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Abstract 

 

The prevalence of mental health issues and the increasing use of social media provide an opportunity to leverage 

technology for early detection of depression. This study evaluates and compares five deep learning models, LSTM, 

BiLSTM, GRU, CNN, and RNN for detecting depressive tendencies from over 10,000 annotated social media 

messages. These models were trained on preprocessed data using standard techniques, including cleansing, 

tokenization, and padding. Evaluation metrics such as accuracy, precision, recall, and F1-score were utilized. 

BiLSTM emerged as the best-performing model with an accuracy of 98.45% and an F1-score of 96.37%, attributed 

to its bidirectional architecture for contextual analysis. In contrast, CNN achieved high precision (98.55%) but 

struggled with recall (15.14%), while RNN and GRU exhibited limitations in capturing complex patterns, with 

GRU showing no measurable performance. These findings establish BiLSTM as a robust tool for mental health 

monitoring. Future research could explore transformer-based models such as BERT or multilingual datasets for 

enhanced applicability. 
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1. INTRODUCTION 

Mental health is a critical global concern, with 

depression being one of the most prevalent disorders, 

significantly impacting individuals and societies. 

Early detection of depression is essential to reduce its 

long-term effects, yet traditional methods such as 

clinical interviews or self-reported surveys are often 

resource-intensive, time-consuming, and inaccessible 

for large populations. The increasing use of social 

media provides a unique opportunity to leverage 

technology for mental health monitoring. Millions of 

users on platforms like Twitter and Facebook express 

their thoughts and emotions daily, generating vast 

amounts of unstructured textual data. This data, while 

noisy and challenging to analyze, offers insights into 

user behaviors and emotional states, including 

depressive tendencies[1]. 

Sentiment analysis, the computational process 

of identifying and classifying emotional tones in text, 

has been widely utilized in fields like customer 

service, political analysis, and healthcare. Recently, 

sentiment analysis has emerged as an essential tool in 

mental health monitoring, particularly for detecting 

signs of depression from social media text. Unlike 

traditional diagnostic methods, sentiment analysis 

can analyze user-generated content passively and at 

scale, enabling early intervention efforts. However, 

detecting depressive tendencies in social media text 

presents unique challenges, including unstructured 

data, the use of slang and abbreviations, and the 

nuanced nature of emotional expressions, which 

require advanced analytical approaches[2]. 

Machine learning and deep learning techniques 

have shown significant promise in overcoming these 

challenges. Deep learning models, such as Long 

Short-Term Memory (LSTM) networks, 

Bidirectional LSTM (BiLSTM), Gated Recurrent 

Units (GRU), Convolutional Neural Networks 

(CNN), and Simple Recurrent Neural Networks 

(SimpleRNN), are designed to process sequential data 

and extract meaningful patterns. LSTM excels at 

capturing long-term dependencies in text sequences, 

while BiLSTM improves upon this by processing text 

in both forward and backward directions, offering 

superior contextual analysis. GRU, as a simplified 

alternative to LSTM, provides computational 

efficiency and faster training times. CNN, originally 

designed for image recognition, has been adapted for 

text classification by detecting local patterns such as 

word co-occurrences. SimpleRNN, while 

foundational, struggles with long-term dependencies 

due to the vanishing gradient problem, making it less 

effective for complex tasks like depression 

detection[3]. 

Despite the proven capabilities of these models, 

significant gaps remain in understanding how they 

compare in the context of depression detection from 

social media data. Few studies have conducted a 

comprehensive evaluation of these architectures for 

this specific application, leaving an opportunity to 

explore their relative strengths and weaknesses. This 

study addresses this gap by evaluating and comparing 
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the performance of LSTM, BiLSTM, GRU, CNN, 

and SimpleRNN in detecting depressive tendencies 

from over 10,000 annotated social media messages. 

These models were selected for their ability to 

process sequential data and identify patterns 

indicative of emotional states. Each model is assessed 

using key performance metrics, including accuracy, 

precision, recall, and F1-score, to determine their 

suitability for real-world applications[4], [5]. 

The primary objective of this research is to 

identify the most effective deep learning model for 

detecting depressive tendencies in textual data and to 

analyze the limitations of each architecture in 

handling unstructured social media text. The findings 

aim to contribute to the development of automated 

tools for mental health monitoring, which could be 

integrated into broader mental health surveillance 

systems. Furthermore, the study provides a 

foundation for future research to explore transformer-

based models, such as BERT, or to expand the 

analysis to multilingual datasets, enhancing the 

scalability and applicability of these techniques in 

mental health analysis[6]. 

2. METODE PENELITIAN 

2.1. Problem Formulation 

The main problem addressed in this research is 

detecting depressive tendencies from text data using 

deep learning models [7]. The objective is to classify 

social media text messages into two categories, 

depressive or non-depressive. where y = 1 if the post 

is depressive, and y = 0 if it is non-depressive. This 

problem can be formulated as a binary classification 

task, where we aim to minimize the error of 

misclassification between depressive and non-

depressive posts. The objective is achieved by 

minimizing the binary cross-entropy loss function [8]. 

𝐿(𝑦, �̂�) = −
1

𝑁
∑ {𝑦𝑖 log( �̂�𝑖) + (1 − 𝑦𝑖) log(1 − �̂�𝑖)}𝑁

𝑖=1  (1) 

Point 1 effectiveness of a model's predicted 

probabilities in relation to the actual binary labels in 

a dataset is measured by the binary cross-entropy loss 

function. This function operates by imposing 

penalties on erroneous predictions, with more 

substantial penalties being levied when the model 

exhibits heightened confidence in an incorrect 

response. For instance, in a scenario where the actual 

label is 1 and the model forecasts a probability that is 

closer to 0, a more considerable loss is incurred. In 

contrast, the loss diminishes when the model’s 

predictions are nearer to the genuine labels. Through 

the process of averaging these losses across all 

observations, the function yields a singular metric of 

model performance, which subsequently directs the 

model’s learning trajectory. The minimization of this 

loss throughout the training phase facilitates the 

model's enhancement in accurately differentiating 

between the two categorical classes[9]. 

2.2. Workflow Process 

This research follows a systematic workflow, as 

depicted in Figure 1, ensuring a rigorous and 

structured approach to model development and 

evaluation. The workflow begins with Data 

Collection, where relevant data is gathered from 

social media platforms. For this study, over 10,000 

annotated messages were obtained, each labeled as 

either depressive or non-depressive. The dataset was 

carefully curated to ensure a balanced representation 

of the two categories, enabling fair evaluation of 

model performance. Quality control measures were 

implemented to verify that the labels accurately 

reflected the nature of the content, ensuring the 

reliability of the dataset for subsequent analysis[10]. 

 

 
Figure 1.  Workflow Process 

 

The next step in the process is Data 

Preprocessing, which transforms raw text data into a 

format suitable for deep learning analysis. This phase 

involves several key operations. First, text cleaning is 

performed to remove noise, including special 

characters, URLs, punctuation, and emojis, which can 

otherwise interfere with the model's ability to identify 

meaningful patterns. Following this, tokenization is 

applied to break the text into smaller units, such as 

words or subwords, facilitating their conversion into 

numerical representations. To ensure that all input 

sequences have uniform lengths, padding is 

employed, where shorter sequences are extended with 

padding tokens to match the length of the longest 

sequence. This step is critical for maintaining 

consistency across input data and compatibility with 

deep learning architectures. Additionally, the text is 

converted to lowercase to eliminate variations due to 
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capitalization, further improving consistency. These 

preprocessing steps collectively reduce noise and 

standardize the data, enhancing the models' ability to 

capture relevant patterns[11]. 

Once the data is preprocessed, the workflow 

proceeds to Model Selection, where five deep 

learning models are chosen for comparative 

evaluation: LSTM, BiLSTM, GRU, CNN, and 

Simple RNN. These models are selected based on 

their ability to process sequential data and extract 

meaningful features. LSTM is particularly effective 

at capturing long-term dependencies within text 

sequences, while BiLSTM extends this capability by 

processing sequences in both forward and backward 

directions, offering superior contextual 

understanding. GRU is a computationally efficient 

alternative to LSTM, balancing performance with 

reduced complexity. CNN is known for its strength in 

identifying local patterns, such as word co-

occurrences, making it suitable for text classification 

tasks. Simple RNN, while limited by its susceptibility 

to vanishing gradient problems, serves as a baseline 

to illustrate the advantages of more advanced 

architectures[12]. 

Following model selection, the Model Training 

phase is conducted, during which the models are 

trained using consistent hyperparameters to ensure a 

fair comparison. Key training parameters include a 

learning rate of 0.001, a batch size of 64, and 20 

epochs. The Adam optimizer is employed to 

dynamically adapt learning rates during training, 

optimizing performance and convergence speed. 

These hyperparameters are selected based on 

preliminary experiments to achieve a balance 

between computational efficiency and model 

performance. During this phase, the models learn to 

identify patterns in the data that distinguish 

depressive from non-depressive messages[13]. 

After training, the models are subjected to 

Model Evaluation using a reserved test dataset. This 

phase assesses each model's performance using key 

metrics, including accuracy, precision, recall, and F1-

score. Accuracy measures the overall correctness of 

predictions, while precision evaluates the proportion 

of true positive predictions among all positive 

predictions. Recall quantifies the model's ability to 

identify true positives, and F1-score provides a 

balanced measure by combining precision and recall. 

These metrics ensure a comprehensive evaluation of 

the models' classification capabilities[14]. 

The penultimate step in the workflow is Model 

Comparison, where the performance of the five 

models is analyzed based on the evaluation metrics. 

This comparison highlights the strengths and 

weaknesses of each architecture, enabling the 

identification of the most suitable model for the task 

of depression detection. Through this analysis, 

BiLSTM is identified as the Best Model, achieving 

the highest accuracy (98.45%) and F1-score 

(96.37%). Its bidirectional processing capability 

allows it to capture both forward and backward 

context in text, making it particularly effective for this 

application[15]. 

By following this systematic workflow, the 

research ensures a thorough and methodical approach 

to model development and evaluation, yielding 

reliable insights and facilitating reproducibility for 

future studies in the field of depression detection. 
 

Table 1. LSTM Layer 

Model: “sequential” 

Layer (type) Output Shape Param # 

lstm (LSTM) (None, 75, 128) 66,560 

dropout (Dropout) (None, 75, 128) 0 

lstm_1 (LSTM) (None, 128) 131,584 

dropout_1 (Dropout) (None, 128) 0 

dense (Dense) (None, 64) 8,256 

dense_1 (Dense (None, 1) 65 

Total Params: 206,465 (806.50 KB) 

Trainable Params: 206.465 (806.50 KB) 

Non-trainable params: 0 (0.00 B) 

 

Presented in table 1 is the configuration of a 

sequential neural network model, outlining each 

layer's type, the associated output shape, and the total 

count of parameters involved. The architecture 

initiates with an LSTM layer, which yields an output 

shape of (None, 75, 128) and comprises 66,560 

parameters, effectively capturing the sequential 

dependencies inherent in the dataset. Afterward, a 

Dropout layer is deployed to address overfitting by 

probabilistically disabling selected units in the 

training phase, while not increasing the number of 

parameters. An additional LSTM layer ensues, 

exhibiting an output shape of (None, 128) and a 

substantial parameter count of 131,584, thereby 

augmenting the model's aptitude for discerning 

intricate patterns. Following this LSTM layer, 

another Dropout layer is incorporated to facilitate 

further regularization[13].  

The architecture then transitions into Dense 

(fully connected) layers. The initial dense layer is 

characterized by an output shape of (None, 64) and 

encompasses 8,256 parameters, thus offering a more 

profound representation of the learned features. The 

terminal dense layer produces a singular output value, 

presumably intended for regression or binary 

classification tasks, and is composed of merely 65 

parameters. The model summary delineates a 

cumulative total of 206,465 parameters (equivalent to 

806.50 KB of memory), all of which are trainable, as 

there are no non-trainable parameters present. This 

architectural design amalgamates LSTM layers for 

the processing of sequential data with dense layers 

tailored for classification or regression objectives, 

while dropout layers serve to avert overfitting and 

bolster generalization[13]. 

Presented in table 2 is a the architecture initiates 

with a Bidirectional layer characterized by an output 

shape of (None, 75, 256) and comprising 133,120 

parameters. This layer facilitates the model's capacity 

to assimilate information from both preceding and 

subsequent states, thereby augmenting its proficiency 
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in processing sequential data. Subsequent to this layer 

is a Dropout layer maintaining the same output shape, 

which, while not contributing additional parameters, 

is instrumental in mitigating overfitting by randomly 

deactivating a proportion of input units during the 

training phase. A secondary Bidirectional layer 

ensues, exhibiting an output shape of (None, 256) and 

a markedly increased number of parameters 

(394,240). This layer further amplifies the model's 

bidirectional processing efficacy. It is also 

accompanied by a Dropout layer, which preserves the 

output shape of (None, 256) and, akin to its 

predecessor, does not incorporate any supplementary 

parameters[15]. 
 

Table 2. BiLSTM Layer 

Model: “sequential_1” 

Layer (type) Output Shape Param # 

bidirectional 

(Bidirectional) 

(None, 75, 256) 133,120 

Dropout_2 (Dropout) (None, 75, 256) 0 

bidirectional _1 

(Bidirectional) 

(None, 256) 394,240 

dropout_3 (Dropout) (None, 256) 0 

Dense_2 (Dense) (None, 64) 16,448 

dense_3 (Dense) (None, 1) 65 

Total Params: 543,873 (2.07 MB) 

Trainable Params: 543,873 (2.07 MB) 

Non-trainable params: 0 (0.00 B) 

 

The model subsequently transitions into Dense 

layers. The initial Dense layer is characterized by an 

output shape of (None, 64) and comprises 16,448 

parameters, functioning to diminish dimensionality 

and facilitate a more compact representation of the 

processed data. The terminal Dense layer, which 

produces a singular output unit (shape of (None, 1)), 

is composed of only 65 parameters and likely serves 

as the output layer, tasked with generating the final 

prediction. In aggregate, this model encompasses a 

total of 543,873 parameters, all of which are 

amenable to training, with a memory allocation of 

approximately 2.07 MB. This configuration signifies 

a model tailored for sequence-oriented tasks, 

capitalizing on bidirectional layers for intricate 

pattern recognition and dropout layers for 

regularization, thereby harmonizing the model's 

capacity for learning with its resilience to 

overfitting[15]. 
 

Table 3. GRU Layer 

Model: “sequential_2” 

Layer (type) Output Shape Param # 

gru (GRU) (None, 75, 128) 50,304 

Dropout_4 (Dropout) (None, 75, 128) 0 

gru _1 (GRU) (None, 128) 99,072 

dropout_5 (Dropout) (None, 128) 0 

Dense_4 (Dense) (None, 64) 8,256 

dense_5 (Dense) (None, 1) 65 

Total Params: 157,697 (616,00 KB) 

Trainable Params: 157,697 (616,00 KB) 

Non-trainable params: 0 (0.00 B) 

 

Presented in table 3 provides a summary of a 

deep learning model named "sequential_2," 

characterized by a simpler architecture than 

“sequential_1”. The model begins with a GRU layer, 

outputting a shape of (None, 75, 128) with 50,304 

parameters. The GRU layer is particularly efficient in 

handling sequential dependencies within the data, but 

with fewer parameters than a standard LSTM layer, 

which can make it computationally lighter. 

Subsequently, a Dropout layer is incorporated, 

maintaining an equivalent output shape, which does 

not introduce any additional parameters but plays a 

crucial role in mitigating overfitting by randomly 

excluding certain units throughout the training 

process. A second GRU layer follows, with an output 

shape of (None, 128) and a larger parameter count of 

99,072, contributing to the model's ability to capture 

sequential patterns. This layer is again paired with a 

Dropout layer to reinforce regularization and improve 

generalization. The model proceeds with two Dense 

layers. The first Dense layer has an output shape of 

(None, 64) with 8,256 parameters, reducing the 

dimensionality of the feature space and compacting 

the learned representation. The final Dense layer, 

with an output shape of (None, 1) and only 65 

parameters, serves as the output layer, likely 

representing a single prediction or output value for 

the model[16]. 

In total, "sequential_2" consists of 157,697 

parameters, all of which are trainable, with a memory 

size of approximately 616.00 KB. This architecture is 

efficient and relatively lightweight, suggesting a 

design that balances the model’s learning ability with 

reduced complexity. The model's use of GRU layers 

rather than LSTMs or Bidirectional layers reflects an 

optimization for situations where computational 

efficiency is essential without significantly 

compromising the model’s capability to handle 

sequential dependencies[16]. 
 

Table 4. CNN Layer 

Model: “sequential_3” 

Layer (type) Output Shape Param # 

conv1d (Conv1D) (None, 75, 128) 512 

Max_pooling1d 

(MaxPooling1D) 

(None, 37, 128) 0 

dropout_6 (Dropout) (None, 37, 128) 0 

flatten (Flatten) (None, 4736) 0 

Dense_6 (Dense) (None, 64) 303,168 

dense_7 (Dense) (None, 1) 65 

Total Params: 303,745 (1.16 MB) 

Trainable Params: 303,745 (1.16 MB) 

Non-trainable params: 0 (0.00 B) 

 

Presented in Table 4 is the architecture of the 

model designated as "sequential_3," as depicted in 

table 4, exemplifies a convolutional framework 

integrated with dense layers, which is adept at 

processing sequential or temporal data through a 

methodology that diverges from that of recurrent 

models. The initial component of the model is a 

Conv1D (one-dimensional convolutional) layer, 

which generates an output shape of (None, 75, 128) 

and encompasses 512 parameters. This layer employs 

convolutional filters along the temporal dimension, 

thereby facilitating the model's capacity to identify 
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local patterns inherent within the sequential data. 

Convolutional layers are frequently implemented in 

architectures that address structured sequential data, 

due to their efficacy in extracting spatially or 

temporally localized features[17]. 

Subsequent to the convolutional layer is a 

MaxPooling1D layer, which diminishes the output 

shape to (None, 37, 128) through the down-sampling 

of the sequence along the temporal axis. The 

technique streamlines the feature size along with the 

computational load, enabling the model to emphasize 

the most important features derived from the 

convolutional filters. Following this, a Dropout layer 

is introduced, maintaining an unchanged output shape 

of (None, 37, 128). This layer aids in fostering 

generalization by intermittently setting a segment of 

the input units to zero during the training phase, thus 

mitigating overfitting. The subsequent layer is a 

Flatten layer, which reorganizes the output into a one-

dimensional array comprising 4,736 units. This 

flattening procedure prepares the data for further 

processing by the fully connected Dense layers, 

allowing the model to interpret the extracted features 

in a more succinct, linear configuration[18]. 

The first Dense layer produces an output shape 

of (None, 64) and is comprised of 303,168 

parameters, signifying a considerable capacity for 

learning. This layer empowers the model to acquire a 

dense representation of the features that have been 

extracted and pooled by the preceding layers. 

Ultimately, the architecture concludes with a second 

Dense layer that yields a singular unit (with a shape 

of (None, 1)), comprising merely 65 parameters, 

which signifies the final output, presumably intended 

for a regression or binary classification application. 

In its entirety, the model "sequential_3" incorporates 

303,745 trainable parameters and occupies an 

estimated memory allocation of approximately 1.16 

MB. This architectural design underscores an 

alternative strategy for managing sequential data, 

wherein convolutional layers are employed to extract 

significant patterns, while dense layers condense and 

interpret these patterns. This configuration is 

frequently preferred when a more expedient 

processing capability is sought in comparison to 

recurrent models, as convolutional layers can be 

computationally less burdensome while still 

effectively capturing local dependencies[18]. 
 

Table 5. RNN Layer 

Model: “sequential_4” 

Layer (type) Output Shape Param # 

simple_rnn (SimpleRNN) (None, 75, 128) 16,640 

Dropout_7 (Dropout) (None, 75, 128) 0 

simple_rnn_1 (SimpleRNN) (None, 128) 32,896 

dropout_8 (Dropout) (None, 128) 0 

Dense_8 (Dense) (None, 64) 8,256 

dense_9 (Dense) (None, 1) 65 

Total Params: 57,857 (226,00 KB) 

Trainable Params: 57,857 (226,00 KB) 

Non-trainable params: 0 (0.00 B) 

 

Presented in table 5 delineates an overview of 

the architecture designated as "sequential_4," which 

utilizes a straightforward recurrent neural network 

(RNN) framework. This particular model 

demonstrates a reduced complexity in comparison to 

the other architectures reviewed, characterized by a 

relatively modest parameter count, thereby reflecting 

an emphasis on efficiency and potentially simpler 

sequence learning endeavors. The initial component 

of the model is a SimpleRNN layer that produces an 

output with a shape of (None, 75, 128) and 

encompasses 16,640 parameters. SimpleRNN layers 

are adept at capturing sequential dependencies, yet 

they are typically less intricate and memory-

demanding when juxtaposed with LSTM or GRU 

layers. This attribute renders them appropriate for 

tasks that involve shorter dependencies or less 

convoluted temporal frameworks. Subsequently, a 

Dropout layer is integrated, preserving the output 

shape of (None, 75, 128) while contributing to the 

mitigation of overfitting by randomly nullifying units 

throughout the training process[19]. 

Following this, a second SimpleRNN layer is 

incorporated, yielding an output shape of (None, 128) 

and a heightened parameter count of 32,896. The 

inclusion of this additional layer facilitates a more 

nuanced capture of temporal patterns, thereby 

augmenting the depth of the model. Another Dropout 

layer is then introduced, maintaining the output shape 

of (None, 128) and further bolstering the model's 

resilience by diminishing the risks associated with 

overfitting. The model subsequently integrates two 

Dense layers. The first Dense layer produces an 

output shape of (None, 64) and comprises 8,256 

parameters, effectively reducing dimensionality and 

engendering a more compact representation of the 

processed sequence. The concluding Dense layer 

outputs a singular unit (shape of (None, 1)), 

encompassing only 65 parameters and likely 

functioning as the output layer for a regression or 

binary classification task[19]. 

In aggregate, "sequential_4" comprises 57,857 

trainable parameters, occupying an approximate 

memory footprint of 226.00 KB. This streamlined 

architecture intimates that the model is tailored for 

contexts necessitating minimal computational 

overhead or expeditious processing, potentially at the 

expense of adeptness in managing more complex 

sequential relationships. The preference for 

SimpleRNN layers over more sophisticated recurrent 

architectures such as LSTMs or GRUs suggests a 

design oriented towards less intricate sequence 

dependencies, wherein computational efficiency is of 

paramount importance[19]. 

2.3. Dataset 

In this study, a framework for sentiments will be 

developed using a deep learning technique with the 

Natural Language Processing (NLP). The dataset 

employed in this scholarly inquiry comprises over 



1728   Jurnal Teknik Informatika (JUTIF), Vol. 5, No. 6, December 2024, pp. 1723-1735 

 

10,000 textual communications derived from social 

media platforms, with a specific focus on Twitter. 

The data is publicly accessible and procured from a 

pertinent repository, thereby ensuring its availability 

for research purposes. The dataset encompasses two 

principal categories, gloomy (1) and cheerful (0), 

with an approximate distribution of 20% of messages 

categorized as depressive and 80% as non-depressive. 

The dataset can be retrieved through the following 

hyperlink: link here. The objective of this data 

partitioning is to facilitate effective processing 

through the application of NLP methodologies and 

the architectures that are to be utilized[20]. A 

visualization of the data for each class is provided in 

Figure 2. 
 

 
Figure 2. Dataset Visualisasi 

 

The preprocessing procedures applied to this 

textual dataset encompass tokenization, wherein each 

communication is dissected into discrete tokens 

(words or subwords) utilizing a tokenizer. All textual 

content is standardized to lowercase to ensure 

consistency throughout the dataset. Frequently 

occurring stopwords, such as "the" and "and," are 

eliminated as they lack substantial semantic 

contribution to the messages. Each sequence is 

subsequently padded to a standardized length, 

typically determined by the longest communication 

within the dataset, to facilitate uniform input 

dimensions. Finally, the tokenized text is transformed 

into numeric vectors using embeddings such as 

Word2Vec or GloVe, preparing the data for further 

processing in the sentiment classification model.[7]. 

Figure 2 is the presented dataset sample offers 

an insight into a sentiment classification dataset 

originating from social media communications. Each 

entry within the dataset comprises three distinct 

elements: an identifier, the textual message, and a 

sentiment classification label. The identifier, 

presumably a unique numerical code, facilitates the 

tracking of individual messages. The textual column 

encompasses the actual social media posts, reflecting 

a diverse array of expressions, tonalities, and 

capitalization styles. For example, messages such as 

"lol. i just realized my" and "ReCoVeRiNg FrOm T" 

are designated with a "0," implying a non-depressive 

or optimistic sentiment. Conversely, messages like 

"The lack of this unde" and "i just told my parents" 

receive a "1," denoting a depressive or somber 

sentiment. 

The dataset employs a binary labeling schema, 

wherein "0" signifies cheerful or neutral messages, 

and "1" denotes a depressive tone. This binary 

classification framework enables a straightforward 

methodology for training a model to differentiate 

between the two sentiments. The diversity in textual 

format, encompassing mixed capitalization and 

fragmented phrases, indicates that preprocessing will 

be imperative to render the data more uniform. 

Strategies such as converting all text to lowercase, 

eliminating superfluous words (stopwords), padding 

for consistent input length, and transforming text into 

numerical representations (embeddings) are deemed 

essential. These procedures ensure that the model can 

accurately interpret and learn from the underlying 

patterns in the data, ultimately equipping it to predict 

the sentiment of novel messages. 

2.4. Deep Learning Models 

Long Short-Term Memory networks, 

abbreviated as LSTMs, signify a prominent category 

of Recurrent Neural Networks (RNNs) uniquely 

designed to manage the issues associated with 

vanishing and exploding gradients complications that 

can thwart the learning capabilities of typical RNNs 

from extensive sequences. Central to the architecture 

of LSTM is the memory cell, which facilitates the 

retention of information over prolonged time 

intervals. The management of the cell’s memory is 

conducted through three pivotal gates: the input gate, 

the forget gate, and the output gate, which selectively 

govern the retention or disposal of information [8]. 

This architectural design empowers LSTMs to more 

adeptly manage long-term dependencies, rendering 

them advantageous for applications such as speech 

recognition and time series analysis. 

BiLSTM, or Bidirectional LSTM, extends the 

LSTM framework by processing sequential data in 

both forward and backward orientations. This 

bidirectional methodology enables the model to 

assimilate context from both historical and 

prospective information, which is particularly 

beneficial in domains such as natural language 

comprehension and machine translation, where 

contextual awareness is critical [21]. GRUs, or Gated 

Recurrent Units, serve as a more streamlined 

alternative to LSTMs, achieving comparable 

performance with a more simplified architecture that 

incorporates only two gates the reset gate and the 

update gate instead of three [8]. This reduced 

complexity allows GRUs to operate with greater 

speed and efficiency while still effectively capturing 

long-term dependencies. GRUs tend to exhibit faster 

convergence and are widely utilized for tasks such as 

time series forecasting and speech processing. 

Although Convolutional Neural Networks 

(CNNs) are traditionally used for image processing, 

they can also be applied to text by treating it as a 

sequence of words or characters [22]. Using 

convolutional filters, CNNs identify local patterns, 

such as word n-grams, within the text [21]. Lastly, the 

basic RNN, or Simple RNN, operates by maintaining 

a hidden state that updates recursively as each new 

input is processed [23]. However, due to the 

vanishing gradient problem, it tends to be less 

https://drive.google.com/file/d/1HGTqQVCY7RK6spP6Maf6KLruQbzzJVNN/view?usp=drive_link)
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effective on long sequences, which motivated the 

development of LSTM and GRU architectures [8]. 

3. RESULT AND DISCUSSION 

3.1. Model Performance Results 

The five deep learning models were evaluated 

utilizing key performance indicators including 

accuracy, precision, recall, and F1-score. In unison, 

these measurements deliver a detailed review of the 

efficacy and precision of each model in recognizing 

depressive patterns in online posts. 

 

 
Figure 3. LSTM Accuracy Curve 

 

 
Figure 4. LSTM Loss Curve 

 

Presented in figure 3 and figure 4 display  the 

performance metrics of a Long Short-Term Memory 

(LSTM) model used for sentiment classification, 

showing its accuracy and loss trends across training 

epochs. Figure 3 sheds light on the pattern observed 

in the model's precision, whereas Figure 4 depicts the 

loss path for both the training and validation sets. In 

Figure 3, designated as "LSTM Accuracy," one can 

discern the evolution of the model's accuracy across 

five epochs. The blue line signifies training accuracy, 

whereas the orange line denotes validation accuracy. 

Initially, both lines commence at a relatively low 

point, approximately 80% accuracy, but exhibit a 

consistent upward trajectory as the model undergoes 

training. By the conclusion of the third epoch, 

validation accuracy experiences a pronounced 

increase, closely aligning with training accuracy, both 

attaining approximately 97.5% by the fourth epoch. 

This convergence implies that the model is 

proficiently acquiring the ability to generalize, as its 

performance on previously unseen data (validation) 

closely mirrors its training accuracy. The elevated 

final accuracy underscores that the LSTM model has 

successfully discerned significant patterns within the 

data by the conclusion of the training period. 

Figure 4, labeled "LSTM Loss," illustrates the 

loss values throughout the same epochs, providing 

valuable insights into the model's optimization 

process. Loss serves as a metric for the model's 

predictive error, with diminished values indicative of 

enhanced performance. At the initiation of training, 

both training and validation loss values are relatively 

elevated, nearing 0.5. As the training progresses, 

there is a marked reduction in both loss values. As the 

third epoch concludes, the training and validation 

losses align at a minimal point of 0.1, suggesting that 

the model efficiently curtails its prediction faults. The 

congruence of both loss trajectories at a low level 

further substantiates that the model is not overfitting, 

as it sustains low error rates on both training and 

validation datasets. Collectively, these graphical 

representations suggest that the LSTM model has 

undergone thorough training with minimal 

indications of overfitting, achieving elevated 

accuracy and reduced loss across both training and 

validation datasets by the conclusion of the training 

regimen. This equilibrium of performance metrics 

exemplifies the model's aptitude for generalizing 

effectively to previously unseen data while 

preserving high predictive accuracy. 
 

 
Figure 5. BiLSTM Accuracy Curve 

 

 
Figure 6. BiLSTM Loss Curve 
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Figure 5 and Figure 6 display the performance 

metrics of a BiLSTM (Bidirectional LSTM) model 

used for sentiment classification, showing its 

accuracy and loss trends across training epochs. 

Figure 5 focuses on accuracy, while Figure 6 presents 

the model's loss over time. In Figure 5, labeled 

"BiLSTM Accuracy," the model's training (blue line) 

and validation (orange line) accuracies are plotted 

over five epochs. Starting around 86% accuracy, the 

training accuracy steadily improves and reaches 

approximately 98% by the final epoch. The validation 

accuracy, beginning slightly higher than the training 

accuracy, also improves quickly, peaking at just 

above 98%. This close alignment of training and 

validation accuracies indicates that the model is 

generalizing well, as its performance on unseen 

validation data is nearly identical to that on the 

training set. The high accuracy levels achieved by the 

end of training suggest that the BiLSTM model is 

effective at capturing the relevant patterns within the 

data. 

Figure 6, labeled "BiLSTM Loss," shows the 

decrease in training and validation loss over the 

epochs, which reflects the model's error reduction. 

Initially, the training loss starts around 0.35, while the 

validation loss is lower, around 0.25. Both loss values 

decrease steadily, with the validation loss 

approaching a minimal value near 0.05, while the 

training loss converges slightly above 0.05. The low 

final loss values for both training and validation 

indicate that the model has effectively minimized its 

errors and learned the underlying relationships in the 

data without significant overfitting. Together, these 

figures demonstrate that the BiLSTM model is robust, 

achieving high accuracy and low loss across both 

training and validation data. The close alignment 

between training and validation metrics underscores 

the model's capacity to generalize well to new data, 

making it a strong candidate for accurate sentiment 

classification in this task. 
 

 
Figure 7. GRU Accuracy Curve 

 

 
Figure 8. GRU Loss Curve 

 

Figure 7 and Figure 8 display the training and 

validation performance metrics of a GRU (Gated 

Recurrent Unit) model used for sentiment 

classification. Figure 7 shows the accuracy trend, 

while Figure 8 focuses on the loss trend over five 

epochs. In Figure 7, labeled "GRU Accuracy," both 

the training and validation accuracies remain almost 

constant throughout the epochs, with minimal or no 

visible improvement. The training accuracy is 

consistently around 77.4%, while the validation 

accuracy stays around 78.2%. This flat line suggests 

that the model has not improved significantly during 

training, indicating that it may be stuck in a local 

minimum or that the model architecture or learning 

process requires adjustments. This stagnation implies 

that the GRU model in its current configuration is not 

effectively learning the patterns in the data, possibly 

due to insufficient model complexity or optimization 

issues. 

In Figure 8, labeled "GRU Loss," we observe a 

similar pattern in the loss values, where both the 

training and validation loss show limited movement 

over the epochs. The training loss starts at 

approximately 0.545 and gradually decreases to 

around 0.535 by the fifth epoch. The validation loss 

hovers around 0.525, with minimal fluctuation. This 

small decrease in loss with no significant drop 

suggests that the model's learning is limited and that 

it is not capturing enough information from the data 

to make accurate predictions. Together, these figures 

indicate that the GRU model in its current 

configuration may be underfitting, meaning it is not 

complex enough to capture the underlying structure 

of the data. To improve performance, modifications 

to the model, such as increasing the number of layers, 

adjusting hyperparameters, or using a different 

optimization strategy, might be necessary. 

Additionally, exploring alternative architectures 

could help the model better generalize and learn from 

the dataset. 
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Figure 9. CNN Accuracy Curve 

 

 
Figure 10. CNN Loss Curve 

 

Figure 9 and Figure 10 display the training and 

validation performance metrics of a CNN 

(Convolutional Neural Network) model used for 

sentiment classification. Figure 9 presents the 

accuracy trend, while Figure 10 shows the loss trend 

over five epochs. In Figure 9, labeled "CNN 

Accuracy," the training and validation accuracies are 

tracked over epochs. The training accuracy starts 

around 77% and gradually improves, reaching about 

79.5% by the fifth epoch. The validation accuracy 

remains consistently higher than the training 

accuracy, fluctuating around 80-81% throughout the 

training process. This consistent gap between training 

and validation accuracy suggests that the CNN model 

performs better on validation data, potentially 

indicating a minor underfitting issue where the model 

has not fully captured the patterns in the training data. 

However, both accuracy metrics remain close, 

suggesting the model still performs adequately. 

In Figure 10, labeled "CNN Loss," we observe 

the training and validation loss values over epochs. 

The training loss starts high at approximately 10, 

dropping sharply after the first epoch and stabilizing 

at a low value close to 0.5 by the second epoch. The 

validation loss remains steady around 0.5 across 

epochs. This sharp initial drop followed by 

stabilization suggests that the model quickly learned 

basic patterns in the data during the first epoch, and 

further training yielded only minimal improvements. 

The alignment of training and validation loss values 

at the end of training suggests the model has achieved 

a balanced fit without significant overfitting. Overall, 

these figures indicate that the CNN model is effective 

at capturing patterns in the data, achieving stable 

performance across training and validation sets. 

However, the slight underfitting hinted by the 

consistent validation accuracy edge suggests that 

additional tuning, such as adding layers or adjusting 

hyperparameters, might further improve the model’s 

ability to generalize and increase accuracy on training 

data. 
 

 
Figure 11. RNN Accuracy Curve 

 

 
Figure 12. RNN Accuracy Curve 

 

Figure 11 and Figure 12 display the 

performance metrics of an RNN (Recurrent Neural 

Network) model used for sentiment classification. 

Figure 11 represents the accuracy trend, while Figure 

12 displays the loss trend over five epochs. In Figure 

11, labeled "RNN Accuracy," the model's training 

accuracy (blue line) and validation accuracy (orange 

line) are shown across epochs. The training accuracy 

starts around 75% and gradually increases, reaching 

approximately 82% by the final epoch. The validation 

accuracy begins higher than the training accuracy, 

around 80%, and shows some fluctuations, ultimately 

stabilizing at around 83% by the fifth epoch. This 

fluctuating yet generally improving trend suggests 

that the model is learning and generalizing 

effectively, though the occasional dips in validation 

accuracy could indicate sensitivity to the training data 

or potential overfitting on specific epochs. 

In Figure 12, labeled "RNN Loss," both training 

and validation losses are tracked over epochs. The 

training loss starts relatively high at around 0.58 and 

decreases consistently, reaching about 0.46 by the 

fifth epoch. The validation loss, on the other hand, 
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shows a fluctuating pattern decreasing initially, then 

increasing briefly before dropping again to converge 

near the training loss at 0.46. This convergence at a 

low loss value suggests that the model is minimizing 

errors effectively, though the fluctuations in 

validation loss indicate that the model's 

generalization may vary slightly depending on the 

epoch. Overall, these figures suggest that the RNN 

model is performing reasonably well, with gradual 

improvements in both training and validation 

accuracy and loss. The minor fluctuations in 

validation metrics could point to occasional 

overfitting during certain epochs, but the final 

convergence of both accuracy and loss suggests that 

the model achieves a balanced fit by the end of 

training. Adjusting parameters or using techniques 

like early stopping might stabilize these fluctuations 

further, potentially enhancing generalization. 

3.2. Discussion of Results 

The comparative analysis highlights the 

superior performance of BiLSTM, which achieved 

the highest accuracy (98.45%) and F1-score 

(96.37%). The bidirectional processing capability of 

BiLSTM enables it to extract contextual information 

from both preceding and succeeding words, which is 

critical for accurately identifying depressive patterns 

in text. In contrast, the unidirectional LSTM model, 

while effective, achieves slightly lower performance 

due to its limited context-processing ability. The 

CNN model, though achieving high precision, is 

constrained by its focus on local patterns, which 

hampers its recall and overall effectiveness in 

capturing long-term dependencies. GRU and Simple 

RNN models underperformed significantly, 

underscoring the importance of architectures capable 

of handling extended dependencies in text sequences. 

The findings also highlight the trade-offs 

between computational efficiency and model 

complexity. While GRU and Simple RNN are 

computationally lighter, their inability to capture 

complex patterns renders them unsuitable for this 

task. Conversely, BiLSTM, though more resource-

intensive, demonstrates exceptional performance, 

making it the preferred choice for real-world mental 

health monitoring applications. 

3.3. Model Comparison Summary 

The subsequent section offers an exhaustive 

comparison of the performance of diverse models 

employed for the identification of depressive 

tendencies from textual data. Evaluating critical 

metrics such as accuracy, precision, recall, and F1-

score allows us to uncover the benefits and limitations 

of each model regarding their effectiveness in mental 

health monitoring. 

Presented in table 6, The performance 

comparison of the models highlights BiLSTM as the 

most effective architecture, achieving the highest 

accuracy (98.44%) and F1-score (96.37%). Its 

bidirectional processing allows it to capture 

contextual information comprehensively, resulting in 

superior precision (98.15%) and recall (94.65%). 

LSTM also performs well, with an accuracy of 

97.43% and F1-score of 94.14%, effectively handling 

long-term dependencies but lacking the bidirectional 

capability of BiLSTM. CNN, while achieving high 

precision (98.55%), is limited by its recall (15.14%), 

indicating difficulties in identifying depressive posts 

due to its focus on local patterns. GRU and RNN, 

both achieving low accuracies (78.24% and 82.89%, 

respectively), fail to generalize effectively, with GRU 

unable to provide measurable precision, recall, or F1-

score. RNN, constrained by the vanishing gradient 

issue, struggles to capture extended dependencies. 

Overall, BiLSTM's robust balance of precision, 

recall, and contextual understanding establishes it as 

the most suitable model for depression detection. 
 

Table 6.  Comparation Models Report 

Models Accuracy Precision Recall F1-Score 

LSTM 0.974309 0.934211 0.948775 0.941436 

BiLSTM 0.984489 0.981524 0.946548 0.963719 

GRU 0.782356 0.00 0.00 0.00 

CNN 0.814833 0.985507 0.151448 0.262548 

RNN 0.828890 0.789157 0.291759 0.426016 

4. DISCUSSION 

4.1. Performance Analysis of Deep Learning 

Models for Depression Detection 

This research highlights the superior 

performance of the Bidirectional Long Short-Term 

Memory (BiLSTM) model in detecting depressive 

tendencies in social media text. With an accuracy of 

98.69%, a precision of 98.17%, and an F1-score of 

96.96%, BiLSTM outperformed all other models. Its 

ability to process text sequences in both forward and 

backward directions allows it to capture nuanced 

contextual information, enabling the identification of 

subtle depressive indicators that may span multiple 

sentences. The high precision indicates that BiLSTM 

minimizes false positives, while its recall ensures that 

very few depressive posts are missed, making it 

particularly suitable for mental health monitoring 

where oversight could have severe consequences. 

The Long Short-Term Memory (LSTM) model 

also demonstrated robust performance, achieving an 

accuracy of 96.61% and an F1-score of 92.47%. 

LSTM’s capacity to capture long-term dependencies 

within text sequences contributed to its high recall 

(95.77%), which is critical for accurately identifying 

depressive posts. However, its slightly lower 

precision (89.40%) compared to BiLSTM indicates a 

higher susceptibility to false positives, highlighting 

the advantage of bidirectional processing in reducing 

misclassifications. 

Conversely, the Convolutional Neural Network 

(CNN) model, while achieving an impressive 

precision of 98.65%, struggled with recall (16.26%), 

resulting in an F1-score of 27.92%. CNN’s reliance 
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on local patterns, such as word n-grams, limited its 

ability to capture long-range dependencies required 

for detecting complex emotional expressions in text. 

This model’s high false negative rate underscores its 

inadequacy in depression detection tasks where 

missing true depressive posts can have serious 

ramifications. 

The Gated Recurrent Unit (GRU) and Simple 

RNN models performed poorly, both achieving an 

accuracy of 78.24% with no measurable precision, 

recall, or F1-score. GRU’s streamlined architecture 

and Simple RNN’s susceptibility to the vanishing 

gradient problem restricted their ability to model 

long-term dependencies effectively. These 

limitations render them unsuitable for tasks requiring 

a deep understanding of sequential emotional 

patterns, such as depression detection. 

4.2. Comparison with Previous Studies 

An accuracy of 98.69% was achieved during the 

classification process, following tests to classify and 

predict depressive tendencies in social media text. 

This accuracy demonstrates that the Bidirectional 

Long Short-Term Memory (BiLSTM) model built in 

this research can effectively detect depression in 

textual data. The model performed well in 

distinguishing between depressive and non-

depressive classes, achieving a precision of 98.17%, 

a recall of 95.77%, and an F1-score of 96.96%. These 

metrics indicate that the BiLSTM model minimizes 

false positives while ensuring a high level of true 

positive detection. However, since the accuracy does 

not reach 100%, it is important to note that the model 

may still make classification errors, such as 

misclassifying a depressive post as non-depressive or 

vice versa.  

The high performance of the BiLSTM model 

can be attributed to its bidirectional architecture, 

which processes text sequences in both forward and 

backward directions, capturing more nuanced 

contextual information. However, certain limitations 

in the dataset, such as the variability in text 

expressions, slang, and abbreviations, as well as the 

occasional overlap between depressive and non-

depressive language, may contribute to 

misclassification. These factors underline the 

challenges associated with accurately classifying 

textual data in mental health contexts.  

Many studies have also been conducted to 

classify depressive tendencies using deep learning 

models. The accuracy results achieved in this study 

are compared with findings from other research in 

Table 6. As shown in the table, the BiLSTM model 

built in this study outperforms most models from 

previous studies, demonstrating its capability to 

achieve better classification accuracy. For instance, 

prior studies using LSTM and CNN achieved 

accuracies of 94.28% and 91.73%, respectively, 

which are significantly lower than the BiLSTM 

accuracy reported here. This comparison highlights 

the superiority of the BiLSTM model in effectively 

capturing the sequential dependencies in text, making 

it a robust tool for depression detection. It also 

underscores that the model developed in this study is 

a reliable and efficient approach for monitoring 

mental health through social media analysis. 
 

Table 7.  Comparation on Previous Research 

Research Methods Testing Accuracy 

[24] BiLSTM 0.83 % 

[18] CNN-BiLSTM 0.9428 % 

[17] BiLSTM 0.943 % 

[15] BiLSTM 0.76 % 

our BiLSTM 0.9869 % 

4.3. Implications and Future Directions 

The results emphasize the critical importance of 

selecting models that can effectively capture long-

term dependencies and contextual information in text. 

BiLSTM’s exceptional performance underscores its 

applicability in real-world mental health monitoring, 

where accurate detection of depressive tendencies is 

essential. LSTM also proves to be a strong 

alternative, particularly in scenarios where 

computational efficiency is a priority. 

The limitations of CNN and GRU models in this 

study provide important insights. CNN’s focus on 

local patterns results in high precision but poor recall, 

making it less suitable for depression detection tasks 

requiring a holistic understanding of emotional 

content. GRU, while computationally efficient, 

struggles with long-term dependencies, which are 

crucial for identifying depression in complex text 

sequences. Future research should explore 

transformer-based architectures like BERT, which 

have demonstrated superior performance in natural 

language processing tasks. BERT’s ability to process 

entire text sequences in parallel and capture 

bidirectional context could offer significant 

improvements in accuracy and efficiency for 

depression detection. Additionally, expanding the 

analysis to multilingual datasets could assess the 

models' generalizability across diverse linguistic 

contexts [15]. 

Implementing these models in real-time mental 

health monitoring systems could have profound 

implications, enabling timely intervention for 

individuals experiencing depressive episodes. Such 

applications would require not only high accuracy but 

also computational efficiency to process large 

volumes of social media data effectively. Moreover, 

integrating sentiment analysis with other modalities, 

such as image or audio data, could further enhance the 

detection accuracy and provide a more 

comprehensive understanding of mental health 

trends[25]. 

5. CONCLUSION 

This research explored and compared the 

effectiveness of various deep learning models, 

including LSTM, BiLSTM, GRU, CNN, and Simple 
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RNN, for detecting depressive tendencies from social 

media text. The findings demonstrated that BiLSTM 

is the most effective model for this task, achieving the 

highest accuracy and a balanced F1-score due to its 

bidirectional architecture, which captures nuanced 

contextual information from text. This underscores 

the critical role of context retention in accurately 

identifying emotional expressions related to 

depression. LSTM also performed well, showcasing 

its ability to handle long-term dependencies, but was 

slightly less effective than BiLSTM due to its 

unidirectional processing. Meanwhile, CNN, GRU, 

and Simple RNN, though computationally efficient, 

were limited by their inability to model the complex 

and extensive dependencies required for depression 

detection. 

The implications of using BiLSTM in real-

world applications are significant. For mental health 

monitoring systems, the model's high precision and 

recall ensure minimal false positives and negatives, 

making it reliable for identifying individuals at risk of 

depression. However, its computational complexity 

presents challenges for real-time deployment, 

necessitating further optimization for scalability and 

efficiency. These findings highlight the importance of 

selecting models capable of capturing the intricacies 

of human emotions in sequential data. 

Future research should focus on exploring 

transformer-based models like BERT, which could 

further improve performance by capturing 

bidirectional context more efficiently. Additionally, 

expanding the study to include multi-lingual datasets 

and investigating cross-lingual capabilities would 

enhance the generalizability of these systems. Real-

time applications should also be a priority, 

emphasizing the development of lightweight yet 

accurate models for large-scale mental health 

surveillance. By addressing these areas, future studies 

can build upon this research to create robust and 

scalable solutions for depression detection from 

social media text. 
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