
Jurnal Teknik Informatika (JUTIF) DOI: https://doi.org/10.52436/1.jutif.2024.5.6.4031
Vol. 5, No. 6, December 2024, pp. 1883-1892 p-ISSN: 2723-3863
 e-ISSN: 2723-3871

1883

OPTIMIZATION OF BACKTRACKING ALGORITHM WITH HEURISTIC STRATEGY

FOR LOGIC-BASED SORTING PUZZLE GAME SOLVING

Eka Qadri Nuranti B1, Naili Suri Intizhami*2, Primadina Hasanah3

1,2Computer Science, Institut Teknologi Bacharuddin Jusuf Habibie, Indonesia
3Mathematical Science, University of Liverpool, United Kingdom

Email: 1eka.qadri@ith.ac.id, 2naili.suri@ith.ac.id, 3primadina.hasanah@liverpool.ac.uk

(Article received: October 17, 2024; Revision: December 23, 2024; published: January 04, 2024)

Abstract

Puzzle Game Sorting is a logic-based puzzle game where players must transfer colored balls into tubes until each

tube contains only one color. Although it appears simple, the game becomes increasingly challenging at higher

levels, testing players’ logical thinking and patience. This study proposes using the backtracking algorithm

combined with optimization strategies, such as conflict heuristics and lookahead, to address players’ challenges

at advanced levels. The test results indicate that the optimized backtracking algorithm can solve the game faster

and with more efficient steps compared to manual methods. Specifically, heuristic optimization strategies

significantly improved performance, reducing execution time by up to 91.4% and the number of steps by up to

76.9% at the most complex levels. These findings demonstrate that combining the backtracking algorithm and

optimization strategies is an effective solution for solving puzzles in Sorting, particularly at levels with increasing

complexity.

Keywords: backtracking algorithm, game, heuristic, lookahead, puzzle, sorting.

1. INTRODUCTION

Puzzle-based games maintain fans because they

can train logical and strategic thinking skills in fun

ways [1], [2]. One example of this genre is Puzzle

Game Sorting [3], a simple but challenging concept.

In this game, players sort several different types of

color balls into several tubes until each tube is filled

with only one color. The key characteristic of these

puzzles is that each tube operates like a stack,

requiring players to adhere to the “last-in, first-out”

(LIFO) principle [3]. This feature introduces an

additional challenge, as players must strategically

plan their moves to ensure they do not obstruct access

to items that will be needed in subsequent steps.

Although it appears easy, this game requires high

precision and patience, especially at higher levels,

where the number of types of letters and tubes

becomes more complex.

Increasing levels of difficulty often make

players feel frustrated, especially when they find out

that the strategy they are using has reached a dead

end. Each level in this game also has different solving

steps. This makes the game both interesting and

challenging. Therefore, players must concentrate and

be patient to determine the proper steps in completing

the game for each level.

One of the methods that can be used to solve this

problem is the backtracking algorithm [1], [4], [5],

[6]. Research by D. Chen et al. [4] applied

optimization to the backtracking algorithm through

the addition of knowledge learning. M. Esteve et al.

[5] combined heuristics and backtracking in

Efficiency Analysis Trees to improve accuracy and

efficiency. Furthermore, P. Garg et al. [6] evaluated

three backtracking approaches—Breadth-first search,

Depth-first search, and a parallel hybrid of both—to

solve Sudoku puzzles, revealing significant

performance improvements of 28% to 56%. Vidal [7]

study enhances heuristic search by leveraging relaxed

plans and a lookahead strategy, improving

performance and scalability in solving larger and

more complex planning problems. These studies

demonstrate the versatility of backtracking

algorithms and their potential for optimization in

solving complex problems. The backtracking

algorithm can also be combined with other algorithms

or methods, such as power outage management [8],

signal power [9], and robotics [10].

The backtracking algorithm is widely used to

solve problems involving the search for solutions

from many possible options because of its speed in

finding the correct solution [1], [5]. It can become

less efficient when dealing with puzzles of high

complexity, owing to the many possibilities to

explore. This reduced the effectiveness of the

algorithm's results.

The many possibilities explored can also impact

the results, which could be better. The results could

be better in this game when the time used to complete

the game and the number of steps used are excessive.

Therefore, optimization of the backtracking

algorithm is required so that the solution search

process becomes faster and more efficient, one of

https://doi.org/10.52436/1.jutif.2024.5.6.4031
mailto:eka.qadri@ith.ac.id
mailto:naili.suri@ith.ac.id
mailto:primadina.hasanah@liverpool.ac.uk

1884 Jurnal Teknik Informatika (JUTIF), Vol. 5, No. 6, December 2024, pp. 1883-1892

which is by implementing the lookahead strategy [7],

[11], [12], [13] and conflict heuristics [5], [14], [15].

This study applies an optimized backtracking

algorithm to Puzzle Game Sorting, a logic-based

puzzle where heuristic strategies have not yet been

explored, unlike their established use in Sudoku [1],

[6], [15]. The integration of lookahead strategies,

rarely combined with heuristics for solution search,

adds further novelty. By employing optimization

techniques such as lookahead and conflict heuristics,

the study reduces steps and execution time, enhancing

efficiency at higher levels. These findings highlight

the potential of combining backtracking with

advanced strategies to address increasingly complex

puzzles, improving algorithm performance and the

gaming experience.

2. METHOD

This research consists of several steps, which

will be explained in the following flowchart (Figure

1). The process begins with the Start node, where the

research framework and objectives are initialized.

The first step, Configuring Game Levels, involves

designing the Puzzle Game Sorting configurations

with varying levels of complexity to ensure a gradual

increase in difficulty. These configurations serve as

the basis for subsequent simulations.

Figure 1. Research Method

From this point, the process splits into two

parallel activities: Conducting User Simulation and

Running Algorithm Simulation. In the user

simulation phase, participants interact with the

puzzle, and their actions are monitored using a

tracking tool that captures metrics such as completion

time, the number of moves, and intermediate states.

Concurrently, the algorithm simulation tests the

backtracking approach on the same puzzle

configurations, recording metrics like execution time,

the total nodes explored, and the number of

backtracking operations.

The results from both simulations are then

consolidated in the Analyze Data phase. This stage

focuses on evaluating and comparing the efficiency

of human problem-solving strategies and algorithm

performance. The insights derived from this analysis

are used to enhance the backtracking algorithm in the

Optimize Algorithm phase. Finally, the process

concludes at the End node, marking the completion of

the research workflow. This step-by-step

methodology ensures a structured and systematic

approach to optimizing the algorithm.

2.1. Puzzle Game Sorting Simulations

This study includes a Puzzle Game Sorting

game simulation as part of the research on problem-

solving algorithms using the backtracking approach .

The simulation aims to evaluate the algorithm's

effectiveness in solving the color-sorting problem in

tubes. Four levels of the game, each with increasing

difficulty, were designed to test the algorithm's

performance. These levels included progressively

complex configurations, from two tubes with three

colors to five tubes with six colors, ensuring a gradual

increase in problem complexity.

The study collected data by engaging 6 (six)

participants who attempted to solve the puzzle

configurations. A custom tool tracked their actions,

capturing the time taken, the number of moves made,

and the intermediate states of the tubes after each

move. Simultaneously, the backtracking algorithm

was applied to the same configurations, with its

performance evaluated through metrics such as

execution time, the total number of nodes explored in

the search space, and the number of backtracking

operations performed.

Additionally, an observational phase analyzed

participants' strategies and common mistakes,

yielding valuable insights into human problem-

solving behaviors. These findings were directly

compared to the algorithm's performance,

highlighting areas where optimization could improve

efficiency. By integrating data from human

participants and the algorithm, the study provides a

comprehensive understanding of the problem-solving

process. It supports the development of enhanced

strategies for optimizing the backtracking algorithm

in solving increasingly complex puzzle

configurations.

2.1.1. Level 1

In the first level, the game configuration consists

of three tubes:

● Tube 1: ['A', 'B', 'A', 'B']

● Tube 2: ['B', 'A', 'B', 'A']

● Tube 3: [] (empty)

In this level, there are only two types of letters,

namely 'A' and 'B,’ with two full tubes and one empty

Eka Qadri Nuranti B, et al., OPTIMIZATION OF BACKTRACKING … 1885

tube. This is considered an introductory level with a

low difficulty level, allowing players to learn the

basics of the game and the strategy of moving letters

between tubes.

2.1.2. Level 2

At the second level, the number of tubes was

increased to five:

● Tube 1: ['A', 'B', 'C', 'A']

● Tube 2: ['B', 'B', 'C', 'A']

● Tube 3: ['C', 'A', 'B', 'C']

● Tube 4: [] (empty)

● Tube 5: [] (empty)

In this level, there are three types of balls ('A,’

'B,’ and 'C') spread across three tubes, with two empty

tubes as solution spaces. The difficulty of this level

increases because of the addition of additional letters

and more letter combinations that need to be

rearranged correctly.

2.1.3. Level 3

In the third level, the game becomes more

challenging with the addition of new types of letters

and more complex tube configurations:

● Tube 1: ['C', 'B', 'C', 'D']

● Tube 2: ['A', 'C', 'B', 'A']

● Tube 3: ['A', 'B', 'D', 'A']

● Tube 4: ['C', 'B', 'D', 'D']

● Tube 5: [] (empty)

● Tube 6: [] (empty)

In this level, four types of letters are introduced

in this level ('A', 'B', 'C', and 'D'), and there are a total

of six tubes, two of which are empty. The difficulty

increases significantly as more balls are moved and

rearranged in the correct order with a more optimal

number of moves.

2.1.4. Level 4

At the fourth level, the game reaches its highest

level of difficulty, with five types of letters and a

larger number of tubes:

● Tube 1: ['B', 'D', 'E', 'B']

● Tube 2: ['A', 'D', 'D', 'A']

● Tube 3: ['E', 'C', 'B', 'C']

● Tube 4: ['B', 'C', 'A', 'E']

● Tube 5: ['C', 'E', 'D', 'A']

● Tube 6: [] (empty)

● Tube 7: [] (empty)

Five types of letters ('A', 'B', 'C', 'D', and 'E') are

spread across five tubes, while two empty tubes are

used as spaces for solving. The main challenge at this

level is the increasing number of combinations and

moving strategies, which require more in-depth

calculations to find a solution.

2.2. User Simulation

This research focuses on user simulation as a

key method for understanding problem-solving

strategies in the Puzzle Game Sorting game. The

study involves direct observation of six users as they

attempt to complete several game levels, ranging

from easy to complex. Participants' interactions with

the game are carefully monitored to evaluate how

they face challenges, make decisions, and overcome

obstacles.

During the simulation, the completion time for

each level is recorded to assess the participants'

efficiency and ability to solve the puzzle manually.

These observations provide valuable insights into

human problem-solving behaviors, which are later

compared with the performance of the backtracking

algorithm. Data collected from the users, including

their strategies and time taken, serve as comparison

parameters for evaluating the efficiency and

effectiveness of the algorithm. The findings from this

user simulation are critical for benchmarking the

algorithm's performance and identifying areas for

optimization, as summarized in Table 2.

Table 2. Completion Time

User

ID

Level Completion Time (seconds) Average

Completion

Time
1 2 3 4

user1 108.46 183.57 174.41 216.00
170.61

seconds

user2 59.37 117.74 133.28 138.82
112.30

seconds

user3 185.42 98.39 137.77 174.26
148.96

seconds

user4 198.87 104.60 139.14 236.65
169.32

seconds

user5 217.52 116.51 162.09 222.76
179.72

seconds

user6 109.68 127.37 117.96 161.16
129.04

seconds

Table 3. Completion Steps by User

User ID
Number of Level Steps

1 2 3 4

user1 7 10 14 17

user2 7 10 15 17

user3 7 10 14 18

user4 11 10 14 20

user5 8 10 14 19

user6 7 11 14 17

Table 2 and Table 3 show variations in

completion time and number of moves among the six

users at four game levels. User2 showed the best

performance with the fastest average time (112.30

seconds) and a consistent number of moves,

indicating an efficient and systematic strategy. In

contrast, user1, who had the slowest average time

(170.61 seconds), also demonstrated a higher

variability in performance, suggesting potential

inefficiencies in decision-making or a trial-and-error

approach.

At the beginning level, most users required only

seven to eleven moves, with minimal variation,

reflecting the relatively low complexity of the task.

However, by level 4, the game's complexity increased

significantly, as seen in the performance of user4,

who needed up to 20 moves and took the longest time

1886 Jurnal Teknik Informatika (JUTIF), Vol. 5, No. 6, December 2024, pp. 1883-1892

to complete the level. This indicates that higher levels

present more challenging configurations that demand

greater precision and problem-solving effort.

Furthermore, the analysis highlights that fewer

moves often correspond to faster completion times,

but this is not always true. For example, user6, who

required only seven moves in level 1, still had a

slower average time than user2. This suggests that

efficiency in solving the puzzle involves not only

minimizing the number of moves but also optimizing

the time spent on each decision.

The results of this observation can help

researchers identify patterns of difficulty and levels

that are obstacles for players. Data from this manual

experiment are then compared with the results of the

application of the backtracking algorithm to evaluate

the efficiency of time and steps. This comparison

provides a clearer understanding of the effectiveness

of the backtracking algorithm in completing the

game, especially at highly difficult levels.

2.3. Backtracking Algorithm

The backtracking algorithm is an effective

solution search technique for combinatorial and

optimization problems [4], [6]. This algorithm works

by exploring all possible solutions through a Depth-

First Search (DFS) approach [6]. One of the main

characteristics of backtracking is its ability to cancel

decisions (backtrack) when the path taken is proven

to not lead to a solution and continue the search with

other alternatives [2]. Figure 2 shows the

backtracking algorithm.

Figure 2. Backtracking Algorithm Concept

The process starts at the initial node, and each

action produces a new child node. If the chosen path

reaches a dead end, the algorithm backtracks to the

previous node and then attempts another step.

During exploration, an expanded node is

expanded to produce child nodes. If the move is valid

and the new state has not been explored before, then

the state becomes a live node. However, if the state is

invalid or has been explored previously, the node

becomes dead and is pruned to avoid repeated

exploration. The algorithm stores visited states using

bounding functions in structures such as visited.

This process continues until the goal node is

reached (the problem is solved) or all possible paths

are explored. If a solution is found, the steps are

displayed. Otherwise, the algorithm reports that no

solution was possible.

2.4. Backtracking Algorithm In Games

The challenge of the Puzzle Game Sorting game

lies in moving letters between tubes using precise and

efficient steps. To solve this game automatically, a

backtracking algorithm that explores every possible

letter movement using a Depth-First Search (DFS) [6]

strategy is used. If a step does not lead to a solution,

the algorithm returns (backtracks) and attempts an

alternative step.

By applying a bounding function and pruning,

the algorithm can avoid repeated exploration and

reduce computation time. The implementation of this

algorithm not only ensures that all paths are tried but

also maximizes efficiency by marking and skipping

previously visited states.

Figure 3 shows how the backtracking algorithm

was implemented in the Puzzle Game Sorting game.

Starting from the initial node generation, node

expansion, and bounding function application to the

stopping condition, each component of the algorithm

will be discussed to show how backtracking works

effectively to find the optimal solution. The following

is an explanation of the core of the flowchart:

Figure 3. Backtracking Algorithm Flowchart for Puzzle Sorting

Game

Initial
Node

Expand
Node

Goal
Node

Dead
Node

Eka Qadri Nuranti B, et al., OPTIMIZATION OF BACKTRACKING … 1887

1. Start: The algorithm begins by calling the main

function. In this step, the execution time

recording begins to calculate the total time

required by the algorithm.

2. Initialize Variables: move_history is initialized

as an empty list to store the steps for moving the

balls between the tubes. In addition, visited is

initialized as an empty set to store the state of

the tubes that have been visited, thereby

avoiding cycles and repeated exploration.

3. The solve() function is recursively called to

begin searching for a solution.

4. The algorithm checks whether all tubes are

filled (i.e. each tube contains balls of one color

or is empty).

a. If Yes: Solution is found. The program prints

the solution steps and then ends the process.

b. If No: The algorithm continues by exploring

the remaining steps.

5. Convert State to Tuple and Check in visited

(Bounding Function): The algorithm converts

the current state of the tube into a tuple so that it

can be stored in the visited set:

a. If the status has been visited, the algorithm

backtracks to avoid cycling and repeated

exploration.

b. If it has not been visited, its status is added

to visited.

6. Expand Node: The algorithm iterates for each

pair of tubes (i, j) and attempts all valid moves

between tubes.

7. Generating Initial Nodes: Every time a move is

tested, the algorithm creates a deep copy of the

current tube state to maintain the original state.

Therefore, this could not be changed

8. Dead Node and Bounding Function: The

algorithm tries to move a letter (Attempt to

Pour) from tube i to tube j.

a. If successful: This move is added to the

move_history

b. If unsuccessful: The algorithm immediately

backtracks and attempts another pair of

tubes.

9. If the transfer is successful, the algorithm calls

the solve() function recursively with the new

tube state.

10. Pruning and Backtracking: After a recursive call

is completed, the algorithm checks the result

(Check Recursive Result).

a. If a solution is found: The steps are printed

and the process ends.

b. If not: The algorithm deletes the last step

from the move_history and attempts the next

step (backtrack).

11. Remove State from visited: Once all branches of

this state are explored, it is removed from visited

so as not to block other branches in the search.

12. No Solution Found: If a solution is not found

after all possibilities have been tried, the

algorithm ends the process with a message

indicating that no solution was found.

13. End: The algorithm ends by displaying the total

execution time in milliseconds.

The flowchart illustrates how the backtracking

algorithm works in solving a Puzzle Game Sorting

problem using recursion, backtracking, and bounding

to ensure efficient exploration and avoid unnecessary

steps.

2.5. Algorithm Optimization

The implementation of the backtracking

algorithm requires optimization strategies to ensure

that the solution search process is carried out more

efficiently. This optimization aims to minimize the

number of steps required and reduce unproductive

searches [15]. In this study, the following two

optimization strategies were used.

2.5.1. First Optimization

Steps are prioritized to improve the efficiency of

the backtracking algorithm. Refer to Figure 4; the

yellow rhombus shape demonstrates optimization

implementation using heuristics. The ordering of

steps is focused on moving letters to tubes with

matching colors or empty tubes, minimizing conflicts

and speeding up the solution process.

Figure 4. Backtracking Algorithm Flowchart Using First

Optimization used Heuristic Strategy

Meanwhile, pruning stops exploration if the

current number of steps exceeds the minimum

1888 Jurnal Teknik Informatika (JUTIF), Vol. 5, No. 6, December 2024, pp. 1883-1892

required steps (min_steps); by cutting off

unproductive exploration, the algorithm can reduce

search time and find the optimal solution faster. This

strategy ensures that the algorithm focuses on more

relevant and efficient steps.

The primary steps for the first optimization are

as follows:

1. Balls are moved to tubes that already contain the

same color, increasing the likelihood of fully

filling the tube and reducing the total number of

steps.

2. If the number of steps exceeds the optimal limit

(min_steps), the search is terminated to prevent

unproductive exploration.

2.5.2. Second Optimization

The second optimization aims to enhance the

efficiency of the backtracking algorithm by applying

lookahead strategy [7], [11], [12], [13] and conflict

heuristics [5], [14], [15]. In this context, lookahead

enables the algorithm to not only focus on the current

step but also consider its impact on the next two steps.

This helps the algorithm select more advantageous

moves that simplify the subsequent stages of the

solution process.

Figure 5. Backtracking Algorithm Flowchart Using Second

Optimization used Heuristic+Lookahead Strategy

Meanwhile, conflict heuristics play a role in

reducing moves that cause letter conflicts, such as

placing a letter into a tube where a different letter is

at the bottom. By minimizing conflicts, the algorithm

can reach the optimal solution faster without

unnecessary additional steps. The combination of

these two strategies allows the algorithm to work

more efficiently and effectively in solving puzzles

with higher levels of difficulty.

Figure 5 is an optimization by adding the yellow

steps based on the backtracking algorithm and

heuristic optimization in Figure 4. The following

steps are applied:

1. When making a move, a lookahead strategy is

used to assess two steps ahead, determining

whether the current move will facilitate

subsequent moves.

2. Conflict Heuristic: Minimize moves that

increase color conflicts, such as placing a ball

into a tube where a different color is at the

bottom layer.

3. Utilizing empty tubes more efficiently to

temporarily store letters.

4. Moves are ordered based on conflict scores to

accelerate the process of reaching a solution.

The optimization of the backtracking algorithm

through the implementation of pruning, step

prioritization, lookahead, and conflict heuristics

enhances the algorithm's efficiency and effectiveness.

These strategies help to minimize unproductive

exploration, enabling the algorithm to find the

optimal solution more quickly, particularly in letter-

sorting puzzles with higher levels of complexity.

Implementing these optimizations not only

improves the algorithm's performance but also

provides a more practical solution for application in

strategy games, such as letter sorting puzzles into

tubes.

Table 4 Comparison of Backtracking Algorithm Optimization

Aspects First Optimization Second Optimization

Optimization

Technique

Depth limit and

maximum steps

(min_steps)

Prioritizing moves

based on conflict

scores

Optimization

Objective

Reducing

unnecessary steps

with depth limits

Minimizing color

conflicts during moves

Priority

Method

No priority order

for moves

Moves with the lowest

conflict scores are

prioritized

Usage

Scenario

Suitable for large

cases with many

steps

Effective when there

are many tubes with

mixed colors

Heuristic

Complexity

Simple More complex with

conflict score

calculations

3. RESULT

Several key insights emerged from solving the

puzzle sort game using the backtracking algorithm

before and after implementing the first and second

optimization strategies. The performance of the

backtracking algorithm before and after optimization

Eka Qadri Nuranti B, et al., OPTIMIZATION OF BACKTRACKING … 1889

offers valuable insights into the impact of increasing

game complexity on computational efficiency.

Notably, the algorithm's performance degradation in

more complex levels highlights its limitations in

handling large search spaces, which becomes

increasingly apparent as the game levels rise. This

finding underscores the importance of addressing the

growing computational demands that come with

higher levels of complexity to maintain efficiency.

Table 5. Backtracking Algorithm Performance in Games

Level Time (ms) Steps

1 3.41 7

2 8.94 18

3 5.52 32

4 41.21 78

As detailed in Table 5, the backtracking

algorithm's performance demonstrates a clear trend:

both execution time and the number of steps required

to solve the puzzle rise consistently with an increase

in game level and complexity. At Level 1, the

execution time was notably low at 3.41 milliseconds,

requiring just seven steps to complete the game.

However, by Level 4, the execution time escalated

dramatically to 41.21 milliseconds, with the number

of steps soaring to 78. This substantial increase in

time and steps suggests that higher levels of the game

present a much broader and more intricate search

space, requiring the algorithm to explore a

significantly more significant number of potential

game states. As complexity rises, the increase in

computational load reflects a core characteristic of

backtracking algorithms: as the problem space

expands, the number of paths the algorithm must

investigate grows exponentially, resulting in longer

execution times and more steps.

Table 6 Comparison of User Steps and Backtracking Algorithm

for Level 2

No User Steps Backtracking Algorithm

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

From Tube 1 to Tube 4

From Tube 2 to Tube 4

From Tube 1 to Tube 5

From Tube 2 to Tube 5

From Tube 3 to Tube 5

From Tube 3 to Tube 2

From Tube 1 to Tube 2

From Tube 3 to Tube 4

From Tube 1 to Tube 4

From Tube 3 to Tube 5

From Tube 1 to Tube 5

From Tube 1 to Tube 4

From Tube 2 to Tube 4

From Tube 2 to Tube 5

From Tube 1 to Tube 2

From Tube 1 to Tube 4

From Tube 2 to Tube 1

From Tube 3 to Tube 2

From Tube 2 to Tube 5

From Tube 1 to Tube 2

From Tube 3 to Tube 1

From Tube 1 to Tube 2

From Tube 2 to Tube 1

From Tube 3 to Tube 2

From Tube 1 to Tube 5

From Tube 2 to Tube 4

From Tube 1 to Tube 2

From Tube 3 to Tube 1

It is necessary to pay attention to Table 6 to

carry out further optimization on the backtracking

algorithm. The backtracking algorithm's execution

highlights significant inefficiencies, particularly in its

tendency to revisit states and perform redundant

actions. For example:

● Step 5–7: The algorithm performs a sequence of

moves between Tube 1 and Tube 2, followed by

Tube 1 to Tube 4 and then back to Tube 2. These

steps ultimately do not contribute directly to

solving the puzzle and are reversed later.

● Step 10–13: Another set of redundant steps is

observed, where balls are repeatedly moved

between Tube 2 and Tube 5, Tube 1 and Tube 2,

and Tube 3 and Tube 1. This brute-force

exploration demonstrates the algorithm's

reliance on trying all possible configurations,

often leading to actions that are subsequently

undone during backtracking.

In contrast, the user's approach demonstrates

greater efficiency and a more deliberate strategy:

● Steps such as moving directly from Tabung 1 to

Tabung 4, Tabung 2 to Tabung 4, and Tabung 1

to Tabung 5 illustrate a clear understanding of

how to utilize empty tubes to group balls of the

same color effectively.

● The user avoids unnecessary back-and-forth

movements by planning moves that contribute

directly to solving the puzzle, thereby reducing

time and effort.

While the algorithm works efficiently at lower

levels, its performance drops dramatically as the

game complexity increases. This performance drop at

higher levels highlights essential limitations of the

backtracking approach, underscoring the need for

optimization strategies to improve its efficiency. The

algorithm can significantly reduce unnecessary

moves by adopting heuristics (Figure 4) that mimic

user strategies, such as prioritizing moves that

immediately group elements or efficiently using

empty tubes. Additionally, additional optimizations

can be performed using lookahead strategy (Figure

5). With such optimizations, the algorithm can better

predict unnecessary moves to solve more advanced

levels of the game, where the sheer number of

possible game states may exceed its capacity for

timely and efficient problem-solving.

Table 7. Backtracking Algorithm Performance Using

Optimization

Level

First Optimization Second Optimization

Time (ms) Steps Time (ms) Steps

1 4.58 8 4.58 7

2 2.03 12 9.32 14

3 4.02 36 7.95 17

4 8.13 19 3.56 18

Table 7 compares the performance of the

backtracking algorithm with two distinct

optimization strategies across different game levels.

Both optimizations are designed to improve the

algorithm's efficiency by reducing execution time and

the number of steps. Interestingly, the optimizations

yield different success levels depending on the game's

complexity. For example, at Level 2, Optimization 1

is superior in execution time, achieving a remarkable

reduction of 2.03 milliseconds compared to the 9.32

milliseconds required by Optimization 2. However,

1890 Jurnal Teknik Informatika (JUTIF), Vol. 5, No. 6, December 2024, pp. 1883-1892

as the complexity increases, the relative performance

of the two optimizations shifts. By Level 4,

Optimization 2 significantly outperforms

Optimization 1, reducing execution time to just 3.56

milliseconds, while Optimization 1 requires a much

higher 8.13 milliseconds. This variation in

performance highlights the context-dependent nature

of each optimization strategy, suggesting that

different methods may be better suited to varying

levels of complexity.

In addition to execution time, the number of

steps required by each optimization shows further

differences in performance. Optimization 2 is more

effective in minimizing the number of steps,

especially at Level 3, where it only requires 17 steps

compared to the 36 steps needed by Optimization 1.

This substantial step reduction indicates that

Optimization 2 is more successful at curtailing

unnecessary exploration, enhancing its overall

efficiency. Moreover, in the most complex scenario,

Level 4, Optimization 2 again demonstrates its

superiority, achieving not only a faster execution time

but also a reduced number of steps. These results

suggest that the advanced techniques employed by

Optimization 2, such as lookahead mechanisms and

conflict heuristics, play a pivotal role in enhancing the

algorithm's ability to navigate complex search spaces

more efficiently.

The performance comparison between the six

users and the optimized backtracking algorithm

reveals several key trends. At Level 1, most users

needed between 7 and 11 steps, closely aligning with

the algorithm, whereas Second Optimization required

seven steps and First Optimization took eight steps.

At Level 2, the users completed the puzzle in 10 to 11

steps. At the same time, the algorithm needed more

steps—12 forFirst Optimization and 14 for Second

Optimization—indicating that the users were more

efficient at this level. In Level 3, while the users

completed the game in 14 to 15 steps, First

Optimization required significantly more steps (36),

whereas Second Optimization managed with 17 steps,

showing a marked improvement. At Level 4, the users

took 17 to 20 steps, similar to the algorithm's

performance, where Second Optimization required 18

steps and First Optimization took 19. Second

Optimization demonstrated better efficiency at higher

levels, although human players outperformed the

algorithm at Level 3.

4. DISCUSSION

This study has demonstrated significant results

in implementing the backtracking algorithm for

solving the puzzle sort game with high efficiency and

speed. The research expands the scope of

backtracking applications in game-based problem-

solving by introducing a new puzzle model.

Compared to previous studies, the findings of this

research show notable improvements.

The optimization techniques applied in this

study also profoundly impacted reducing the number

of steps required to solve the puzzle. For example,

integrating heuristic-based pruning reduced

redundant explorations by approximately 30%, as

seen in Level 3, where the algorithm's steps decreased

from 36 (using only heuristics) to 17 when combined

with the lookahead strategy. Additionally, the time

required to complete the puzzle for Level 4 improved

significantly, dropping from 8.13 milliseconds (with

heuristics) to 3.56 milliseconds (with heuristics and

lookahead), representing a substantial reduction of

56.2% in execution time. When the backtracking

algorithm is compared to a second optimization

implementation that combines the lookahead strategy

and the conflict heuristic, it reduces the execution

time at Level 4 by 91.4% (from 41.21 ms to 3.56 ms)

and the steps by 76.9% (from 78 to 18). These

enhancements are consistent across levels,

showcasing how the algorithm becomes more

efficient with the combined strategies. At Level 1,

steps decreased from 8 to 7, while maintaining the

same execution time of 4.58 milliseconds. However,

in Level 2, the addition of lookahead slightly

increased the steps from 12 to 14 but allowed the

algorithm to handle the puzzle's complexity with

better exploration patterns. Level 3 demonstrated the

most significant step reduction, reinforcing the

effectiveness of the combined strategy for handling

more intricate configurations.

This demonstrates how these enhancements

allow the algorithm to focus on promising paths,

avoid unnecessary backtracking, and adapt to varying

complexities, significantly increasing its efficiency

for complex puzzle configurations. These findings

highlight the broader implications of this research. By

demonstrating the flexibility of the backtracking

algorithm in solving puzzle-based games with

optimized performance, this study paves the way for

its application in other domains that involve complex

decision-making and large search spaces. Examples

include scheduling problems, optimization in

logistics, and even AI-based problem-solving in

robotics or automated planning systems. The

demonstrated reduction in computational time and

steps suggests that the methods introduced in this

study can be adapted to address challenges in these

fields, where efficiency and strategic exploration are

critical.

5. CONCLUSION

The research results show that the backtracking

algorithm’s performance declines as the game’s level

and complexity increase, with execution time rising

significantly from 3.41 ms at early levels to 41.21 ms

and 78 steps at Level 4. However, applying the

second optimization, which integrates lookahead

strategies and conflict heuristics, reduced execution

time at Level 4 by 91.4% (from 41.21 ms to 3.56 ms)

and steps by 76.9% (from 78 to 18). The improvement

Eka Qadri Nuranti B, et al., OPTIMIZATION OF BACKTRACKING … 1891

of the second optimization shows the substantial

impact of these strategies in limiting excessive

exploration and accelerating the solution process,

making the second optimization a more practical

approach for enhancing the backtracking algorithm’s

efficiency in solving logic-based puzzles.

This study contributes significantly to

developing backtracking algorithms by introducing a

practical optimization framework that improves their

applicability to logic-based puzzles. The findings

demonstrate that the optimized algorithm can

efficiently handle increasingly complex levels,

paving the way for its implementation in other areas

such as automated problem-solving, logic circuit

design, and intelligent systems.

Future research could focus on developing more

adaptive algorithms by integrating artificial

intelligence techniques, such as reinforcement

learning, to dynamically adjust strategies based on the

puzzle’s complexity. Additionally, exploring hybrid

methods that combine backtracking with other

optimization approaches, such as genetic algorithms

or simulated annealing, could further enhance

performance and broaden the scope of applications

for logic-based games and beyond.

ACKNOWLEDGEMENTS

The author would like to express sincere

gratitude to everyone who contributed to the

completion of this journal. Special thanks are

extended to the research team and volunteers,

comprising both faculty members and students, for

their significant support throughout this study. The

author also wishes to acknowledge the Computer

Science Department, LPPM, and ITH for their

invaluable facility support, which played a crucial

role in the success of this research.

REFERENCES

[1] N. A. Hasanah, L. Atikah, D. Herumurti, and

A. A. Yunanto, “A Comparative Study: Ant

Colony Optimization Algorithm and

Backtracking Algorithm for Sudoku Game,”

in *2020 International Seminar on

Application for Technology of Information

and Communication (iSemantic)*,

Semarang, Indonesia: IEEE, Sep. 2020, pp.

548–553. doi:

10.1109/iSemantic50169.2020.9234267.

[2] N. Nurdin, R. Suhartono, and T. Wibowo,

“The Implementation of Backtracking

Algorithm on Crossword Puzzle Games

Based on Android,” *J. Phys.: Conf. Ser.*,

vol. 1363, no. 1, p. 012075, Nov. 2019, doi:

10.1088/1742-6596/1363/1/012075.

[3] T. Ito, H. Nakamura, and K. Tanaka, “Sorting

balls and water: Equivalence and

computational complexity,” *Theoretical

Computer Science*, vol. 978, p. 114158,

Nov. 2023, doi: 10.1016/j.tcs.2023.114158.

[4] D. Chen, F. Zou, R. Lu, and S. Li,

“Backtracking search optimization algorithm

based on knowledge learning,” *Information

Sciences*, vol. 473, pp. 202–226, Jan. 2019,

doi: 10.1016/j.ins.2018.09.039.

[5] M. Esteve, J. J. Rodriguez-Sala, J. J. Lopez-

Espin, and J. Aparicio, “Heuristic and

Backtracking Algorithms for Improving the

Performance of Efficiency Analysis Trees,”

IEEE Access, vol. 9, pp. 17421–17428,

2021, doi: 10.1109/ACCESS.2021.3054006.

[6] P. Garg, A. Jha, and K. A. Shukla,

“Randomised Analysis of Backtracking-

based Search Algorithms in Elucidating

Sudoku Puzzles Using a Dual Serial/Parallel

Approach,” in *Inventive Computation and

Information Technologies*, vol. 336, S.

Smys, V. E. Balas, and R. Palanisamy, Eds.,

Singapore: Springer Nature Singapore, 2022,

pp. 281–295. doi: 10.1007/978-981-16-6723-

7_21.

[7] V. Vidal, “A Lookahead Strategy for

Heuristic Search Planning,” 2004.

[8] M. N. I. Siddique, M. J. Rana, M. Shafiullah,

S. Mekhilef, and H. Pota, “Automating

distribution networks: Backtracking search

algorithm for efficient and cost-effective fault

management,” *Expert Systems with

Applications*, vol. 247, p. 123275, Aug.

2024, doi: 10.1016/j.eswa.2024.123275.

[9] A. Mehmood, P. Shi, M. A. Z. Raja, A.

Zameer, and N. I. Chaudhary, “Design of

backtracking search heuristics for parameter

estimation of power signals,” *Neural

Comput & Applic.*, vol. 33, no. 5, pp. 1479–

1496, Mar. 2021, doi: 10.1007/s00521-020-

05029-9.

[10] K. Okumura, M. Machida, X. Défago, and Y.

Tamura, “Priority inheritance with

backtracking for iterative multi-agent path

finding,” *Artificial Intelligence*, vol. 310,

p. 103752, Sep. 2022, doi:

10.1016/j.artint.2022.103752.

[11] S. Nofal, K. Atkinson, and P. E. Dunne,

“Looking-ahead in backtracking algorithms

for abstract argumentation,” *International

Journal of Approximate Reasoning*, vol. 78,

pp. 265–282, Nov. 2016, doi:

10.1016/j.ijar.2016.07.013.

[12] F. Gebali, M. Taher, A. M. Zaki, M. W. El-

Kharashi, and A. Tawfik, “Parallel

Multidimensional Lookahead Sorting

Algorithm,” *IEEE Access*, vol. 7, pp.

75446–75463, 2019, doi:

10.1109/ACCESS.2019.2920917.

[13] M. Zhang and J. Lucas, “Lookahead

Optimizer: k steps forward, 1 step back,”

1892 Jurnal Teknik Informatika (JUTIF), Vol. 5, No. 6, December 2024, pp. 1883-1892

*33rd Conference on Neural Information

Processing Systems*, 2019.

[14] J. A. Abdulsaheb and D. J. Kadhim,

“Classical and Heuristic Approaches for

Mobile Robot Path Planning: A Survey,”

Robotics, vol. 12, no. 4, p. 93, Jun. 2023,

doi: 10.3390/robotics12040093.

[15] M. D. Pratama, R. Abdillah, D. Herumurti,

and S. C. Hidayati, “Algorithmic

Advancements in Heuristic Search for

Enhanced Sudoku Puzzle Solving Across

Difficulty Levels,” vol. 5, no. 4, 2024.

