to 

respond to critical situations in a timely manner, 

reduce the risk of errors, and improve process 

efficiency[2]. The implementation of DSS also 

supports more objective decision-making because it 

is data-based and algorithmic[3], making it an 

irreplaceable tool in various sectors, to deal with the 

dynamics of rapid change. Managing criterion 

weights in a dynamic environment presents 

significant challenges due to rapid and unpredictable 

changes in conditions. In this context, the weight of 

the criteria must be able to reflect the ever-changing 

priorities according to the current needs or situation. 

However, determining an accurate weight becomes 

difficult due to uncertainty, incomplete data, and 

subjective factors from decision-makers[4]. In 

addition, changes in the external environment, such 
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as market trends, regulations, or customer 

preferences, can affect the relevance of each 

criterion, thus requiring a real-time weight 

adjustment mechanism. Without adaptive and data-

driven methods, the risk of ineffective decision-

making increases, which can have an impact on 

operational efficiency and the achievement of 

organizational goals. 

Multi-attributive ideal-real comparative 

analysis (MAIRCA) is a multi-criteria decision-

making method that aims to assist in determining the 

best alternative based on predetermined criteria[5]–

[8]. This method integrates a comparison approach 

between the ideal value (ideal solution) and the 

actual value (real solution) of each alternative to 

obtain objective and accurate results. The MAIRCA 

method has a number of advantages that make it 

superior in the multi-criteria decision-making 

process[9]. One of its advantages is its objective 

nature, as this method minimizes the influence of 

subjectivity by focusing on data analysis based on 

ideal and actual solutions. In addition, MAIRCA is 

adaptive to various types of criteria, both benefits 

and costs, making it suitable for use in a dynamic 

environment and various sectors. Its relatively 

simple and structured process makes it easy for users 

to understand and implement this method without 

the need for complex tools or technical expertise. 

Another advantage is MAIRCA ability to produce 

more precise and transparent decisions, as it takes 

into account direct deviations from the ideal 

solution, resulting in more reliable end results[10]. 

In the context of criterion weighting, the MAIRCA 

method has several weaknesses that need to be 

considered. One of them is the dependence on the 

weight of pre-determined criteria, so if the weight is 

inaccurate or does not reflect the actual priority, the 

results of the decision can be biased. In addition, this 

method is less flexible in handling weight changes 

dynamically[11], especially in complex and 

uncertain environments, where the priority of criteria 

can change over time[12]. Sensitivity to weight is 

also a weakness, as small changes in weight can 

result in significant differences in the final result. 

This makes the reliability of decisions highly 

dependent on the accuracy of the weighing process, 

which often involves the subjectivity of the decision-

maker or expert. 

Developing a dynamic weight allocation 

method for MAIRCA aims to improve flexibility 

and accuracy in decision-making, especially in a 

rapidly changing environment. This approach 

involves the integration of real-time data-based 

weight adjustment techniques, the criteria weights 

can be updated automatically based on changing 

needs or priorities[13], allowing MAIRCA to 

generate more relevant and responsive decisions. 

This step also involves validating the results through 

simulation and comparing performance with static 

weighting methods, ensuring that the dynamic 

approach provides real benefits in complex dynamic 

contexts. The modification of the MAIRCA method 

with the concept of symmetry points aims to create a 

more balanced approach in multi-criteria decision-

making[14], [15]. This modification involves 

calculating the symmetry points for each criterion, 

which is the average value between the ideal 

solution and the anti-ideal solution. Alternatives are 

then evaluated based on deviations from these points 

of symmetry, taking into account the weights of 

relevant criteria. This approach combines the power 

of MAIRCA in comparing actual values with ideal 

solutions, while adding a new dimension with a 

balance point to reduce the bias that may occur if 

only ideal or anti-ideal solutions are considered. The 

end result is an alternative ranking based on the total 

deviation to the point of symmetry, with the best 

alternative being the one with the lowest deviation 

value. These modifications improve the accuracy 

and relevance of MAIRCA, making it more effective 

in dynamic and complex environments. 

Symmetry point-MAIRCA (S-MAIRCA) is a 

development of the MAIRCA method that integrates 

the concept of symmetry point to improve accuracy 

and balance in multi-criteria decision-making[16]–

[18]. This method not only compares alternatives to 

ideal and anti-ideal solutions, but also adds a point 

of symmetry as an additional reference to assess the 

performance balance of each alternative. By 

considering the point of symmetry, S-MAIRCA is 

able to reduce the bias that may arise from 

traditional approaches and provide a more 

comprehensive evaluation of alternatives[19]. This 

approach is particularly suitable for use in complex 

and dynamic situations, where it is important to 

consider the balance between best and worst 

scenarios in order to make more objective and 

relevant decisions. The advantage of S-MAIRCA in 

generating dynamic criterion weights lies in its 

ability to accommodate changing conditions or 

priorities more flexibly. Using the symmetry point 

concept, the S-MAIRCA allows for more adaptive 

weighting, as the symmetry point is calculated based 

on the balance between the ideal and anti-ideal 

solutions[20]. This allows the criterion weights to 

automatically adjust for changes in values that arise 

from new data or external factors, without the need 

for complicated manual updates. This approach 

ensures that the criteria weights are not fixed or 

rigid, but rather can be updated in real-time to reflect 

changes in priorities or needs[21]. This advantage 

makes S-MAIRCA particularly useful in dynamic 

environments, where conditions and preferences 

change frequently, and decision-making requires 

speed and precision in responding to these changes. 

Previous research on criterion weighting in 

multi-criteria decision-making methods has mostly 

focused on the static weighting approach, where 

criterion weighting is determined based on initial 

preference or a specific weighting method. This 
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approach has weaknesses in dealing with dynamic 

conditions, such as changes in stakeholder 

preferences, fluctuations in real-time data, or 

changes in the priority of criteria due to the 

development of the situation. In addition, existing 

research often pays little attention to the 

incorporation of historical data, trend analysis, and 

real-time feedback holistically in dynamic 

weighting. Therefore, it is necessary to develop a 

more adaptive and comprehensive method in the 

application of dynamic criterion weights, especially 

in the S-MAIRCA method, to improve the accuracy 

and relevance of decision-making in changing 

situations. 

The purpose of this study is to develop and 

explore the dynamic weight allocation method in S-

MAIRCA to support more accurate and responsive 

real-time decision-making in a dynamic 

environment. This study integrates the mechanism of 

automatic adjustment of criterion weights, based on 

changes in external conditions and the latest data, by 

utilizing the concept of symmetry points. The 

contribution of this research lies in the development 

of an innovative dynamic weight allocation method 

within S-MAIRCA to support real-time decision-

making. This research contributes to the 

understanding of how the weights of criteria can be 

adjusted automatically and responsively to changing 

conditions or new data, which increases the 

relevance and accuracy of decisions in a dynamic 

environment. Implementation of a more adaptive 

decision support system, which can be implemented 

in various sectors, to provide more objective, 

transparent, and real-time data-driven decisions 

using S-MAIRCA.  

2. RELATED WORK 

The MAIRCA method has been used in various 

studies to solve decision-making problems involving 

multiple criteria. In several previous studies, 

MAIRCA was used to evaluate and select the best 

alternatives in various contexts, ranging from 

supplier selection, performance assessment, to 

product selection. In contrast to other conventional 

methods, MAIRCA offers a more structured 

approach by comparing alternatives based on their 

proximity to ideal and realistic solutions. Related 

studies show the advantages of MAIRCA in 

producing more objective and transparent decisions, 

as this method is able to consider various criteria 

simultaneously and give weight according to the 

importance of each criterion. In addition, MAIRCA 

is also applied in several fields such as project 

management, decision support systems, and policy 

evaluation, proving its flexibility in solving complex 

problems involving many factors. 

Research from [22] the combination of the 

criteria importance through intercriteria correlation 

(CRITIC) and MAIRCA weighting methods 

provides a robust framework for solving complex 

multi-criteria decision-making (MCDM) problems. 

By combining these two methods, the decision-

making process becomes more reliable and 

systematic, as CRITIC ensures the weights are based 

on the nature of the data at hand, while MAIRCA 

provides a robust evaluation framework for selecting 

the best alternatives. This combination is especially 

useful in situations where the decision-making 

process involves many conflicting criteria and 

requires an objective and comprehensive analysis. 

Research from [23] the combination of 

logarithmic percentage change-driven objective 

weighting (LOPCOW) and MAIRCA methods 

offers an innovative and effective approach to 

solving problems. The combination of LOPCOW 

and MAIRCA allows for more objective and 

transparent decision-making, as the weighting 

process is carried out based on existing data without 

the influence of subjectivity, while alternative 

evaluations are carried out comprehensively and 

thoroughly. This approach is very effective in 

situations that involve various conflicting and 

complex criteria, and requires in-depth and 

systematic analysis. 

Research from [24] a combination of the rank 

order centroid (ROC) and (MAIRCA) methods is a 

powerful approach to dealing with MCDM 

problems. This combination of ROC and MAIRCA 

allows for a more transparent and objective decision-

making process, as the ROC ensures the weight 

given to each criterion is based on the available data, 

while MAIRCA provides a thorough evaluation that 

considers all criteria simultaneously. This approach 

is particularly beneficial in situations that involve a 

variety of complex and conflicting criteria, and 

require accurate and comprehensive solutions. 

The MAIRCA method uses a hands-on 

approach to determining the weighting of criteria, 

which is often subjective. This weighting can affect 

the outcome of a decision, especially if the decision-

maker has certain biases or incomplete information. 

This gap opens up opportunities to integrate more 

objective weighting methods. Modification of the S-

MAIRCA method. The modification of the S-

MAIRCA method with a dynamic criterion weight 

approach aims to increase flexibility and adaptability 

in decision-making. The dynamic approach of 

criterion weighting in S-MAIRCA, where the 

criterion weights are dynamically adjusted based on 

preferences, real-time data, or changes in the 

decision-making environment. 

Based on previous research, the results of the 

application of the CRITIC-MAIRCA, LOPCOW-

MAIRCA, ROC-MAIRCA and S-MAIRCA 

methods will be compared from the alternative 

rankings obtained from each method. 
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3. RESEARCH METHOD 

3.1. Research Stages 
The research stage is a series of systematic 

steps carried out to achieve the research objectives, 

ranging from planning to analysis and preparation of 

research results[25]. Each stage has specific 

functions that are interconnected to produce valid 

and actionable findings. Figure 1 is the stage carried 

out in this study. 

 

 
Figure 1. Research Stage 

 

Data collection is the first stage in research that 

is very important to obtain the necessary information 

to support analysis and decision-making. In this 

stage, data is collected through various methods 

relevant to the research. The data collected should 

include information related to the alternatives and 

criteria to be analyzed in the study. The data 

collection process must be carried out systematically 

to ensure the accuracy, completeness, and 

consistency of the data that will be used in the next 

stage. 

The application of MAIRCA modification is 

the core stage in this study, where the MAIRCA 

method is modified with the concept of symmetry 

point to improve accuracy and flexibility in 

decision-making. Dynamic criterion weights are 

calculated by taking into account changes in 

conditions or recent data, which allows the model to 

provide more adaptive and relevant decisions in a 

dynamic environment. 

Result validation is the last important stage to 

ensure that the results obtained from the 

implementation of MAIRCA modifications are valid 

and reliable. At this stage, the results of decision-

making using dynamic criterion weights are 

compared with the results obtained using the 

traditional MAIRCA method with static weights. 

This analysis aims to test whether the dynamic 

approach provides an advantage in terms of accuracy 

and relevance of decisions. In addition, simulations 

and validity tests are conducted to ensure that the 

model can be applied in a real context and provide 

results that are consistent with the research 

objectives. If the validation results show success, the 

study can proceed to practical application or provide 

recommendations for further research. 

3.2. Modification MAIRCA Method 
The MAIRCA method is a multi-criteria 

analysis approach used to compare various 

alternatives based on a number of relevant attributes 

or criteria. This method focuses on assessing the 

comparison between the ideal conditions and the real 

conditions of the evaluated alternatives, to determine 

the best alternative based on predetermined 

preferences. The MAIRCA modification aims to  

 

improve the accuracy and flexibility of the analysis 

by introducing adjustments in criterion weights, 

calculation of preference values, or adjustments to 

uncertainties in the data. With this modification, it is 

hoped that the MAIRCA method can provide more 

accurate and relevant results, which are more in 

accordance with the complexity and dynamics of the 

decision-making situation faced. 

The symmetric point multi-attributive ideal-

real comparative analysis (S-MAIRCA) method is a 

development of the MAIRCA method which aims to 

improve accuracy in alternative evaluation by 

adding symmetrical points in calculations. This 

approach focuses on the comparison between the 

ideal point and the real point of various alternatives, 

but with adjustments so that the comparison results 

are more balanced and reflect the distribution of 

criteria more fairly. In S-MAIRCA, symmetrical 

points are used to correct imbalances between one 

criterion and another, allowing for more objective 

and efficient assessments. These modifications aim 

to reduce the bias that can arise from differences in 

scale or weights between criteria and improve the 

quality of decisions taken in complex multi-criteria 

situations. 

The S-MAIRCA method has several 

advantages that make it excel in multi-criteria 

decision-making. The first advantage of this method 

integrates the concept of symmetrical point 

evaluation, which ensures a balanced assessment 

between ideal alternatives and reality. This approach 

minimizes bias and encourages fair comparisons 

across criteria. The further advantages of the S-

MAIRCA method emphasize positive and negative 

deviations, thus providing a comprehensive 

evaluation framework to capture the advantages and 

disadvantages of each alternative. Another 

advantage is the simplicity of calculations and 

clarity in generating rankings, which allows 

decision-makers to easily understand the results and 

make more informed decisions. Finally, its 

robustness in handling complex datasets as well as 

its sensitivity to small variations in criterion values 

make it an excellent choice for decision-making 

processes that require a high level of precision. 

The framework of the S-MAIRCA method is 

designed to provide a more balanced and objective 

approach in evaluating alternatives based on several 
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criteria. This framework ensures that the analysis is 

carried out in a systematic and structured manner, 

with the aim of generating more precise and reliable 

decisions in a complex multi-criteria context. Figure 

1 is the framework of the S-MAIRCA method. 

 

 

 

Figure 2. Framework S-MAIRCA Method 
 

The first stage of the S-MAIRCA method 

framework is to create a decision matrix containing 

alternative data and relevant criteria. This matrix is 

used to map the value or performance of each 

alternative based on each of the predetermined 

criteria created with the following equation. 

𝑋 = [

𝑥11 𝑥21 𝑥2𝑛

𝑥12 𝑥22 𝑥2𝑛

𝑥𝑚1 𝑥𝑚2 𝑥𝑚𝑛

] (1) 

Once the decision matrix is composed, the next 

step is to calculate the symmetry point values for 

each criterion. This point of symmetry is used to 

balance the difference between the ideal value and 

the real value of the alternative based on the existing 

criteria calculated by the following equation. 

𝑆𝑃𝐽𝑖 =
min{𝑥𝑖}+max{𝑥𝑖}

2
 (2) 

At this stage, the absolute distance value 

between the evaluated alternative and the ideal point 

and the real point for each criterion is calculated. 

This distance describes how far each alternative is 

from the expected ideal and real conditions 

calculated by the following equation. 

𝑑𝑖𝑗 =|𝑥𝑖𝑗 − 𝑆𝑃𝐽𝑖| (3) 

The normalized value of the symmetry 

modulus is calculated to convert the calculated 

values into a uniform scale, thus allowing 

comparison between alternatives and criteria. This 

normalization process reduces the potential for 

injustice that can arise due to scale differences 

between criteria calculated by the following 

equation. 

𝑟𝑖𝑗 =

𝑑𝑖𝑗
𝑚

𝑥𝑖𝑗
 (4) 

 

In this stage, the value of the symmetry 

modulus is calculated for each criterion based on the 

results of the previous calculation. This value shows 

how balanced or symmetrical each criterion in the 

alternative assessment is calculated by the following 

equation. 

𝑞𝑖 =
∑ 𝑟𝑖𝑗

𝑛
𝑖=1

𝑚
 (5) 

The weight of the criteria is calculated to 

reflect the importance of each criterion in decision-

making calculated by the following equation. 

𝑤𝑖 =
𝑞𝑖

∑ 𝑞𝑖
𝑛
𝑖=1

 (6) 

At this stage, the preference value for each 

alternative indicates how well it meets the set 

preferences or needs calculated by the following 

equation. 

𝑃𝑎𝑖 =
1

𝑚
 (7) 

A theoretical evaluation is carried out to 

determine the expected ideal value of each 

alternative if all criteria can be met perfectly. This 

value is calculated by combining the preference 

value and criterion weights in a theoretical model 

calculated by the following equation. 

𝑡𝑝𝑖𝑗 =𝑃𝑎𝑖 ∗ 𝑤𝑖 (8) 

Realistic evaluation is carried out to calculate 

the actual or real value of the calculated alternative 

based on the available data. This value takes into 

account the limitations and real-world conditions 

that affect the evaluated alternative calculated by the 

following equation. 
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𝑡𝑟𝑖𝑗 =𝑡𝑝𝑖𝑗 ∗ (
𝑥𝑖𝑗−𝑥𝑖

−

𝑥𝑖
+−𝑥𝑖

−) (9) 

𝑡𝑟𝑖𝑗 =𝑡𝑝𝑖𝑗 ∗ (
𝑥𝑖𝑗−𝑥𝑖

+

𝑥𝑖
−−𝑥𝑖

+) (10) 

Equation (9) is for the benefit criterion, while 

equation (10) is for the cost criterion. 

The total gap value calculates the difference 

between the theoretical evaluation and the realistic 

evaluation of the alternative. This gap provides 

information about how much the difference between 

theoretical expectations and reality exists in each 

alternative calculated by the following equation. 

𝐺𝑖𝑗 =𝑡𝑝𝑖𝑗 − 𝑡𝑟𝑖𝑗 (11) 

The final step is to calculate the final value of 

each alternative based on the difference between the 

total gap and the previous calculation. This final 

value is used to determine the best alternative based 

on the criteria and preferences that have been 

determined calculated by the following equation. 

𝑉𝑖 =∑ 𝐺𝑖𝑗
𝑛
𝑖=1  (12) 

Each of these stages in the S-MAIRCA method 

aims to optimize the evaluation process in multi-

criteria decision-making by providing a more 

balanced consideration between the ideal and real 

conditions of each alternative. 

4. RESULT AND DISCUSSION 

Implementation of dynamic weight allocation 

in the S-MAIRCA method to improve the accuracy 

and flexibility of real-time decision-making. This 

approach integrates dynamic weight changes based 

on the relevance and contribution of each criterion in 

an ever-evolving situation. The modified S-

MAIRCA method is able to automatically adjust the 

weight of the criteria according to changes in the 

input data, thereby providing more adaptive and 

relevant ranking results. 

4.1. Data Collection 
Collecting data on the best supplier assessment 

is an important step in the process of selecting 

suppliers that can support the company's operational 

success. This assessment data is collected by setting 

relevant criteria, such as price (C1) which is cost, 

product quality (C2) which is benefit, product 

availability (C3) which is benefit, delivery time (C4) 

which is benefit, and flexibility in ordering (C5) 

which is benefit. Each criterion is evaluated based 

on quantitative data, such as scores or numbers, as 

well as qualitative data, such as feedback or direct 

observations from parties involved with suppliers. 

 

 

 

 

Table 1. Supplier Assessment Data 

Alternative  C1 C2 C3 C4 C5 

A1 7.5 9.0 8.5 8.0 9.0 

A2 8.0 8.5 8.0 8.5 8.5 

A3 7.0 8.0 8.5 7.5 7.5 

A4 9.0 9.0 9.0 9.5 8.5 

A5 8.0 8.5 7.5 8.0 7.0 

A6 9.0 7.5 8.0 9.0 8.5 

A7 7.5 8.0 8.5 7.5 7.5 

A8 8.5 9.5 9.0 9.0 9.5 

A9 8.0 8.0 8.0 8.0 8.0 

 

Data collection is carried out through surveys 

or questionnaires filled out by internal teams that are 

directly related to suppliers, as well as historical data 

related to supplier performance, for example 

regarding delivery or product quality. In addition, 

data can be obtained from various sources within the 

company, such as purchasing, logistics, and quality 

teams, to ensure a comprehensive and objective 

evaluation. Once the data is collected, analysis is 

carried out using appropriate methods, such as the 

multi-criteria decision making (MCDM) technique, 

to compare the performance of various suppliers and 

determine the best one. In this way, companies can 

make more informed decisions in choosing suppliers 

who not only meet quality and cost needs, but also 

have on-time delivery capabilities and flexibility in 

meeting demand. The assessment data of table 1 will 

be used by the S-MAIRCA method in the selection 

of the best alternative. 

4.2. Implementation of the S-MAIRCA Method 
The implementation of the S-MAIRCA method 

by identifying relevant alternatives and criteria, 

where the alternatives represent the options 

evaluated, and the criteria reflect important 

assessment factors. The resulting criterion weights 

are the result of calculations by considering the 

balance between ideal, real, and symmetry 

conditions for each criterion. The point of symmetry 

for each criterion is the average value between the 

ideal (best) and the real (worst) value, thus 

representing a neutral position or balance between 

the two extremes. The weight of the criteria 

generated based on this approach reflects the relative 

contribution level of each criterion to the final result, 

taking into account how the criterion values are in 

the context of the distance from the ideal, real, and 

point of symmetry conditions. The results of 

alternative values using this method are obtained 

through a process that measures the proximity of 

each alternative to the ideal condition (the best value 

for each criterion) and the distance from the real 

condition (the worst value for each criterion). The S-

MAIRCA approach not only considers proximity to 

ideal conditions, but also balance with real 

conditions and points of symmetry, making it a 

flexible and effective method in complex multi-

criteria decision-making. 

The first stage of the S-MAIRCA method 

framework is to create a decision matrix containing 
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alternative data and relevant criteria using equation 

(1) based on the assessment data of table 1. 

𝑋 =

[
 
 
 
 
 
 
 
 
7.5 9.0
8.0 8.5
7.0 8.0

8.5 8.0
8.0 8.5
8.5 7.5

9.0
8.5
7.5

9.0 9.0
8.0 8.5
9.0 7.5

9.0 9.5
7.5 8.0
8.0 9.0

8.0
7.5
8.5

7.5 8.0
8.5 9.5
8.0 8.0

8.5 7.5
9.0 9.0
8.0 8.0

7.5
9.5
8.0]

 
 
 
 
 
 
 
 

 

Once the decision matrix is composed, the next 

step is to calculate the symmetry point values for 

each criterion using equation (2). 

𝑆𝑃𝐽1 =
min{𝑥1} + max{𝑥1}

2
=

9.0 + 7.0

2
=8.0 

𝑆𝑃𝐽2 =
min{𝑥2} + max{𝑥2}

2
=

9.5 + 7.5

2
=8.5 

𝑆𝑃𝐽3 =
min{𝑥3} + max{𝑥3}

2
=

9.0 + 7.5

2
=8.25 

𝑆𝑃𝐽4 =
min{𝑥4} + max{𝑥4}

2
=

9.5 + 7.5

2
=8.5 

𝑆𝑃𝐽5 =
min{𝑥5} + max{𝑥5}

2
=

9.5 + 7.0

2
=8.25 

At this stage, the value of the absolute distance 

between the evaluated alternative with the ideal 

point and the real point for each criterion is 

calculated using equation (3). 

𝑑11 =|𝑥11 − 𝑆𝑃𝐽1| =|7.5 − 8.0| =0.5 

The entire result of the calculation of the value of 

the absolute distance is shown in table 2. 

 
Table 2. The Result of the Calculation of the Absolute Distance 

Alternative  C1 C2 C3 C4 C5 

A1 0.500 0.500 0.250 0.500 0.750 

A2 0.000 0.000 0.250 0.000 0.250 

A3 1.000 0.500 0.250 1.000 0.750 

A4 1.000 0.500 0.750 1.000 0.250 

A5 0.000 0.000 0.750 0.500 1.250 

A6 1.000 1.000 0.250 0.500 0.250 

A7 0.500 0.500 0.250 1.000 0.750 

A8 0.500 1.000 0.750 0.500 1.250 

A9 0.000 0.500 0.250 0.500 0.250 

 

The normalized value of the symmetry 

modulus is calculated to convert the calculated value 

into a uniform scale, thus allowing comparison 

between the alternative and the criterion using 

equations (4). 

𝑟11 =

𝑑11

9
𝑥11

=

0.500
9

7.0
=0.00741 

The entire result of the calculation of the normalized 

value of the symmetry modulus is shown in table 3. 

 
Table 3. The Result of the Calculation of the Normalized Value 

Alternativ

e  
C1 

C2 C3 C4 C5 

A1 
0.00741 

0.0061

7 

0.0032

7 

0.0069

4 

0.0092

6 

A2 
0.00000 

0.0000

0 

0.0034

7 

0.0000

0 

0.0032

7 

A3 
0.01587 

0.0069

4 

0.0032

7 

0.0148

1 

0.0111

1 

A4 
0.01235 

0.0061

7 

0.0092

6 

0.0117

0 

0.0032

7 

A5 
0.00000 

0.0000

0 

0.0111

1 

0.0069

4 

0.0198

4 

A6 
0.01235 

0.0148

1 

0.0034

7 

0.0061

7 

0.0032

7 

A7 
0.00741 

0.0069

4 

0.0032

7 

0.0148

1 

0.0111

1 

A8 
0.00654 

0.0117

0 

0.0092

6 

0.0061

7 

0.0146

2 

A9 
0.00000 

0.0069

4 

0.0034

7 

0.0069

4 

0.0034

7 

 

At this stage, the value of the symmetry 

modulus is calculated for each criterion indicating 

how balanced or symmetrical each criterion is in the 

alternative assessment using equation (5). 

𝑞1 =
∑ 𝑟11,19

𝑛
𝑖=1

9
=

0.06192

9
=0.00688 

𝑞2 =
∑ 𝑟21,29

𝑛
𝑖=1

9
=

0.05969

9
=0.00663 

𝑞3 =
∑ 𝑟31,39

𝑛
𝑖=1

9
=

0.04985

9
=0.00554 

𝑞4 =
∑ 𝑟41,49

𝑛
𝑖=1

9
=

0.07450

9
=0.00828 

𝑞5 =
∑ 𝑟51,59

𝑛
𝑖=1

9
=

0.07922

9
=0.00880 

The criterion weights are calculated to reflect 

the importance of each criterion in decision-making 

calculated using equation (6). 

𝑤1 =
𝑞1

∑ 𝑞1,5
𝑛
𝑖=1

=
0.00688

0.03613
=0.19040 

𝑤2 =
𝑞2

∑ 𝑞1,5
𝑛
𝑖=1

=
0.00663

0.03613
=0.18356 
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𝑤3 =
𝑞3

∑ 𝑞1,5
𝑛
𝑖=1

=
0.00554

0.03613
=0.15330 

𝑤4 =
𝑞4

∑ 𝑞1,5
𝑛
𝑖=1

=
0.00828

0.03613
=0.22912 

𝑤5 =
𝑞5

∑ 𝑞1,5
𝑛
𝑖=1

=
0.00880

0.03613
=0.24362 

At this stage, the preference value for each 

alternative indicates how well it meets the 

established preferences or needs calculated using 

equation (7). 

𝑃11,59 =
1

9
=0.1111 

Theoretical evaluations are carried out to 

determine the ideal value expected from each 

alternative if all criteria can be met perfectly. This 

value is calculated by combining the preference 

value and criterion weights in a theoretical model 

calculated using equation (8). 

𝑡𝑝11 =𝑃11 ∗ 𝑤1 =0.1111 ∗ 0.19040 =0.02116 

The entire result of the calculation of the theoretical 

evaluations value is shown in table 4. 

 
Table 4. The Result of the Calculation of the Theoretical 

Evaluations value 

Alternative  C1 C2 C3 C4 C5 

A1 0.02116 0.02040 0.01703 0.02546 0.02707 

A2 0.02116 0.02040 0.01703 0.02546 0.02707 

A3 0.02116 0.02040 0.01703 0.02546 0.02707 

A4 0.02116 0.02040 0.01703 0.02546 0.02707 

A5 0.02116 0.02040 0.01703 0.02546 0.02707 

A6 0.02116 0.02040 0.01703 0.02546 0.02707 

A7 0.02116 0.02040 0.01703 0.02546 0.02707 

A8 0.02116 0.02040 0.01703 0.02546 0.02707 

A9 0.02116 0.02040 0.01703 0.02546 0.02707 

 

Realistic evaluation is carried out to calculate 

the actual or real value of the calculated alternative 

based on the available data. This value takes into 

account the limitations and real-world conditions 

that affect the evaluated alternative calculated using 

equation (9). 

𝑡𝑟11 =𝑡𝑝11 ∗ (
𝑥11 − 𝑥1

+

𝑥1
− − 𝑥1

+ )=0.02116 ∗ (0.75)=0.01587 

The entire result of the calculation of the realistic 

evaluations value is shown in table 5. 

 

 

 

 

 

 

 

Table 5. The Result of the Calculation of the Realistic 

Evaluations value 

Alternative  C1 C2 C3 C4 C5 

A1 0.01587 0.01530 0.01136 0.00636 0.02165 

A2 0.01058 0.01020 0.00568 0.01273 0.01624 

A3 0.02116 0.00510 0.01136 0.00000 0.00541 

A4 0.00000 0.01530 0.01703 0.02546 0.01624 

A5 0.01058 0.01020 0.00000 0.00636 0.00000 

A6 0.00000 0.00000 0.00568 0.01909 0.01624 

A7 0.01587 0.00510 0.01136 0.00000 0.00541 

A8 0.00529 0.02040 0.01703 0.01909 0.02707 

A9 0.01058 0.00510 0.00568 0.00636 0.01083 

 

The total gap value calculates the difference 

between the theoretical evaluation and the 

alternative realistic evaluation calculated using 

equation (11). 

𝐺11 =𝑡𝑝11 − 𝑡𝑟11 =0.02116 − 0.01587 =0.00529 

The entire result of the calculation of the total gap 

value is shown in table 6. 

 
Table 6. The Result of the Calculation of the Total Gap value 

Alternative  C1 C2 C3 C4 C5 

A1 0.00529 0.00510 0.00568 0.01909 0.00541 

A2 0.01058 0.01020 0.01136 0.01273 0.01083 

A3 0.00000 0.01530 0.00568 0.02546 0.02165 

A4 0.02116 0.00510 0.00000 0.00000 0.01083 

A5 0.01058 0.01020 0.01703 0.01909 0.02707 

A6 0.02116 0.02040 0.01136 0.00636 0.01083 

A7 0.00529 0.01530 0.00568 0.02546 0.02165 

A8 0.01587 0.00000 0.00000 0.00636 0.00000 

A9 0.01058 0.01530 0.01136 0.01909 0.01624 

 

The final step is to calculate the final value of 

each alternative based on the difference between the 

total gap and the previous calculation. This final 

value is used to determine the best alternative based 

on predetermined criteria and preferences calculated 

using equations (12). 

𝑉1 =∑ 𝐺11,51

𝑛

𝑖=1
=0.04057 

The entire result of the calculation of the total value 

is shown in table 7. 

 
Table 7. The Result of the Calculation of the Total value 

Alternative  Final Value (𝑽𝒊) 

A1 0.04057 

A2 0.05569 

A3 0.06809 

A4 0.03708 

A5 0.08397 

A6 0.07010 

A7 0.07338 

A8 0.02223 

A9 0.07256 

 

The results of the ranking of the best suppliers 

using the S-MAIRCA method show a ranking based 

on a thorough evaluation of the performance of each 

supplier on five predetermined criteria. In the S-

MAIRCA method, the criterion weights are 

calculated objectively using a point of symmetry 

approach, which ensures that the more important 

criteria get greater attention in the evaluation. Based 
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on this analysis, each supplier is compared to an 

ideal solution and a realistic solution to calculate 

their distance from the point of symmetry, which 

then translates into an overall score. The ranking 

results show that the supplier with the lowest score 

at the ideal distance has the best performance, 

reflecting its ability to optimally meet the desired 

needs. The ranking results are shown in table 8. 

 
Table 8. Supplier Ranking Results 

Alternative  Final Value (𝑽𝒊) Rank 

A8 0.02223 1 

A4 0.03708 2 

A1 0.04057 3 

A2 0.05569 4 

A3 0.06809 5 

A6 0.0701 6 

A9 0.07256 7 

A7 0.07338 8 

A5 0.08397 9 

 

The ranking results based on the final score 

show that Alternative A8 has the best performance 

with a value of 0.02223, thus occupying the first 

position in the ranking. Followed by Alternative A4 

in second place with a value of 0.03708, and 

Alternative A1 in third place with a value of 

0.04057. Meanwhile, Alternative A2, A3, A6, A9, 

A7, and A5 each occupy the fourth to ninth positions 

with higher scores, namely 0.05569, 0.06809, 

0.0701, 0.07256, 0.07338, and 0.08397. This 

ranking reflects that alternatives with lower scores 

show more optimal performance in meeting the 

criteria that have been set, while alternatives with 

higher scores are at the bottom. Thus, Alternative 

A8 can be considered the best option based on the 

evaluation conducted with the S-MAIRCA method. 

4.3. Result Validation 
Result validation is an important step in 

ensuring the reliability and accuracy of the results 

obtained from an evaluation or analysis method. 

This process aims to verify that the results obtained 

are in accordance with real conditions and reliable in 

decision-making. Validation of the results was 

carried out to evaluate the consistency and 

objectivity of the decisions produced by the S-

MAIRCA method. The validation process is carried 

out by comparing the results produced by the 

MAIRCA method with the results obtained using 

other relevant methods, to assess the consistency and 

accuracy of the decisions taken. This comparison 

helps to identify whether the MAIRCA method can 

produce more objective and accurate results in the 

selection of the best alternative, especially in the 

face of complex data with various criteria. 

Validation of these results is important to increase 

credibility and confidence in the decisions made, as 

well as to ensure that the alternatives chosen are the 

most optimal based on a thorough and measurable 

evaluation. 

The ranking comparison results obtained from 

the CRITIC-MAIRCA method from research [22], 

LOPCOW-MAIRCA from research [23], ROC-

MAIRCA from research [24], and S-MAIRCA 

provide an in-depth understanding of how each 

approach in criterion weighting and alternative 

evaluation affects the final outcome in multi-criteria 

decision-making. Table 9 is the result of a 

comparison of the ratings of the methods used. 

 
Table 9. The Result of the Ranking Comparison 

Alternative  

Rank 

CRITIC-

MAIRCA 

LOPCOW-

MAIRCA 

ROC-

MAIRCA 

S-

MAIRCA 

A8 1 1 2 1 

A4 2 2 6 2 

A1 3 3 1 3 

A2 4 4 5 4 

A3 5 5 3 5 

A6 7 8 9 6 

A9 8 7 7 7 

A7 6 6 4 8 

A5 9 9 8 9 

 

The results of the alternative ranking 

comparison using the CRITIC-MAIRCA, 

LOPCOW-MAIRCA, ROC-MAIRCA, and S-

MAIRCA methods showed variations in the ranking 

order generated for each alternative. Although some 

alternatives obtain the same rating in some methods, 

there are significant differences, especially in the 

lower performing alternatives. For example, the A8 

alternative is ranked first on CRITIC-MAIRCA, 

LOPCOW-MAIRCA, and S-MAIRCA, while on 

ROC-MAIRCA, the A8 alternative is ranked second. 

Alternative A1, which consistently ranks third across 

all methods, shows stability in its performance 

evaluation. In contrast, the A6 alternative received 

the highest rating in S-MAIRCA (ranked 6th), but 

ranked 7th and 8th in CRITIC-MAIRCA and 

LOPCOW-MAIRCA. Other alternative ratings, such 

as A4 and A7, show clear fluctuations between 

methods, highlighting how differences in the way 

weights are calculated and evaluated can affect 

decision-making outcomes. Overall, despite the 

differences in the rankings produced, all methods 

provide a fairly consistent picture of the best and 

worst alternatives, which can help decision-makers 

choose the alternative that best fits the criteria. 

5. DICUSSION 

The results of the comparison between four 

multi-criteria decision-making methods, namely 

CRITIC-MAIRCA method from research [22], 

LOPCOW-MAIRCA from research [23], ROC-

MAIRCA from research [24], and S-MAIRCA. 

These four methods use different approaches in 

determining criterion weights and evaluating 

alternatives, but aim to produce objective and 

consistent rankings based on relevant criteria. 

CRITIC-MAIRCA relies on correlations between 

criteria to calculate weights, while LOPCOW-

MAIRCA uses logarithmic percentage changes, 

ROC-MAIRCA focuses on ranking sequences, and 
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S-MAIRCA utilizes a point of symmetry approach 

for weighting. Despite using different methods, the 

comparative results obtained through correlation and 

ranking analysis showed that most of the methods 

gave fairly consistent results, although there were 

differences in the order of the rankings produced. 

Therefore, it is important to explore the differences 

and similarities between these methods in order to 

understand the advantages and disadvantages of 

each, as well as to determine the most appropriate 

method for decision-making based on the existing 

context. 

Spearman correlation is a non-parametric 

statistical method used to measure the strength and 

direction of the relationship between two variables 

based on the order of data ranking, not their absolute 

values. Unlike Pearson correlation, which assumes a 

linear relationship and normal distribution of data, 

Spearman correlation is more flexible because it can 

be used for data that is not normally distributed or 

has a non-linear relationship. In the context of multi-

criteria decision analysis, Spearman correlation is 

often used to assess how consistent two methods are 

in assigning ratings to different alternatives. The use 

of Spearman correlation is very useful in evaluating 

the ranking results of various methods to understand 

the extent of differences or similarities between the 

approaches used. The results of the comparison 

between four multi-criteria decision-making 

methods, namely CRITIC-MAIRCA, LOPCOW-

MAIRCA, ROC-MAIRCA, and S-MAIRCA, were 

analyzed using Spearman correlation. Spearman 

correlation is used to measure the extent to which 

the alternative ranking sequences are similar to each 

method. By understanding the correlation between 

methods through this approach, we can evaluate how 

sensitive each method is to changes in weights and 

rankings, as well as the extent to which differences 

in the approaches affect the results obtained. Table 

10 is the comparison of the spearman correlation of 

each method. 

 
Table 10. Results of Spearman Correlation Comparison 

 

CRITIC-

MAIRCA 

LOPCOW-

MAIRCA 

ROC-

MAIRCA 

S-

MAIRCA 

CRITIC-

MAIRCA 
1 0.993 0.8741 0.979 

LOPCOW-

MAIRCA 
0.993 1 0.8881 0.972 

ROC-

MAIRCA 
0.8741 0.8881 1 0.8882 

S-

MAIRCA 
0.979 0.972 0.8882 1 

 

From the data provided, it can be seen that 

CRITIC-MAIRCA and LOPCOW-MAIRCA have a 

very high correlation (0.993), which shows that 

these two methods provide almost identical ratings 

in alternative evaluation. Likewise, CRITIC-

MAIRCA and S-MAIRCA had a high correlation 

(0.979), signaling a strong similarity in ranking 

results despite slight differences in the approaches 

used by the two methods. In contrast, comparisons 

with ROC-MAIRCA showed lower correlations, 

such as in CRITIC-MAIRCA and ROC-MAIRCA 

(0.8741) and LOPCOW-MAIRCA and ROC-

MAIRCA (0.8881), which showed greater 

differences in the ranking order given by ROC-

MAIRCA compared to other methods. The 

correlation between ROC-MAIRCA and S-

MAIRCA was also relatively lower (0.8882), 

although it still showed a significant relationship. 

Overall, the results of Spearman's correlation show 

that despite differences in their respective 

methodologies, most methods (notably CRITIC-

MAIRCA, LOPCOW-MAIRCA, and S-MAIRCA) 

produce very similar ranking sequences, whereas 

ROC-MAIRCA has slight differences compared to 

other methods in terms of alternative rankings. 

The results of Spearman's correlation show that 

the largest correlation value is 0.979 obtained from 

the S-MAIRCA method. This indicates that the 

alternative ratings resulting from the S-MAIRCA 

approach have a very high degree of alignment. The 

S-MAIRCA method shows that the symmetrical 

approach used is highly compatible in analyzing 

multi-criteria alternatives. 

The results of the application of the MAIRCA-

S method in the development of DSS based on real-

time data have a significant impact on improving the 

speed, accuracy, and adaptability of decisions. By 

integrating this approach, DSS is able to handle real-

time data more efficiently through a more 

standardized normalization and attribute comparison 

process, resulting in more objective rankings even as 

the data continues to change. This impact is 

particularly relevant in dynamic environmental 

contexts, such as supply chain management, 

financial monitoring systems, and human resource 

management, where timely and data-driven 

decision-making is crucial. In addition, MAIRCA-S 

strengthens the validity of decision results by 

considering a variety of attributes on a more 

comprehensive scale, providing added value in the 

development of DSS for various industrial sectors. 

6. CONCLUSION 

The purpose of this study is to develop and 

explore the dynamic weight allocation method in S-

MAIRCA to support more accurate and responsive 

real-time decision-making in a dynamic 

environment. This study integrates the mechanism of 

automatic adjustment of criterion weights, based on 

changes in external conditions and the latest data, by 

utilizing the concept of symmetry points. The results 

of the alternative ranking comparison using the 

CRITIC-MAIRCA, LOPCOW-MAIRCA, ROC-

MAIRCA, and S-MAIRCA methods showed 

variations in the ranking order generated for each 

alternative. Although some alternatives obtain the 

same rating in some methods, there are significant 

differences, especially in the lower performing 
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alternatives. For example, the A8 alternative is 

ranked first on CRITIC-MAIRCA, LOPCOW-

MAIRCA, and S-MAIRCA, while on ROC-

MAIRCA, the A8 alternative is ranked second. 

Alternative A1, which consistently ranks third across 

all methods, shows stability in its performance 

evaluation. In contrast, the A6 alternative received 

the highest rating in S-MAIRCA (ranked 6th), but 

ranked 7th and 8th in CRITIC-MAIRCA and 

LOPCOW-MAIRCA. Other alternative ratings, such 

as A4 and A7, show clear fluctuations between 

methods, highlighting how differences in the way 

weights are calculated and evaluated can affect 

decision-making outcomes. Overall, despite the 

differences in the rankings produced, all methods 

provide a fairly consistent picture of the best and 

worst alternatives, which can help decision-makers 

choose the alternative that best fits the criteria, 

The results of the alternative ranking 

comparison using the CRITIC-MAIRCA, 

LOPCOW-MAIRCA, ROC-MAIRCA, and S-

MAIRCA methods showed variations in the ranking 

order generated for each alternative using spearman 

correlation. The results of the correlation value of 

CRITIC-MAIRCA and LOPCOW-MAIRCA have a 

very high correlation of 0.993, which shows that 

these two methods provide almost identical rankings 

in alternative evaluation. Likewise, CRITIC-

MAIRCA and S-MAIRCA had a high correlation of 

0.979, signaling a strong similarity in ranking results 

despite slight differences in the approaches used by 

the two methods. This emphasizes the importance of 

dynamic weighting as an innovative approach in 

supporting real-time data-based decision-making 

systems. This research contributes to the 

understanding of how the weights of criteria can be 

adjusted automatically and responsively to changing 

conditions or new data, which increases the 

relevance and accuracy of decisions in a dynamic 

environment. Implementation of a more adaptive 

decision support system, which can be implemented 

in various sectors, to provide more objective, 

transparent, and real-time data-driven decisions 

using S-MAIRCA. 
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