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Abstract 

 
The use of palmprint as an identification system has gained significant attention due to its potential in biometric 

authentication. However, existing models often face challenges related to computational complexity and the ability 

to scale with larger datasets. This research aims to develop an efficient Convolutional Neural Network (CNN) 

model for palmprint identity recognition, specifically tailored to address these challenges. A novel contribution of 

this study is the creation of an original palmprint dataset consisting of 700 images from 50 Indonesian college 

students, which serves as a foundation for future research in Southeast Asia. The dataset includes different 

scenarios with varying input sizes (32x32, 64x64, 96x96 pixels) and the number of classes (30, 40, 50) to assess the 

model's scalability and performance. Three CNN architectures were designed with varying layers, activation 

functions, and dropout strategies to capture the unique features of palmprints and improve model generalization. 

The results show that the best-performing model, Model 3, which incorporates dropout layers, achieved 95% 

accuracy, 96% precision, 95% recall, and 95% F1-score on 50 classes with 1.2 million parameters. Model 1 

achieved 98% accuracy, 99% precision, 98% recall, and 98% F1-score on 40 classes with 1.7 million parameters. 

These findings demonstrate that the proposed CNN models not only achieve high accuracy but also maintain 

computational efficiency, offering promising solutions for real-time palmprint authentication systems. This 

research contributes to the advancement of biometric authentication systems, with significant implications for real- 

world applications in Southeast Asia. 
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1. INTRODUCTION 

The palmprint is a distinctive feature of the human body, exhibiting a unique pattern of lines 

and a distinctive overall shape of the hand surface. The development of palmprint as an identification 

system is widely developed because palm features, such as shape, contour, and global texture patterns, 

provide more information than fingerprints [1], [2]. Even between the right and left palms have 

different unique characteristics. With these unique characteristics can be used as verification of a 

person's identity because the existing characteristics are stable and fixed and not easy to duplicate or 

fake [3]. 

Several studies related to palms for the recognition of a person's identity have been conducted 

previously. The methods used in model building also vary. Research conducted by Ata, et al [4]. for 

palm image recognition by comparing 7 machine learning algorithms, namely Neural Network, SVM, 

Naïve Bayes, KNN, Random Forest, Tree, and Adaptive Boosting. From the study, it was found that 

the Neural Network algorithm has the best performance compared to other algorithms. Furthermore, 

research conducted by Pin, et al [5]. to get the performance comparison results of traditional machine 

learning algorithms, namely SVM and deep learning algorithms, namely Convolutional Neural 
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Network (CNN). From the study, it was obtained that CNN's performance was much better than SVM 

in image classification. This is because deep learning has better image recognition accuracy on large 

datasets and this algorithm has very complex and abstract features that allow CNN to capture deeper 

patterns [4], [5], [6]. On the other hand, traditional machine learning is able to provide better solutions 

for small datasets and limited features so that traditional machine learning is less able to capture very 

deep patterns [5], [7]. 

Based on related research that explains the effectiveness of each model for image recognition, it 

is found that the Convolutional Neural Network (CNN) algorithm is the most suitable model to use in 

palm image recognition. With supervised learning of the palm image, the CNN model can be used to 

learn deep patterns in the image [8], [9]. This is related to the features of the palm of the hand that are 

very complex so that it requires a model that is able to capture existing patterns where this ability is 

owned by the CNN model [10], [11]. 

There are several architectural variations on the Convolutional Neural Network model. In 

general, CNN is composed of convolution layer, pooling layer, and fully connected layer [12], [13]. 

These layers can be customized and developed according to the complexity of the task and the specific 

needs of the problem at hand. In addition, there are architectural models that apply transfer learning 

techniques [14], [15]. This technique uses learning or knowledge from previously trained models 

called pre-trained models. Using this technique can save training time because training is done from 

previously learned patterns [14], [16]. However, transfer learning also has the disadvantage that this 

technique is not always effectively used when the pre-trained model is irrelevant or not representative 

enough for the target task thus allowing no significant performance improvement from the pre-trained 

model used [17], [18]. There are various pre-trained models available, including: ResNet50, Inception, 

Xception, VGG16, MobileNet, DenseNet, EfficientNet and so on where each model has a different 

layer design [14], [16]. 

A number of studies have been conducted to develop palm recognition as an identification 

system with methods such as Neural Network and Convolutional Neural Network (CNN) [19], [20]. 

However, most of these studies use datasets that are not public or have limited access. Furthermore, no 

study has specifically developed a comprehensive palm image dataset of the Indonesian population 

that is publicly accessible. This creates a gap in the literature as biometric image recognition can be 

affected by geographical or race-specific factors [21]. Therefore, this research focuses not only on 

developing a better CNN architecture but also on introducing a new dataset collected directly from the 

local population that makes a significant contribution to the literature related to identity recognition 

based on palm image. 

The contributions of this research include two main aspects. First, the collection of an original 

dataset of palm images from the Indonesian population, which has not been available as a publicly 

accessible dataset until now. This provides a strong foundation for future research, especially 

involving populations in the Southeast Asian region. Secondly, the authors propose the development 

of a CNN architecture that is specifically designed to capture complex and specific patterns in palm 

images, especially to overcome the limitations often found in pre-trained models. While pre-trained 

models perform well in general image recognition, they are not always effective in palm recognition 

tasks because their architecture is not optimized to capture the unique patterns present in palms, such 

as shape and variations between individuals. 

The CNN architecture proposed in this study is designed to optimize the network's ability to 

recognize holistic features, such as the unique shapes and contours present in palm images, including 

palm and finger proportions, as well as the overall contours that distinguish each individual [22]. This 

development was carried out by composing several convolution layers that were specifically tailored 

to improve the palm shape extraction capability, and pooling layers that were optimized to retain 
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important geometric details of the palm image, despite the resize process. In addition, the model is 

also equipped with dropout and batch normalization mechanisms to ensure the model can handle the 

data better and reduce the risk of overfitting [23], [24]. 

One of the main advantages of the proposed architecture is its flexibility in customizing the 

convolution and pooling layers based on the dataset characteristics. This architecture allows for more 

efficient adjustment of hyperparameters, such as kernel size, number of filters, and regularization 

techniques to capture deeper and more complex patterns present in palm images [25]. Compared to 

pre-trained models that rely on general features, this architecture is more specific to the task of palm 

image recognition and thus provides better performance especially in the case of images that have 

variations such as those found in this new dataset. 

This study aims to develop a CNN architecture optimized for palmprint recognition using a 

novel Indonesian dataset, addressing the limitations of pre-trained models. With this contribution, the 

research conducted not only expands the scope of using CNN models in palm image recognition but 

also provides a new architecture design that is more efficient and accurate in capturing the shape and 

overall features of the palm. Furthermore, coupled with a new dataset reflecting the Indonesian 

population, it has the potential to open new research avenues in palm biometrics. 

2. METHOD 
 

Figure 1. Research Flowchart 

 

Figure 1 is a research flowchart that starts with a collecting palmprint data through an 

acquisition process that involves taking pictures of palms from Mataram University students which 

includes variations in image capture so that the model can learn the characteristics of the palm 

effectively. Next, split the data into two, namely train and test data. After that, the construction of the 

CNN model with the arrangement of layers through trial and error also justifyies the hyperparameter. 

Finally, the model is evaluated the model performance using test data. If the image is well recognized 

with an accuracy above 85%, it will continue to display results in the form of evaluation metrics 

including accuracy, precision, recall, and f1-score. Accuracy measures the extent to which the model 
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can correctly recognize the palm image, while precision and recall measure the quality of the 

prediction results. 

2.1. Dataset Palmprint Acquisition 

The dataset in this research was obtained through taking images of the right and left palms of 50 

students of the Faculty of Engineering, Mataram University, consisting of male and female students. 

Each subject was captured 14 times, including 7 images of the right palm and 7 images of the left 

palm. In total, 700 images were collected with a variety of shooting rotations to capture natural 

variations in hand positioning, simulating real-world conditions. The images were taken at different 

times of the day to introduce variations in lighting conditions, thus improving the generalization 

ability of the model. All images were captured inside a white square box with dimensions of 30 cm, 

using a 50 MP resolution camera, and illuminated by a 3-watt LED light with 270 lumens. The dataset 

acquisition process is shown in Figure 2. 
 

Figure 2. Dataset Acquisition Process 

 

Each palmprint image is labeled with ID 01 to 50 based on the identity of the participants, 

ensuring consistency and facilitating easy tracking for evaluation purposes. These labeled images 

encompass a range of angles to increase the robustness of the recognition system. Moreover, the 

images include various accessories worn by participants, such as rings, bracelets, watches, or long- 

sleeved clothing, which were not removed during the image acquisition process. This adds a layer of 

variability to the dataset, reflecting real-world scenarios. 

The dataset was then used for several experiments, with varying numbers of classes: 30 classes, 

40 classes, and 50 classes, to evaluate the performance of the proposed models. To access the dataset 

used in this study, it can be downloaded via the following link: Palmprint Dataset. Samples of the 

palmprint images can be seen in Figure 3. 

 

Figure 3. Palmprint Sample 
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2.2. Pre-processing Data 

The pre-processing technique used in this study is that the image is converted from RGB to 

grayscale format to reduce image complexity and focus on shapes that are more relevant in palm 

identification by removing color information [26]. The pre-processing steps, including resizing and 

grayscale conversion, were implemented using TensorFlow, a widely used deep learning framework 

that provides efficient tools for image processing and neural network training [27]. 

2.2.1. Resize 

The image is resized into different scenarios. The original size of the whole image, which is 

1224 x 1632 pixels, then resizes the whole image with 3 different scenarios, including: 32 x 32 pixels, 

64 x 64 pixels, and 96 x 96 pixels. This is done to determine the best model performance at different 

image sizes. 

 

Figure 4. Image Resize 

 

Figure 4 shows the pre-processing steps applied in this study. First, the image, which was 

originally in RGB format, was converted to grayscale in order to reduce information complexity and 

emphasize the structural shape of the palm. After conversion to grayscale, the image is then resized to 

three different size scenarios: 96 x 96 pixels, 64 x 64 pixels, and 32 x 32 pixels. The selection of each 

resize was driven by a specific reasoning. The 32 x 32 pixel size was chosen to assess the model's 

capacity for generalization from minimal data, thereby providing insights into the network's 

performance under extreme compression. The 64 x 64 pixel size was chosen as a balanced option, 

offering enough detail to capture key features while keeping computational requirements manageable. 

Meanwhile, 96 x 96 pixels allows for capturing finer structural details, ensuring that the model can 

leverage higher resolution data without incurring excessive computational costs. 

The pixel sizes that have been selected are consistent with the study's emphasis on identifying 

holistic characteristics, such as the distinctive shapes and contours present in palmprint, including 

palm and finger proportions, as well as the overall contours that differentiate each individual [22]. 

Given the emphasis on these structural features rather than specific palm lines, higher pixel resolutions 

are deemed unnecessary, enabling the utilisation of smaller image sizes that are computationally 

efficient. 

2.2.2. Split Data 

The dataset utilized in this study was partitioned into a training set and a testing set, with a 

proportion of 80 : 20. This approach ensured that the model had sufficient samples from each class to 

accurately identify the distinctive patterns and characteristics of palmprint. The dataset contains 14 

images per class, leading to the utilization of 80% of the images for training, equivalent to 11 images 

per class. This approach ensures sufficient variety to develop a robust model. The test data, 

constituting 20% of the dataset, involves the use of 3 images per class for evaluation. This is sufficient 

to assess the model's performance on data not encountered during the training process. The utilization 

of an equal proportion of data ensures that the evaluation outcomes are more indicative of the model's 
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generalizability when confronted with novel data variations. By employing a substantial portion of the 

data for training, the model is more likely to discern patterns rather than to memorize data, thereby 

mitigating the risk of overfitting [28]. 

2.3. CNN Architecture 

Three Convolutional Neural Network (CNN) architecture models are proposed in this study. 

These three models are designed with variations in the number of layers and activation functions to 

explore their effect on model performance. Each model has significant differences in the arrangement 

of convolutional layers, the use of Batch Normalization, activation functions (ReLU and Leaky 

ReLU), and the application of dropout in the dense layer. 
 

Figure 5. Visualization of Proposed CNN Architecture 

 

Figure 5 shows the proposed CNN architecture for palmprint recognition starts with a 

grayscale input of the palm image, which is then passed through several stages of feature extraction. 

The model first applies a series of convolutional layers, each followed by batch normalization to 

stabilize learning and improve convergence. ReLU activation is used to introduce non-linearity, and 

max pooling is applied to reduce spatial dimensions and retain the most important features. These 

operations are repeated in multiple stages to progressively extract hierarchical features from the 

palmprint. After the feature learning stages, the model transitions to a flattening layer that converts the 

2D feature maps into a 1D vector. This is followed by a fully connected layer, where the design varies 

across the proposed models. Some models use Leaky ReLU activation to allow small negative values, 

others incorporate Dropout to prevent overfitting, while some do not include either of these 

techniques. However, all three proposed models include regularizers to further enhance model 

generalization and prevent overfitting during training. This architecture aims to improve the accuracy 

and robustness of palmprint recognition. 

Table 1. CNN Proposed Model Architecture 1 

Block Layer 

 Conv2D (filters: 32) 

Conv Block 1 
Batch Normalization 

Activation ReLu 

 MaxPooling2D (pool size: 2x2) 

 Conv2D (filters: 64) 

Conv Block 2 
Batch Normalization 

Activation ReLu 

 MaxPooling2D (pool size: 2x2) 

Conv Block 3 Conv2D (filters: 96) 

https://jutif.if.unsoed.ac.id/
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Block Layer 

 Batch Normalization 

 Activation ReLu 

 MaxPooling2D (pool size: 2x2) 

 Flatten 

Fully Connected 
Dense 256 (ReLU, regularizers 0.01) 

Dense 256 (ReLU, regularizers 0.01) 

 Dense 

Output Layer Activation Softmax 

Table 1 shows the architecture of the first CNN model proposed in the study using the standard 

approach in CNN architecture with three convolution layers (Conv2D) followed by Batch 

Normalization, ReLU activation function, and MaxPooling2D layers. The addition of Batch 

Normalization after each convolution layer aims to stabilize the input distribution of each layer which 

can accelerate convergence and improve model performance [29]. The dense layer in this model uses 

twice the ReLU activation function with regularization to prevent overfitting. The model ends with a 

dense layer with Softmax activation function used for multi-class classification. 

Table 2. CNN Proposed Model Architecture 2 

Block Layer 

 Conv2D (filters: 16) 

Conv Block 1 
Batch Normalization 

Activation ReLu 

 MaxPooling2D (pool size: 2x2) 

 Conv2D (filters: 32) 

Conv Block 2 
Batch Normalization 

Activation ReLu 

 MaxPooling2D (pool size: 2x2) 

 Conv2D (filters: 64) 

Conv Block 3 
Batch Normalization 

Activation ReLu 

 MaxPooling2D (pool size: 2x2) 

 Flatten 

 Dense 128 (ReLU, regularizers 0.01) 

Fully Connected Leaky ReLu (alpha: 0.1) 

 Dense 256 (ReLU, regularizers 0.01) 

 Leaky ReLu (alpha: 0.1) 

Output Layer Dense (Activation Softmax) 

 

Table 2 shows the architecture of the second CNN model proposed in this research, which has 

the same basic structure as the first model in the convolution layer, but differs in the dense layer after 

the flattening process. In this model, Leaky ReLU activation function is used in some dense layers. 

Leaky ReLU was introduced to overcome the problem of "dying ReLU," where output units die during 

training [30]. The use of Leaky ReLU provides the ability for the model to capture more feature 

variations and improve the representation of more complex data. Furthermore, Softmax activation 

function is used in the output layer for classification. 

https://jutif.if.unsoed.ac.id/
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Table 3. CNN Proposed Model Architecture 3 

Block Layer 

 Conv2D (filters: 16) 

Conv Block 1 Activation ReLu 

 MaxPooling2D (pool size: 2x2) 

 Conv2D (filters: 32) 

Conv Block 2 Activation ReLu 

 MaxPooling2D (pool size: 2x2) 

 Conv2D (filters: 64) 

Conv Block 3 Activation ReLu 

 MaxPooling2D (pool size: 2x2) 

 Flatten 

 Dense 256 (Activation ReLU) 

 Dropout 0.4 

Fully Connected Dense 256 (Activation ReLU) 

 Dropout 0.4 

 Dense 256 (Activation ReLU) 

 Dropout 0.5 

Output Layer Dense (Activation Softmax) 

 

Table 3 shows the architecture of the third CNN model proposed in the study which introduces 

significant changes by removing the Batch Normalization layer and adding multiple Dropout layers 

after the dense layer. The absence of Batch Normalization aims to reduce computation time, while the 

addition of Dropout after the dense layer is designed to prevent overfitting by partially randomizing 

the connections between neurons during training [29]. The model uses three convolution layers with 

ReLU activation function, followed by MaxPooling2D to shrink the feature size. After the Flattening 

process, three dense layers with ReLU activation functions accompanied by Dropout help the model 

become more robust and generalize to new data. The final layer uses Softmax Activation function for 

classification. 

2.4. Hyperparameter Tuning 

Hyperparameter tuning is conducted to optimize the model's performance. Several 

hyperparameters, such as optimizer, learning rate, number of epochs, and batch size were adjusted to 

optimize the model results. The selection of the Adam optimizer was based on its ability to adaptively 

adjust the learning rate, while a learning rate value of 0.001 was chosen to ensure stable convergence 

during the training process [31]. The number of 150 epochs used was set to achieve a balance between 

training time and model accuracy. The relatively small batch size used allows for more frequent 

updates of the model parameters within a single epoch thus helping the model to converge faster [32]. 

This size also considers the memory capacity of the GPU used to ensure the training process can run 

smoothly without running out of memory. The hyperparameter tuning used in the experiments are 

shown in Table 4. 

https://jutif.if.unsoed.ac.id/
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Table 4. Hyperparameter Settings 

Hyperparameter Value 

Optimizer Adam 

Learning Rate 0.001 

Epochs 150 

Batch Size 32 

2.5. Evaluation Metrics 

The evaluation metrics provide a quantitative basis for the assessment of the model's capability 

to process and analyse palmprint data with precision. By employing these metrics, the performance of 

the model can be measured in terms of its predictive accuracy, reliability, and consistency across a 

range of test scenarios. The evaluation of the CNN model is focused on key metrics such as accuracy, 

precision, recall, and f1-score, which provide a robust and comprehensive assessment of the model's 

performance [33]. 

2.5.1. Accuracy 

Accuracy is the most commonly used metric for evaluating a model's performance. It 

calculates the proportion of correct predictions to the total number of predictions made by the model. 

The formula is as follows [33]: 
 

𝑨𝒄𝒄𝒖𝒓𝒂𝒄𝒚 = 
𝑻𝑷+𝑻𝑵 

𝑻𝑷+𝑻𝑵+𝑭𝑷+𝑭𝑵 
(1) 

True Positive (TP): The number of positive samples correctly predicted as positive 

True Negative (TN): The number of negative samples correctly predicted as negative 

False Positive (FP): The number of negative samples incorrectly predicted as positive 

False Negative (FN): The number of positive samples incorrectly predicted as negative 

2.5.2. Precision 

Precision measures the accuracy of positive predictions made by the model. This metric is 

highly relevant in scenarios where false positive predictions have significant consequences, such as in 

security systems. Precision helps evaluate how well the model avoids false positives, ensuring that 

positive predictions are highly reliable. The formula is [33]: 
 

𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 = 
𝑻𝑷 

𝑻𝑷+𝑭𝑷 
(2) 

 

2.5.3. Recall 

Recall or sensitivity, measures the extent to which the model can identify all positive samples 

in the dataset. Recall is crucial in applications where failing to detect positive cases (false negatives) 

has serious implications. The formula is [33] : 
 

 

 

2.5.4. F1-Score 

𝑹𝒆𝒄𝒂𝒍𝒍 = 
𝑻𝑷 

𝑻𝑷+𝑭𝑵 
(3) 

F1-Score is the harmonic mean of Precision and Recall. This metric balances the trade-off 

between the two, especially in situations where there is an imbalance between the number of positive 

and negative classes. F1-Score provides a comprehensive view of the model's ability to make accurate 

and relevant predictions for the positive class. The formula is [33]: 

https://jutif.if.unsoed.ac.id/
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𝑭𝟏 − 𝑺𝒄𝒐𝒓𝒆 = 𝟐 
𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏×𝑹𝒆𝒄𝒂𝒍𝒍 

𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏+𝑹𝒆𝒄𝒂𝒍𝒍 
(4) 

 

3. RESULT 

The performance of the proposed architecture model in identifying a person's identity based on 

palm image through experiments was conducted by dividing the data into 80% training data and 20% 

testing data. The experiment using palmprint images with different resize scenarios (32 x 32, 64 x 64, 

and 96 x 96 pixels) and varying numbers of classes (30, 40, and 50 classes). The test results are 

evaluated based on several metrics, namely precision, recall, f1-score, and accuracy. In addition, there 

are parameters that show the computational complexity of each model. The performance results of the 

architecture model proposed in this study are shown below. 

3.1. Model Performance on 30 Classes 

The first experiment was conducted by testing each proposed model with an experiment of 30 

classes and scenario resize of 32 x 32, 64 x 64, and 96 x 96 pixels. The number of classes used in the 

first experiment was done to compare the performance of the proposed model with the research 

conducted in [34] using palm images from 30 people. After the training process for 150 epochs, an 

evaluation was carried out on 84 testing data and the best accuracy was obtained by Proposed Model 3 

with an input size of 32 x 32 pixels, achieving an accuracy of 94%. 

Although this is slightly lower than the 97% accuracy achieved by MobileNet in [34], Proposed 

Model 3 demonstrated superior performance in terms of precision, achieving 95%, which is 1% higher 

than the baseline model. The inclusion of Dropout layers in proposed model effectively reduces 

overfitting, making the model more robust for real-world applications. Moreover, the computational 

complexity of Proposed Model 3 was significantly reduced, as evidenced by the parameter count of 

425 thousand, compared to 3.5 million parameters in MobileNet [34]. This reduction in parameter size 

directly contributes to faster computation times and improved efficiency. These results highlight the 

importance of carefully balancing architectural complexity and performance. While larger models like 

MobileNet can achieve slightly higher accuracy, they come at the cost of increased computational 

requirements. 

Table 5. Result Evaluation 30 Classes 

Architecture Resize Precision Recall F1-Score Accuracy Parameters 

Proposed 

Model 1 

32 0.93 0.91 0.90 0.90 541,950 

64 0.94 0.92 0.91 0.92 1,721,598 

96 0.92 0.90 0.89 0.89 3,687,678 

Proposed 

Model 2 

32 0.95 0.93 0.93 0.93 195,678 

64 0.95 0.93 0.92 0.93 588,894 

96 0.93 0.91 0.89 0.90 1,244,254 

Proposed 

Model 3 

32 0.95 0.94 0.94 0.94 424,990 

64 0.93 0.89 0.89 0.89 1,211,422 

96 0.95 0.92 0.91 0.92 2,522,142 

Table 5 shows that Proposed Model 3 has the best overall balance between performance and 

computational efficiency for the 30 class scenario. For the 32 x 32 resize, Proposed Model 3 achieves 

the highest accuracy of 94%, with precision, recall and F1 scores of 95%, 94% and 94% respectively. 

These results are superior to the other models for the same resize scenario. Furthermore, the number of 

parameters for Proposed Model 3 is only 425 thousand, which is significantly less than Proposed 

Model 1, which requires 541 thousand parameters for slightly lower accuracy and metrics. The result 
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of all evaluation metrics is also higher than the other models and the smaller parameter size makes it 

more suitable for real-time applications where computational efficiency is crucial. 

3.2. Model Performance on 40 Classes 

The second experiment was conducted by increasing the number of classes used to 40 classes. 

This was done to determine the performance of the proposed model when the number of datasets 

increases. Testing was performed on each proposed model using input resize scenarios of 32 x 32, 64 

x 64, and 96 x 96 pixels. From the test results, the best performance was obtained in Proposed Model 1 

with an input size of 64 x 64 with an accuracy of 98%, precision 99%, recall 98%, and f1-score 98%. 

These results show a significant improvement compared to previous studies, where MobileNet 

[34] and CNN+LBP [35] achieved accuracies of 97% and 91%, respectively, on datasets with fewer 

classes (30 and 20 classes). The results indicate that the proposed model significantly improves 

performance when scaling up the number of classes. In terms of computational complexity, Proposed 

Model 1 remained efficient, generating only 1.7 million parameters, which is significantly lower than 

the 3.5 million parameters in previous studies. This reduction demonstrates the model’s capability to 

handle increased class numbers without a substantial increase in computational requirements. 

Table 6. Result Evaluation 40 Classes 

Architecture Resize Precision Recall F1-Score Accuracy Parameters 

Proposed 

Model 1 

32 0.93 0.91 0.91 0.90 544,520 

64 0.99 0.98 0.98 0.98 1,724,168 

96 0.99 0.98 0.98 0.98 3,690,248 

Proposed 

Model 2 

32 0.92 0.90 0.90 0.89 198,248 

64 0.97 0.96 0.96 0.96 591,464 

96 0.98 0.97 0.97 0.97 1,246,824 

Proposed 

Model 3 

32 0.92 0.92 0.91 0.91 427,560 

64 0.95 0.93 0.92 0.92 1,213,992 

96 0.91 0.88 0.87 0.88 2,524,712 

Table 6 show that Proposed Model 1 outperforms the other models in all evaluation metrics. In 

terms of resize scenarios, both 64 x 64 and 96 x 96 pixel sizes yield similar performance. However, it 

can be observed that the number of parameters generated for the 64 x 64 pixel resize is much lower, 

approximately half, at around 1.7 million compared to 3.6 million for the 96 x 96 pixel. This indicates 

that the smaller resize in Proposed Model 1 leads to better efficiency with a significantly reduced 

number of parameters. Additionally, the reduced parameter count ensures that the model remains 

computationally efficient, even with the increased number of classes. 

3.3. Model Performance on 50 Classes 

The last experiment was conducted by increasing the number of classes used to 50 classes. This 

test was conducted on each proposed model with a resize scenario of 32 x 32, 64 x 64, and 96 x 96 

pixels. From the test results, the best performance was obtained at input size 64 x 64 with accuracy of 

95%, precision 96%, recall 95% and f1-score 95%. The absence of Batch Normalization reduces 

computational overhead, while the addition of Dropout layers in the dense layers effectively mitigates 

overfitting, particularly in high-class scenarios. This design allows Proposed Model 3 to generalize 

well across a larger number of classes. 

Compared to previous studies, the results of this experiment show a clear advantage of the 

proposed model. MobileNet [34], which achieved a slightly higher accuracy of 97% on 30 classes, 

exhibits a steep increase in the number of parameters, making it less suitable for scenarios requiring 

resource efficiency. Similarly, the CNN+LBP [35] performed significantly worse, with an accuracy of 
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only 91% on 20 classes, indicating its limited scalability to larger datasets. In the Proposed Model 3, 

the number of parameters is 3 times less, which is 1.2 million when compared to MobileNet [34] with 

the number of parameters reaching 3.5 million. This indicates that even with a larger number of 

classes, the proposed model can achieve better performance in terms of computational efficiency as 

indicated by fewer parameters. 

Table 7. Result Evaluation 50 Classes 

Architecture Resize Precision Recall F1-Score Accuracy Parameters 

Proposed 

Model 1 

32 0.95 0.93 0.93 0.93 547,090 

64 0.93 0.93 0.91 0.92 1,726,738 

96 0.97 0.96 0.95 0.96 3,692,818 

Proposed 

Model 2 

32 0.94 0.89 0.88 0.89 200,818 

64 0.96 0.95 0.94 0.94 594,034 

96 0.95 0.94 0.93 0.94 1,249,394 

Proposed 

Model 3 

32 0.94 0.90 0.89 0.90 430,130 

64 0.96 0.95 0.95 0.95 1,216,562 

96 0.92 0.89 0.88 0.89 2,527,282 

Table 7 show that Proposed Model 3 in resize 64 x 64 pixel generally delivers the best 

performance while the accuracy is slightly lower by 1% compared to Proposed Model 1. Proposed 

Model 3 excels in terms of computational efficiency. It generates fewer parameters, which indicates 

better efficiency. This trend continues across all resize scenarios, where Proposed Model 3 

consistently maintains a lower parameter count, resulting in reduced computational demands. Thus, 

despite a slight decrease in accuracy, the overall performance of Proposed Model 3, including its 

efficiency with fewer parameters, makes it a more optimal choice for practical applications, especially 

in scenarios where model complexity and computational resources are concerns. 

4. DISCUSSIONS 

In comparative analysis, the proposed model demonstrates enhanced performance than the 

research of MobileNet [34] and CNN+LBP [35] measured by the metrics of precision, recall, f1-score, 

and accuracy. In addition, the parameters generated in the proposed model are also much less which 

results in a faster and more efficient computational process during training but still able to achieve the 

best performance. This indicates that a larger number of classes can create a model with fewer 

parameters. In addition to the architectural design, the number of parameters resulting from the model 

is also significantly less affected by the resize utilized. The smaller the input image size, the faster and 

more efficient the training computation time. In other words, even though the resize is done with quite 

small input sizes, namely 32 x 32, 64 x 64, and 96 x 96 pixels, the model is still able to learn the 

existing images without losing the unique features possessed by the palmprint image. 

Table 8. Comparison with Previous Studies 

Algorithm Dataset NClasses Accuracy 
Parameters 

(million) 

Proposed Model 1 Collected Palm Dataset 
40 98% 1.7 

50 96% 3.6 

Proposed Model 2 Collected Palm Dataset 
40 97% 1.2 

50 94% 1.2 

Proposed Model 3 Collected Palm Dataset 
40 92% 1.2 

50 95% 1.2 

MobileNet [34] BMPD 30 97% 3.5 
CNN + LBP [35] BMPD 20 91% NA 
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Table 8 shows a comparison of the model proposed by the researcher with previous studies 

MobileNet [34] and CNN+LBP [35]. It can be seen that the Proposed Models 1, 2, and 3 are able to 

identify palm images with a larger number of subjects. Proposed Model 1 achieved the highest 

accuracy of 98% on the Collected Palm Dataset with 40 classes, but with a relatively large number of 

parameters, namely 1.7 million. In contrast, Proposed Model 2 also uses the same dataset and number 

of classes, but has a smaller number of parameters, namely 1.2 million and slightly decreases the 

accuracy to 97%. This shows that with a smaller number of parameters, the model can still maintain 

almost equal accuracy despite a slight decrease. 

In the 50 class scenario, Model 1 achieved the highest accuracy, reaching 96%. However, it has 

3.6 million parameters, which makes it quite large in terms of model complexity. In comparison, 

Proposed Model 3, while achieving a slightly lower accuracy of 95%, offers a better balance between 

accuracy and model complexity. Despite the minor reduction in accuracy, Proposed Model 3 is 

considered more effective due to its more efficient use of parameters with only 1.2 million parameters, 

which makes it more suitable for classification tasks involving a larger number of classes. 

On the other hand, MobileNet achieved 97% accuracy on the BMPD dataset with 30 classes, but 

with a much larger number of parameters of 3.5 million. This shows that although MobileNet can 

achieve high accuracy, it requires more parameters which can lead to higher computational resource 

usage. Meanwhile, the CNN + LBP model with 20 classes on the same dataset achieved 91% 

accuracy, but the number of parameters is not available so it cannot be compared directly regarding 

parameter efficiency. 

From this analysis, it can be seen that using a smaller number of parameters, such as in 

Proposed Model 3, can achieve accuracy that is competitive with more complex models such as 

MobileNet, but with better resource efficiency. This is important when limited computing resources 

are a major consideration. 

 

Figure 6. Plot Accuracy and Loss Proposed Model 3 

 

Figure 5 shows the best accuracy and loss plots generated in this study for Proposed Model 3. 

The accuracy graph shows a steady increase as the number of epochs increases until it reaches 150 

epochs. This shows that the model can continue to learn from the training data well, without 

experiencing a drop in performance on the testing data. In contrast, the loss graph shows a consistent 

decrease in the error value as the number of epochs increases for both training and testing data. The 

accuracy increases and remains stable without significantly decreasing, and the loss continues to 

decrease without signs of increase, indicating that the model is not overfitting. The model performed 

well with optimal generalization ability on new data. 
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The use of Dropouts in the Proposed Model 3 also contributes to the stability of the graph. 

Dropout is a regularization technique that randomly disables a number of neurons during training 

which helps prevent the model from overfitting the training data. In this graph, the effect of dropout 

can be seen as the accuracy of the testing data remains stable without large fluctuations and the loss 

continues to decrease as the epochs increase. In other words, dropout helps the model to learn more 

general and relevant features, rather than memorizing the training data. This explains proposed model 

3 not only shows a consistent increase in accuracy, but also a continuous decrease in loss that reflects 

the model's ability to generalize well on data it has never seen. 

The study's limitations are due to the dataset, which is limited to palmprint images from 

Indonesia. This means the findings may not fully represent palmprint diversity in Southeast Asia. A 

larger dataset from other Southeast Asian populations would provide a more comprehensive 

evaluation of the model's robustness and generalizability in this region. The proposed models in this 

study present significant contributions to the field of palmprint recognition by demonstrating 

scalability and efficiency. With fewer parameters compared to previous studies such as MobileNet 

[34], the proposed approaches achieve competitive accuracy while maintaining computational 

efficiency, making them highly suitable for resource-constrained environments. These findings have 

significant implications for real-world applications, particularly in designing real-time palmprint 

authentication systems for mobile devices or embedded systems. By optimizing parameter counts, 

these models can be deployed on devices with limited memory and processing power without 

compromising accuracy, making them suitable for diverse populations and environments. By 

optimizing the balance between performance and efficiency, this research contributes to the 

advancement of methodologies presented in previous studies. 

5. CONCLUSION 

This study shows that the proposed model is able to achieve better performance compared to 

previous studies in terms of accuracy, precision, recall, and f1-score, while reducing the number of 

parameters generated. Experiments used palm data with the number of classes varied from 30, 40, and 

50. As a result, Proposed Model 1 showed the highest accuracy in 40 classes with 98% accuracy, 99% 

precision, 98% recall, and 98% f1-score with 1.7 million parameters. In the dataset with 50 classes, 

Model 1 once again showed the highest accuracy of 96%, but with a much larger parameter size of 3.6 

million. In contrast, Proposed Model 3, which achieved a slightly lower accuracy of 95%, 96% 

precision, 95% recall, and 95% f1-score, managed to optimize the balance between accuracy and 

model complexity, utilizing only 1.2 million parameters. The efficiency of Proposed Model 3 makes it 

more suitable for handling larger classification tasks without a substantial increase in model 

complexity. Therefore, despite a slight decrease in accuracy, the efficiency and stability of Proposed 

Model 3 in managing classification with an increased number of classes makes it the optimal choice in 

this study. This research contributes to the development of efficient CNN models for palmprint 

recognition, reducing model complexity while maintaining high accuracy. It has practical implications 

in biometric applications and image-based identity recognition. To further enhance the model’s 

generalization, future research could explore the inclusion of palmprint datasets from other Southeast 

Asian countries. This could provide a more diverse representation of hand characteristics and improve 

the robustness of the model across different populations. Additionally, implementing the model into 

real-world systems, such as mobile or embedded devices, could help evaluate its performance in 

practical scenarios. Testing the model on larger and more varied datasets will also help reduce bias 

and increase its applicability. 
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