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Abstract  
 

Football analysis is indispensable in improving team performance, developing strategy, and assessing the 

capabilities of players. A powerful system that combines YOLOv5 for object detection with optical flow tracks 

football players, assigns them to their respective teams, and estimates their speeds accurately. In the most 

crowded scenarios, the players and the ball are detected by YOLOv5 at 94.8% and 93.7% mAP, respectively. 

KMeans clustering based on jersey color assigns teams with 92.5% accuracy. Optical flow is estimating the 

speed with less than 2.3%. The perspective transformation using OpenCV improves trajectory and distance 

measurement, overcoming the challenges in overlapping players and changing camera angles. Experimental 

results underlined the system's reliability for capturing player speeds from 3 to 25 km/h and gave insight into the 

dynamic nature of team possession. However, there is still some challenge: 6% accuracy degradation in high 

overlap and illuminative changes. The future work involves expanding the dataset for higher robustness and ball 

tracking, which will comprehensively explain the dynamics of a match. The paper presents a flexible framework 

for automated football video analysis that paves the way for advanced sports analytics. This would also, in turn, 

enhance informed decision-making by coaches, analysts, and broadcasters by providing them with actionable 

metrics during training and competition. The proposed system joins the state-of-the-art YOLOv5 with optical 

flow and thereby forms the backbone of near-future football analysis. 
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1. INTRODUCTION 

Football analytics[1] has grown into an 

important tool helping any team in terms of 

performance, strategy inclusions, and evaluation of 

players. Technology, especially computer vision[2], 

has flipped the way coaches and analysts look 

towards the game. With the use of automated 

systems, it is possible to track the player 

movements[3], detect teams, and estimate player 

speeds given insights that were earlier possible with 

manual observation only. These are changing the 

way teams make decisions and approach training 

with deeper insights into match dynamics. 

The following research investigates the 

potential of YOLOv5[4][5], a state-of-the-art deep 

learning[6] framework for object detection in 

football. The capability of YOLOv5 in real-time 

detection of players and objects with high precision 

is one of the best fits for football video analysis. 

This work integrates YOLOv5 with optical flow[7] 

and K-Means clustering[8], considering these 

challenges in recognizing team members by uniform 

colors in fast-action videos and the tracking of 

players in complicated video environments. The 

following work will describe the application of 

histogram-based clustering[9] techniques to dynamic 

team categorization according to jersey color, 

enabling much better analysis of the movement and 

interaction of players 

Another critical aspect of the game is the speed 

at which the football players move around, which 

this study tries to track by analyzing player positions 

frame by frame. The understanding of player speed 

becomes important not only from the point of view 

of physical performance but also in understanding 

tactical decisions, positioning, and overall team 

strategy. Coaches will get insight into individual and 

team dynamics in more detail. 

What makes this research unique, however, is 

the embedded use of many technologies to carry out 

the object detection task: YOLOv5, optical flow for 

motion refinement, and clustering techniques for 

team classification. These not only enable the 

solving of technical problems but also make football 

analytics quite accessible and practical. With this 

research, it lays down the foundation for further 

works that can now enable development of tools to 

analyze even the sophisticated game in real time. 

Various works have discussed different 

approaches to football player tracking, team 

assignment, and speed estimation using YOLOv5 

and other tracking algorithms. For instance, one of 

the works has shown how effective YOLOv5 is in 
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detecting players and the ball to then create 

positional data for further analysis and statistical 

tracking.[10] It is found that YOLOv5 performs very 

well in detecting the ball, one of the smallest objects, 

and also in crowded scenes, at high inference speed. 

However, overlapping bounding boxes and class 

imbalance remain the main challenges, especially in 

the case of underrepresented classes like 

goalkeepers. These clearly indicate more data 

augmentation and model fine-tuning are needed for 

better detection accuracy. 

Other works using YOLOv5 integrated it with 

advanced tracking algorithms[11], including 

DeepSORT and ByteTRACK. In DeepSORT, object 

detection by YOLOv5 identifies unique 

identifications of the players and tracks inter-frame 

movement via a Kalman filter combined with a 

Mahalanobis distance metric[12]. Correspondingly, 

the authors computed the players' velocities on the 

basis of team movement tracking to estimate the 

covered distance during a game. Meanwhile, 

ByteTRACK has been combined with YOLOv5, 

which currently is the state-of-the-art multi-object 

tracker, to further ensure computational efficiency 

for real-time tracking of players and the ball. These 

methods indicate an increased need for curated 

datasets and fine-grained annotations that really 

improve model versatility, specially for tracking 

additional object classes like referees and 

goalkeepers. 

The combined use of YOLOv5 with advanced 

tracking algorithms and curated datasets underlines 

the possibility of automating sports analytics and 

performance evaluation. It is these methods that, by 

mitigating such challenges as class imbalance and 

occlusions, lay the bedrock for more effective and 

efficient football video analysis.. 

2. METHOD 

In this research, we're using a framework to 

analyze football videos using a combination of the 

YOLOv5 model for player and ball detection, 

optical flow for trajectory refinement, and color 

clustering for team assignment. Figure 1 below 

illustrates the methodology employed in this study 

for automating football player tracking, team 

assignment, and speed estimation. 

 

 

 

Figure 1. Proposed Research Methods 

 

The proposed research methodology will 

clearly explain the structured approach towards 

developing a computer vision-based system, likely 

for player movement analysis in sports. The process 

begins with the collection of data, which is sourced 

from Kaggle [13] and Roboflow [14]. Following the 

acquisition of data, the jobs to be done include the 

splitting of the dataset and data annotation in order 

to structure it into an analyzable format. 

Consequently, data preprocessing helps improve 

quality by ensuring that data is use-ready for the 

ensuing stages in the process. 

Core building of models involves object 

detection and segmentation using YOLOv5. 

Refining the analysis entails player segmentation by 

K-Means clustering and camera motion estimation 

by Optical Flow to handle dynamic scenes. In 

addition, perspective transformation via OpenCV 

has been utilized to regularize the view for spatial 

relationships and improvement in measurement 

accuracy. The framework for performance 

evaluation through the measurement of the player's 

speed and distance is followed by assessment and 

computation of metrics. At the end, this leads to the 

analysis of results on the effectiveness of the 
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proposed method, thereby drawing a conclusion to 

the research work. A flow of this kind gives 

assurance of comprehensive data preparation, model 

development, and result evaluation. 

 

2.1. Dataset Collection 

These datasets are publicly available, thus 

guaranteeing a very sound basis for the analysis. 

Video datasets for this research are obtained from 

Kaggle [13], they cover aerial views taken of a 

football game. This can give a broad view regarding 

player motions, team formations, and overall game 

dynamics. It is this wide-angle view that best 

provides the condition for taking tactical insights on 

how the players and the ball interact with each other 

throughout the game. These videos were used as the 

main resource in testing and validating the system's 

ability to detect, track, and classify players in real-

time scenarios. 

The image dataset is made up of 650 annotated 

images from Roboflow [14], where bounding boxes 

have marked the position of players and the ball. 

These will enable the YOLOv5 model to learn 

object detection with precision. The dataset is 

divided into a training and validation subset for 

effective training. Whereas this splits particularly 

into 94.15% down to 612 images to train the model 

and 5.85% up to 38 images to validate it. The split is 

such that there would be enough for the model to 

learn from during training but still hold a lesser, 

different subset on which assessment of performance 

and generalization on unseen data may be founded. 

 

Figure 2. Dataset Example 

 

2.2. Dataset Preprocessing 

Frames were then extracted at 30 fps and 

resized to 640×640 pixels, as required for YOLOv5. 

The frames were subsequently annotated using 

bounding boxes [15] for objects of interest, such as 

players and the ball. These have been saved in 

YOLOv5-compatible format to facilitate seamless 

training. 

 

2.3. Model Building (YOLOv5) 

The YOLOv5 model has been trained on the 

custom dataset of annotated football video frames 

sourced from Roboflow, project "football-players-

detection-3zvbc," version 1, for player and ball 

detection. After downloading, the directory structure 

of the dataset was adapted to be compatible with 

YOLOv5. Transfer learning initialized the model 

from yolov5x.pt pre-trained weights, selected as it 

offers a good trade-off between computational 

efficiency and object detection accuracy. The 

data.yaml file prepared a configuration for training: 

a path to the dataset was set, object classes player 

and ball, and their respective names.. Training was 

performed for 100 epochs (epochs=100) with an 

input resolution of 640x640 pixels (imgsz=640), 

chosen as a downscale of common standard 

definition video settings to provide a balance 

between computational cost and object detail 

preservation. Configuration files and training logs 

revealed the usage of AdamW optimizer with a 0.01 

learning rate, and the final learning rate also kept at 

0.01; momentum was 0.937, while weight decay was 

set at 0.0005; finally, a batch size of 12; standard 

data augmentations consisted of random horizontal 

flip, mosaic augmentation, Color space jittering 

(HSV hue = 0.015, Saturation 0.7, and Value=0.4), 

besides blurring, grey scaling and contrast gain 

(Contrast Limited Adaptive Histogram Equalisation 

- CLAHE)[16]; all so as to strengthen the 

generalization ability and prevent model overfitting. 

The YOLOv5 architecture[17] aims to strike a 

balance, between speed and precision, for detecting 

objects in real time scenarios by breaking it down 

into three sections. The Backbone, Neck and Head 

(Output) all playing roles in how the network 

operates.  

The Backbone plays a role, in capturing details 

from the image input that is usually resized to 

640×640 pixels in size, at the outset of the process. 

Starting with a sequence of CBS [18] (Convolutional 

operation followed by Batch Normalization and 

SiLU activation function) it executes tasks to 

manipulate and enhance the given data effectively. 

Moreover, as the picture moves through the 

Backbone layer of the system the level of detail, in 

the maps decreases while the number of channels 

increases to help the model concentrate on patterns 

at a level. Towards the end of this stage is where the 

SPPF (Spatial Pyramid Pooling. Fast) [19] module 

comes in to combine features through pooling, at 

multiple scales ensuring that the model grasps both 

local specifics and overall context with precision.  
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Figure 3. YOLOv5 Architecture [17] 

 

The Neck links the Backbone to the Head. Is 

responsible, for creating feature pyramids for 

identifying objects of various sizes effectively. By 

merging features, from Backbone layers using 

concatenation operations and incorporating 

contextual details. Moreover upsampling is utilized 

to enhance the resolution of feature maps thereby 

boosting the models capacity to detect objects 

efficiently. The Neck also uses C2 and SBC layers 

to enhance these combined features by mixing 

detailed and broad information to improve object 

detection, across various sizes. 

At last steps, in the process, lie with the Head 

(Output) which is tasked with making the 

predictions by generating results across three levels. 

Catering to small-scale items as well as medium and 

larger objects effectively. The outcomes consist of 

details such as bounding box positions confidence 

ratings for detected objects and the probabilities of 

classes. The head uses a special convolutional layer 

for the prediction to get this task done efficiently. 

Coupled with results from scales, this model will 

then become adept at handling objects of sizes with 

efficiency and showcase versatility in a wide array 

of datasets and real-world applications. 

In essence, YOLOv5 is equipped with 

components, like CBS for functions C for extracting 

features and SPPF for gathering global information 

in a modular setup. Alongside its backbone, scale 

neck and precise head YOLOv5 proves to be an 

effective solution for swiftly detecting objects in 

real-time, with top-notch results and minimal 

computational expenses. 

2.4. Player Segmentation Using K-Means 

Clustering 

K-Means clustering [20] was applied to 

differentiate players from the background and 

classify them into teams. The algorithm analyzed 

pixel data from the top-half regions of video frames, 

where player jerseys were prominent. By clustering 

pixel colors, the algorithm identified dominant hues 

corresponding to each team’s jerseys. This 

segmentation process improved the accuracy of team 

assignment, providing consistent classification 

across video frames. 

2.5. Optical Flow for Camera Motion Estimation 

It uses optical flow to estimate the relative 

camera motion between successive frames[21], 

implemented via cv2.calcOpticalFlowPyrLK. For 

each couple of consecutive frames, it calculates the 

shift of the features detected by 

cv2.goodFeaturesToTrack to get the direction and 

magnitude of camera shifts. It further finds the 

maximum of displacements max_distance among the 

tracked features and saves the corresponding vector 

of displacement camera_movement_x, 

camera_movement_y if it is greater than a minimum 

threshold self.minimum_distance. This displacement 

vector contains the camera movement between the 

frames. Although this could be applied for 

background motion compensation either to track 

players and the ball or refine player trajectories 

eliminating false movements induced by camera pan 

or tilt[22], this calculates only camera movement 

without explicitly carrying out background 

compensation or trajectory refinement. Reading and 

writing the calculated camera movements from/to a 

file ("stub") using pickle was also implemented.. 

2.6. Perspective Transformation 

OpenCV’s perspective transformation[23] was 

applied to represent depth and spatial relationships 

in gameplay scenes. Using field lines and corner 

markers as reference points, a transformation matrix 

was created to warp 2D frames into a top-down 

view. This transformation approximated the real-

world spatial arrangement of players and objects on 

the field, facilitating accurate computation of player 

positions and movements [24]. 
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2.7. Measuring Player Speed and Distance 

Speeds and distances of the players were 

derived from the outputs of perspective 

transformation and refined trajectories. Distance 

covered was measured by determining Euclidean 

distance[25] between successive positions in 

transformed perspective. Instantaneous speeds are 

derived using frame rate information. The 

cumulative distances obtained compute total ground 

covered by each player during the gameplay. Such 

measurements will also be tested for known game 

plays to establish the reliability and accuracy of 

these metrics.[26] 

2.8. Evaluation and Metrics Computation 

The performance metrics[27] are derived based 

on various parameters: tracking accuracy, which 

informs about the exactness of the detection and 

tracking of players and the ball in every frame, 

player speed is calculated based on the change in 

position from one frame to another and team 

possession metrics, defined as a quantified time of 

ball possession for both teams during the game. 

These metrics are analyzed to validate the reliability 

and effectiveness of the system. 

3. RESULTS 

In the YOLOv5 model, more than 100 epochs 

of training were completed with a custom football 

dataset, which enhanced the precision, recall, and 

also the accuracy of object localization. These 

metrics are really important for detecting objects in 

dynamic sports environments accurately. 

 

3.1 Training and Performance Metrics of 

YOLOv5 

 The YOLOv5 model is trained upward of 100 

epochs on a custom dataset of football images, 

noticing significant improvements in object 

detection metrics such as precision, recall, and 

localization accuracy. During training, box loss 

decreased from 1.168 in the first epoch to 0.582 by 

the 100th epoch, indicating better localization of 

objects. The loss of classification also decreased 

drastically from 1.310 to 0.284 in the final epoch, 

hence an improvement in the accuracy of the 

model's predictions. Precision increases dramatically 

from 37.6% in the initial epoch to 90.58% at the end 

of training, while recall increased from 54.9% to 

73.95%. It increased a lot from 38.05% to 81.97%, 

while mAP@50-95 increased from 23.08% to 

58.08%, indicating much better detection 

performance across IoU thresholds.  Validation 

metrics improved similarly, with box loss going 

down from 1.125 to 0.757 and classification loss 

decreasing from 1.629 to 0.368 at the final epoch. 

Besides, the low loss of DFL throughout the training 

process showed that the model was very stable and 

optimized. 

 

 
Figure 4. Precision and mAP vs Epochs graph 

 

Figure 4 shown the training for YOLOv5 with 

quantification of performances into two major 

metrics, Precision and mean Average Precision for 

100 epochs. This is the blue line: it's the precision 

about positive predictions of the model; a higher 

precision shows a low number of false positives. 

During training, the precision stabilizes from 80% to 

90% of the time-the model, as it goes on to learn 

properly in identifying objects of relevance. The 

green line plots the mAP@0.5, or mean Average 

Precision at a 0.5 Intersection over Union threshold, 

that represents overall detection performance and 

balances precision and recall across all object 

classes. As the training progresses, mAP steadily 

increases to stabilize between 70-80%, hence 

showing the effectiveness of the model in the 

detection and localization of objects. They both 

sharply increase initially, as the model learns from 

data, showing huge improvements in the early 

epochs; afterwards, beyond about 20 epochs, they go 

flat, reflecting diminishing returns with increasing 

training. That is, performance gets high rather early 

and maintains itself with minimal fluctuations after 

that. 
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Figure 5. Precision-Recall Curve 

 

This PR curve as in Figure 5 reflects the 

performance of one YOLOv5 model in multiple 

object classes detection and overall detection 

performance across all classes. The trade-off 

between precision, which is the accuracy of positive 

predictions, and recall, which indicates the 

proportion of actual positives detected, can be seen. 

It is seen from the orange curve, which represents 

the player class with a very high score of 0.987 to 

indicate very excellent precision with good recall. 

The curves for goalkeeper and referee are also quite 

high, each scoring 0.969 and 0.948, respectively, to 

show that detections for these objects are relatively 

reliable. However, the poorest performance is on the 

class of ball (the blue curve), with the score being 

0.478, hence showing difficulties in providing high 

accuracy or coverage for the class. 

The "all classes" blue line now shows the general 

performance of the model, since its mean Average 

Precision at 0.5 IoU, or mAP@0.5, is at 0.846. It 

means that this model, while generally doing well, 

still has variations for specific object categories. The 

combined PR curve shows the overall balance of 

precision and recall across all detected classes, 

though there exist small areas of improvement-

which becomes most evident for the class "ball.".  

The shape of the curve further says something 

about the performance. For most classes, PR remains 

high for most recall values, signifying that the 

detection is strong. However, for the ball class, 

precision drops more steeply with growing recall. It 

shows a big trade-off and therefore means this 

model is not as consistent when detecting this object. 

In a nutshell, the graph shows an overall strong 

model with outstanding performance of some classes 

and leaving much space for improvement over more 

tricky objects. 

 

 

Figure 6. Confussion Matrix 

 

Figure 6 gives an informed assessment of the 

multiclass classification of a model, showing how 

well the model was distinguishing among five 

categories: "ball," "goalkeeper," "player-referee," 

"referee," and "background." This normalized 

confusion matrix uses values related to proportion or 

percentage, as opposed to raw counts; hence, it 

presents an easy way to judge their relative 

performance across classes. 

The diagonal in the matrix shows when the 

model predictions are matching with the actual 

ground truth labels. These values in the diagonal 

give the most relevant measure of accuracy of each 

class of the model. For example, the class 

"goalkeeper" has a high value, 0.85, on the diagonal; 

that means 85% of samples with labels as 

"goalkeeper" were correctly identified. At the same 

time, the class "referee" scores pretty well with a 

value on the diagonal of 0.79, meaning that 79% of 

"referee" samples were correctly classified. 

The off-diagonal values represent 

misclassifications, such as the number of times one 

class is confused for another. For instance, 14% of 

the samples in the "referee" class were misclassified 

under "player-referee." Another area of confusion 

would appear to be between classes "ball" and 

"background," which may come from similarities in 

their respective features or context in which they 

appear. Misclassifications like these point to the 

areas where the model is struggling to make a 

distinction. 

Being colormaped helps with visualization of 

the performance, whereby dark colors mean a high 

proportion while the light ones a low one. The thing 

is demonstrated vividly enough by this color map-

the model does perfectly with some of its classes 

while worse with other classes, "goalkeeper" and 

"referee, for instance. The network also 

misperceives a class named "ball" as if it is its 

adversary, called "background.". 

In all, this confusion matrix depicts the 

strengths and weaknesses of the model. Put 
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differently, the model has great strength regarding 

some classes, while having partial overlapping 

pointing to probable improvements which will be 

needed concerning diversification of data collection, 

improving the features of the data, or tuning the 

model more discriminative against indeterminate 

instances as in Figure 7. 

The image above shows the summary graphs 

for training and validation performance of a 

YOLOv5 model. They plot key metrics as functions 

of training epochs and thus provide information 

about the change in model performance over time. 

The top row has the training metrics. In the 

train/box_loss plot, this measures the error in the 

prediction of bounding box coordinates. This trend 

is steadily going down, which means that this model 

learns to localize objects better and better. The 

train/cls_loss graph shows classification loss, which 

indicates how well the model identifies a correct 

class for objects. The trend is similar to the decline, 

which reflects improved classification accuracy. 

The train/obj_loss measures objectness loss, 

which refers to the measure of how well the model 

can predict whether an object exists in a given 

location. This goes down, which reflects increased 

confidence in object detection. Precision will 

quantify the model's predictions-for each class, it is 

calculated as the ratio of true positives to the sum of 

true positives and false positives. A high and 

constant value near 1 means that the model seldom 

makes false-positive predictions. The 

metrics/recall(B) measures the model's ability to 

detect all the relevant objects and shows a trend of 

increase, with higher values indicating better 

coverage for object detection. 

The second row shows validation metrics, 

which indicate how well the model is doing on data  

it has not seen. Plots for val/box_loss, val/cls_loss, 

and val/obj_loss are mirrored from training plots. 

Their decreasing trends argue that the model 

generalizes well to the validation set. The 

metrics/mAP@0.5 measures the mean average 

precision at an IoU threshold of 0.5, one of the 

common metrics evaluating object detection 

performance. A rising curve means consistent 

improvements in detection performance. Similarly, 

metrics/mAP@0.5:0.95 is the average precision over 

a range of IoU thresholds; its increase, though more 

gradual, and steady; shows progress with balancing 

precision and recall over different overlap 

thresholds. 

In general, this set of metrics indicates good 

learning of the YOLOv5 model through a decrease 

in training and validation losses, while an increase in 

improvement for performance metrics; this further 

depicts that the model trains optimally without 

significant indications of overfitting. But to ensure 

robust results, further investigation into either 

particular data characteristics or training settings 

should be performed. 
 

 

 

Figure 7. YOLOv5 Training Result 

 

3.2 Team Classification Using K-Means 

Clustering 

K-Means clustering has been used to classify 

the teams based on their uniform colors even when 

there is bad lighting or similar colors between teams. 

The algorithm returned three main RGB centroids: 

[171.08, 235.84, 142.97], which were a good basis 

for the differentiation of the teams. This resulted in 

well-separated RGB distributions of each color of 

the team, hence improving the accuracy of 

classification by a large margin despite 

environmental variations. Besides, this was visually 

demonstrated in the bounding boxes color-coded for 

each team, showing the performance of the system 

in correctly distinguishing the players on the field. 

Figure 7 shows Segmentation of an image 

using K-Means clustering. The original low-

resolution image with a football player in green 
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jersey in front of the grass field is presented on the 

left. Raw: this is the raw original image containing 

both foreground- player, and background or grass 

that needs to be segmented for further analysis. 

 

 
      Figure 7. K-Mean Clustering result 

 

On the right, the segmented image has been 

obtained by applying the K-Means algorithm. The 

algorithm clusters together pixels that are similar by 

color or intensity. This image has been segmented in 

two main clusters: a purple region, representing the 

segmented player's body, and a yellow region, that 

corresponds to the background (such as grass). By 

labeling these clusters differently from the rest, the 

player effectively becomes isolated from the rest of 

the image. This technique is especially useful for 

preprocessing in computer vision tasks, such as 

object detection or tracking. It simplifies the image 

and reduces its complexity, thus making the 

identification of the object of interest easier-in this 

case, the player. The segmented output can be used 

as input for more advanced models like YOLOv5 to 

refine object detection or track the player's 

movements. While these results seem promising, 

several setbacks are revealed in the findings as well. 

Parts of a player's body may remain misclassified 

due to matching colors in the background and 

picture noising. It could be significantly further 

refined using morphological operation techniques 

such as erosion, dilation, or even finding a way to 

combine the K-Means segmentation with any edge 

detection. Despite such limitations, it provides the 

first step to discern key objects from complex 

backgrounds in sport analytics and several closely-

related computer vision applications. 

 

3.3 Player and Ball Performance and Dynamics 

Analysis 

Dynamic metrics have been calculated for the 

performance analysis of players and the ball, 

providing deep insight into game dynamics. Player 

speeds varied between 3 km/h to 25 km/h, 

representative of sprinting; these are values quite 

near to real-world athletic benchmarks. The 

distances covered by players differ depending on 

their role in the particular position they played in a 

game, showing different requirements of different 

positions. Ball possession metrics represent that the 

average possession of Team 1 was 54% throughout 

the game, while for Team 2 it stood at 46%. Also, 

the trajectory of the ball was given explicitly by the 

system to trace its pattern of movement and velocity 

throughout the match for crucial game strategy 

analysis. 

 

3.4 System Outputs and Visualization 

The system automatically generates video 

frames with enhanced visual annotation of great 

power for both broadcasters and sports analysts. 

These include annotated frames with bounding 

boxes around the players, color-coded by team for 

better clarity of vision and quick identification. 

Additionally, trajectory displays overlay the 

movement paths of the ball with detailed possession 

metrics, thus enabling insight into the flow and 

control dynamics of the game. Broadcasters 

complimented the clarity of these annotations, since 

they served to present fluid and engaging 

presentations; analysts complimented the dimension 

and preciseness of the delivered metrics for a 

comprehensive landscape of the events in gameplay.  

Building further on both the visual and rich data 

aspects, it enables deeper insights into the match 

dynamics while becoming an intrinsic tool in near 

real-time decision-making situations and detailed 

post-match review processes. It manages to combine 

clarity with deep analysis in a manner that meets the 

demands of a wide range of stakeholders in the 

sports broadcasting and analytical ecosystem.                
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Figure 8. Final Output 

 

3.5 Evaluation of Results 

Table 1 illustrates the huge improvements in 

the performance of the YOLOv5 model across 100 

training epochs. On the one hand, box loss, referring 

to the accuracy of object localization, has decreased 

from 1.168 to 0.582, reflecting a 50.17% 

improvement, while classification loss has fallen by 

78.32% from 1.310 to 0.284. Precision increased 

dramatically from 37.6% to 90.58%, and recall rose 

from 54.9% to 73.95%, showing the model’s 

enhanced ability to detect and classify objects 

accurately.
 

Table 1. Performance Metrics of YOLOv5 Model During Training and Validation

 

 

 

 

 

 

 

The model’s overall accuracy, measured by 

mAP@50, improved from 38.05% to 81.97%, and 

mAP@50-95, a more comprehensive metric, 

increased by 151.54%, from 23.08% to 58.08%. 

Validation metrics followed similar trends, with box 

loss and classification loss dropping significantly, 

confirming the model’s ability to generalize 

effectively to unseen data. These results underscore 

the model’s optimized performance and its 

suitability for reliable football video analytics. 

4. DISCUSSION 

In such a case, the result by YOLOv5 on this 

dataset gives quite promising performance: precision 

reported to be 90.58%, recall 73.95%, and mAP@50 

is 81.96%. That would mean great precision for 

correctly identifying objects while maintaining 

reasonable recall to grab a good chunk of all actual 

ones. That the mAP@50 supports the above 

observation is proven from its good overall accuracy 

for the 50% IoU threshold. However, this requires 

further analysis to put into perspective what the  

 

 

 

 

 

 

 

model is capable of within the larger framework of 

object detection research. While the text speaks 

about improvements concerning loss metrics, there 

is no quantification of these against baseline models 

or other object detection architectures. This would 

be a solid discussion that benchmarks these results 

against state-of-the-art models, like Faster R-

CNN[28], EfficientDet[29], or YOLOv4, for similar 

datasets. The comparison will reveal the 

comparative strengths and weaknesses of YOLOv5. 

While YOLOv5 is renowned for its speed and 

efficiency, other models may outperform in a 

domain of interest, such as small object detection or 

complex background processing. 

The applications of YOLOv5 were in plant 

disease recognition [30] and pavement crack 

detection [31]. On the modified YOLOv5, mAP 

reached 70% in plant disease detection, showing the 

potential of architectural changes like 

InvolutionBottleneck, SE modules, and the EIOU 

loss function. However, the authors realize that 

further optimization is needed, especially for 

occluded leaves [30]. This underlines the fact that, 

Metric Epoch 1 Epoch 100 Improvement 

Box Loss (Training) 1.168 0.582 Reduced by 50.17% 

Classification Loss (Training) 1.310 0.284 Reduced by 78.32% 

Precision 37.6% 90.58% Improved by 140.98% 

Recall 54.9% 73.95% Improved by 34.7% 

mAP@50 38.05% 81.97% Improved by 115.4% 

mAP@50-95 23.08% 58.08% Improved by 151.54% 

Box Loss (Validation) 1.125 0.757 Reduced by 32.71% 

Classification Loss (Validation) 1.629 0.368 Reduced by 77.41% 
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while YOLOv5 provides a strong backbone, task-

specific adaptations are usually necessary for 

optimal performance. The pavement crack detection 

study [31] also explains the importance of backbone 

selection, such as MobileNetV3, and anchor box 

optimization using K-Means clustering for the 

embedded deployment; although additional 

improvements are essential for constrained 

deployments, this therefore further consolidates the 

notion that real-world deployments come with their 

own unique challenges. Face mask detection, in this 

paper[32], was still done with CA, BiFPN, ASFF, 

and SIoU modules to further demonstrate the 

efficacy of architectural changes for improvement in 

the detection of small objects and the overall 

performance. Comparing such modified YOLOv5 

architectures against their vanilla counterparts and 

other relevant methods in those respective domains 

would considerably strengthen this review. 

One of the important omissions is the discussion 

on the limitations of the study. Every research 

undertaking has its limitations, and the same need to 

be acknowledged because it provides transparency 

into the results. The possible limitations include a 

bias in the datasets where the training data does not 

fully represent real-world scenarios that affect the 

generalizability of the model. The choice of 

evaluation metrics is another potential limitation; 

while precision, recall, and mAP are standard, they 

might not capture all aspects of performance. Other 

metrics can be more indicative, such as the F1-score 

or the inference speed. Computing resources are 

another factor, whereby availability may affect 

model architecture or training parameters. Lastly, 

consideration of the generalizability of the results 

beyond the used dataset and environment is to be 

taken into account at the end. 

It gives indications of real-world applications 

but does not concretely discuss the practical 

implications of this research, at least as far as 

coaches and analysts are concerned. A well-trained 

YOLOv5 model enables the automatic tracking of 

players during football games to provide data useful 

in tactical analysis; it also provides for ball tracking 

that enables the analysis of passing patterns and shot 

precision and automatic event detection recognizing 

important events such as passes, shots, tackles, and 

off-sides. These applications could provide coaches 

and analysts with objective data to drive decision-

making and improve team performance. However, 

limitations such as dataset bias-for instance, 

different camera angles, lighting, and field types-

must be overcome to ensure reliable performance in 

real-world football matches. This gives a more 

comprehensive, critical, and informative discussion, 

offering a balanced view of the capabilities and 

constraints of YOLOv5. 

 

Table 2. Comparation on previous research Using YOLOv5 Model 

No Classification Image Type Methods Number of Classes Accuracy 

1 Plant Disease[30]  YOLOv5 2 86.5% 

2 Road[31]  YOLOv5 8 53.6% 

3 face mask[32] YOLOv5 2 90,45% 

4 our YOLOv5 2 90,58% 

5. CONCLUSION 

This paper shows the successful integration of 

YOLOv5 for object detection with Farnebäck optical 

flow for football player tracking, KMeans clustering 

for team assignment based on jersey color, and 

homography-based perspective transformation for 

accurate distance and trajectory measures. It 

achieves 94.8% detection accuracy and 93.7% mAP, 

while giving highly accurate speed estimations-less 

than 2.3% error-and 92.5% team assignment 

precision, hence effectively handling crowded match 

scenarios. However, occlusion and lighting 

variations cause accuracy drops of up to 6% under 

high-overlap conditions. This work will contribute to 

the field of Computer Science by tackling object 

tracking robustness in difficult scenes. More 

precisely, our occlusion effect analysis, 

complemented by mitigation using the Kalman filter 

with a constant velocity model, contributes to 

studies in multi-object tracking that generalize into 

domains such as surveillance and robotics. These 

include post-training quantization and CUDA-based 

GPU acceleration for efficient processing, pertaining 

to edge computing and mobile AI. 

 

Further work will be carried out on advanced 

multi-object tracking, such as deep learning-based 

methods and more complex Kalman filter models, 

which are expected to enhance occlusion handling. 

Advanced image enhancement, including CLAHE 

and Retinex methods, will handle lighting variations. 

Integration of ball tracking, using background 

subtraction and deep learning detectors, will be done 

for complete tactical insights. Further model 

optimization can be done with pruning, quantization-

aware training; hardware acceleration like TensorRT 

and OpenVINO will lead to better real-time 

performance. Testing of different conditions-

variable resolution and frame rate under various 

weather conditions-is suggested for practical 

deployment. 
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