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Abstract 
 

Puzzle Game Sorting is a logic-based puzzle game where players must transfer colored balls into tubes until each 

tube contains only one color. Although it appears simple, the game becomes increasingly challenging at higher 

levels, testing players’ logical thinking and patience. This study proposes using the backtracking algorithm 

combined with optimization strategies, such as conflict heuristics and lookahead, to address players’ challenges 

at advanced levels. The test results indicate that the optimized backtracking algorithm can solve the game faster 

and with more efficient steps compared to manual methods. Specifically, heuristic optimization strategies 

significantly improved performance, reducing execution time by up to 91.4% and the number of steps by up to 

76.9% at the most complex levels. These findings demonstrate that combining the backtracking algorithm and 

optimization strategies is an effective solution for solving puzzles in Sorting, particularly at levels with increasing 

complexity. 
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1. INTRODUCTION 

Puzzle-based games maintain fans because they 

can train logical and strategic thinking skills in fun 

ways [1], [2]. One example of this genre is Puzzle 

Game Sorting [3], a simple but challenging concept. 

In this game, players sort several different types of 

color balls into several tubes until each tube is filled 

with only one color. The key characteristic of these 

puzzles is that each tube operates like a stack, 

requiring players to adhere to the “last-in, first-out” 

(LIFO) principle [3]. This feature introduces an 

additional challenge, as players must strategically 

plan their moves to ensure they do not obstruct access 

to items that will be needed in subsequent steps. 

Although it appears easy, this game requires high 

precision and patience, especially at higher levels, 

where the number of types of letters and tubes 

becomes more complex. 

Increasing levels of difficulty often make 

players feel frustrated, especially when they find out 

that the strategy they are using has reached a dead 

end. Each level in this game also has different solving 

steps. This makes the game both interesting and 

challenging. Therefore, players must concentrate and 

be patient to determine the proper steps in completing 

the game for each level. 

One of the methods that can be used to solve this 

problem is the backtracking algorithm [1], [4], [5], 

[6].  Research by D. Chen et al. [4] applied 

optimization to the backtracking algorithm through 

the addition of knowledge learning. M. Esteve et al. 

[5] combined heuristics and backtracking in 

Efficiency Analysis Trees to improve accuracy and 

efficiency. Furthermore, P. Garg et al. [6] evaluated 

three backtracking approaches—Breadth-first search, 

Depth-first search, and a parallel hybrid of both—to 

solve Sudoku puzzles, revealing significant 

performance improvements of 28% to 56%. Vidal [7] 

study enhances heuristic search by leveraging relaxed 

plans and a lookahead strategy, improving 

performance and scalability in solving larger and 

more complex planning problems. These studies 

demonstrate the versatility of backtracking 

algorithms and their potential for optimization in 

solving complex problems. The backtracking 

algorithm can also be combined with other algorithms 

or methods, such as power outage management [8],  

signal power [9], and robotics [10]. 

The backtracking algorithm is widely used to 

solve problems involving the search for solutions 

from many possible options because of its speed in 

finding the correct solution [1], [5].  It can become 

less efficient when dealing with puzzles of high 

complexity, owing to the many possibilities to 

explore. This reduced the effectiveness of the 

algorithm's results. 

The many possibilities explored can also impact 

the results, which could be better. The results could 

be better in this game when the time used to complete 

the game and the number of steps used are excessive. 

Therefore, optimization of the backtracking 

algorithm is required so that the solution search 

process becomes faster and more efficient, one of 
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which is by implementing the lookahead strategy [7], 

[11], [12], [13] and conflict heuristics [5], [14], [15]. 

This study applies an optimized backtracking 

algorithm to Puzzle Game Sorting, a logic-based 

puzzle where heuristic strategies have not yet been 

explored, unlike their established use in Sudoku [1], 

[6], [15]. The integration of lookahead strategies, 

rarely combined with heuristics for solution search, 

adds further novelty. By employing optimization 

techniques such as lookahead and conflict heuristics, 

the study reduces steps and execution time, enhancing 

efficiency at higher levels. These findings highlight 

the potential of combining backtracking with 

advanced strategies to address increasingly complex 

puzzles, improving algorithm performance and the 

gaming experience. 

2. METHOD 

This research consists of several steps, which 

will be explained in the following flowchart (Figure 

1). The process begins with the Start node, where the 

research framework and objectives are initialized. 

The first step, Configuring Game Levels, involves 

designing the Puzzle Game Sorting configurations 

with varying levels of complexity to ensure a gradual 

increase in difficulty. These configurations serve as 

the basis for subsequent simulations. 
 

 
Figure 1. Research Method 

 

From this point, the process splits into two 

parallel activities: Conducting User Simulation and 

Running Algorithm Simulation. In the user 

simulation phase, participants interact with the 

puzzle, and their actions are monitored using a 

tracking tool that captures metrics such as completion 

time, the number of moves, and intermediate states. 

Concurrently, the algorithm simulation tests the 

backtracking approach on the same puzzle 

configurations, recording metrics like execution time, 

the total nodes explored, and the number of 

backtracking operations. 

The results from both simulations are then 

consolidated in the Analyze Data phase. This stage 

focuses on evaluating and comparing the efficiency 

of human problem-solving strategies and algorithm 

performance. The insights derived from this analysis 

are used to enhance the backtracking algorithm in the 

Optimize Algorithm phase. Finally, the process 

concludes at the End node, marking the completion of 

the research workflow. This step-by-step 

methodology ensures a structured and systematic 

approach to optimizing the algorithm. 

2.1. Puzzle Game Sorting Simulations 

This study includes a Puzzle Game Sorting 

game simulation as part of the research on problem-

solving algorithms using the backtracking approach . 

The simulation aims to evaluate the algorithm's 

effectiveness in solving the color-sorting problem in 

tubes. Four levels of the game, each with increasing 

difficulty, were designed to test the algorithm's 

performance. These levels included progressively 

complex configurations, from two tubes with three 

colors to five tubes with six colors, ensuring a gradual 

increase in problem complexity. 

The study collected data by engaging  6 (six) 

participants who attempted to solve the puzzle 

configurations. A custom tool tracked their actions, 

capturing the time taken, the number of moves made, 

and the intermediate states of the tubes after each 

move. Simultaneously, the backtracking algorithm 

was applied to the same configurations, with its 

performance evaluated through metrics such as 

execution time, the total number of nodes explored in 

the search space, and the number of backtracking 

operations performed. 

Additionally, an observational phase analyzed 

participants' strategies and common mistakes, 

yielding valuable insights into human problem-

solving behaviors. These findings were directly 

compared to the algorithm's performance, 

highlighting areas where optimization could improve 

efficiency. By integrating data from human 

participants and the algorithm, the study provides a 

comprehensive understanding of the problem-solving 

process. It supports the development of enhanced 

strategies for optimizing the backtracking algorithm 

in solving increasingly complex puzzle 

configurations. 

2.1.1. Level 1 

In the first level, the game configuration consists 

of three tubes: 

● Tube 1: ['A', 'B', 'A', 'B'] 

● Tube 2: ['B', 'A', 'B', 'A'] 

● Tube 3: [] (empty) 

In this level, there are only two types of letters, 

namely 'A' and 'B,’ with two full tubes and one empty 
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tube. This is considered an introductory level with a 

low difficulty level, allowing players to learn the 

basics of the game and the strategy of moving letters 

between tubes. 

2.1.2. Level 2 

At the second level, the number of tubes was 

increased to five: 

● Tube 1: ['A', 'B', 'C', 'A'] 

● Tube 2: ['B', 'B', 'C', 'A'] 

● Tube 3: ['C', 'A', 'B', 'C'] 

● Tube 4: [] (empty) 

● Tube 5: [] (empty) 

In this level, there are three types of balls ('A,’ 

'B,’ and 'C') spread across three tubes, with two empty 

tubes as solution spaces. The difficulty of this level 

increases because of the addition of additional letters 

and more letter combinations that need to be 

rearranged correctly. 

2.1.3. Level 3 

In the third level, the game becomes more 

challenging with the addition of new types of letters 

and more complex tube configurations: 

● Tube 1: ['C', 'B', 'C', 'D'] 

● Tube 2: ['A', 'C', 'B', 'A'] 

● Tube 3: ['A', 'B', 'D', 'A'] 

● Tube 4: ['C', 'B', 'D', 'D'] 

● Tube 5: [] (empty) 

● Tube 6: [] (empty) 

In this level, four types of letters are introduced 

in this level ('A', 'B', 'C', and 'D'), and there are a total 

of six tubes, two of which are empty. The difficulty 

increases significantly as more balls are moved and 

rearranged in the correct order with a more optimal 

number of moves. 

2.1.4. Level 4 

At the fourth level, the game reaches its highest 

level of difficulty, with five types of letters and a 

larger number of tubes: 

● Tube 1: ['B', 'D', 'E', 'B'] 

● Tube 2: ['A', 'D', 'D', 'A'] 

● Tube 3: ['E', 'C', 'B', 'C'] 

● Tube 4: ['B', 'C', 'A', 'E'] 

● Tube 5: ['C', 'E', 'D', 'A'] 

● Tube 6: [] (empty) 

● Tube 7: [] (empty) 

Five types of letters ('A', 'B', 'C', 'D', and 'E') are 

spread across five tubes, while two empty tubes are 

used as spaces for solving. The main challenge at this 

level is the increasing number of combinations and 

moving strategies, which require more in-depth 

calculations to find a solution. 

2.2. User Simulation 

This research focuses on user simulation as a 

key method for understanding problem-solving 

strategies in the Puzzle Game Sorting game. The 

study involves direct observation of six users as they 

attempt to complete several game levels, ranging 

from easy to complex. Participants' interactions with 

the game are carefully monitored to evaluate how 

they face challenges, make decisions, and overcome 

obstacles. 

During the simulation, the completion time for 

each level is recorded to assess the participants' 

efficiency and ability to solve the puzzle manually. 

These observations provide valuable insights into 

human problem-solving behaviors, which are later 

compared with the performance of the backtracking 

algorithm. Data collected from the users, including 

their strategies and time taken, serve as comparison 

parameters for evaluating the efficiency and 

effectiveness of the algorithm. The findings from this 

user simulation are critical for benchmarking the 

algorithm's performance and identifying areas for 

optimization, as summarized in Table 2. 
 

Table 2. Completion Time 

User 

ID 

Level Completion Time (seconds) Average 

Completion 

Time 
1 2 3 4 

user1 108.46 183.57 174.41 216.00 
170.61 

seconds 

user2 59.37 117.74 133.28 138.82 
112.30 

seconds 

user3 185.42 98.39 137.77 174.26 
148.96 

seconds 

user4 198.87 104.60 139.14 236.65 
169.32 

seconds 

user5 217.52 116.51 162.09 222.76 
179.72 

seconds 

user6 109.68 127.37 117.96 161.16 
129.04 

seconds 

 

Table 3. Completion Steps by User 

User ID 
Number of Level Steps 

1 2 3 4 

user1 7 10 14 17 

user2 7 10 15 17 

user3 7 10 14 18 

user4 11 10 14 20 

user5 8 10 14 19 

user6 7 11 14 17 

 

Table 2 and Table 3 show variations in 

completion time and number of moves among the six 

users at four game levels. User2 showed the best 

performance with the fastest average time (112.30 

seconds) and a consistent number of moves, 

indicating an efficient and systematic strategy. In 

contrast, user1, who had the slowest average time 

(170.61 seconds), also demonstrated a higher 

variability in performance, suggesting potential 

inefficiencies in decision-making or a trial-and-error 

approach. 

At the beginning level, most users required only 

seven to eleven moves, with minimal variation, 

reflecting the relatively low complexity of the task. 

However, by level 4, the game's complexity increased 

significantly, as seen in the performance of user4, 

who needed up to 20 moves and took the longest time 
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to complete the level. This indicates that higher levels 

present more challenging configurations that demand 

greater precision and problem-solving effort. 

Furthermore, the analysis highlights that fewer 

moves often correspond to faster completion times, 

but this is not always true. For example, user6, who 

required only seven moves in level 1, still had a 

slower average time than user2. This suggests that 

efficiency in solving the puzzle involves not only 

minimizing the number of moves but also optimizing 

the time spent on each decision. 

The results of this observation can help 

researchers identify patterns of difficulty and levels 

that are obstacles for players. Data from this manual 

experiment are then compared with the results of the 

application of the backtracking algorithm to evaluate 

the efficiency of time and steps. This comparison 

provides a clearer understanding of the effectiveness 

of the backtracking algorithm in completing the 

game, especially at highly difficult levels. 

2.3. Backtracking Algorithm 

The backtracking algorithm is an effective 

solution search technique for combinatorial and 

optimization problems [4], [6]. This algorithm works 

by exploring all possible solutions through a Depth-

First Search (DFS) approach [6]. One of the main 

characteristics of backtracking is its ability to cancel 

decisions (backtrack) when the path taken is proven 

to not lead to a solution and continue the search with 

other alternatives [2]. Figure 2 shows the 

backtracking algorithm. 
 

 
Figure 2. Backtracking Algorithm Concept 

 

The process starts at the initial node, and each 

action produces a new child node. If the chosen path 

reaches a dead end, the algorithm backtracks to the 

previous node and then attempts another step. 

During exploration, an expanded node is 

expanded to produce child nodes. If the move is valid 

and the new state has not been explored before, then 

the state becomes a live node. However, if the state is 

invalid or has been explored previously, the node 

becomes dead and is pruned to avoid repeated 

exploration. The algorithm stores visited states using 

bounding functions in structures such as visited. 

This process continues until the goal node is 

reached (the problem is solved) or all possible paths 

are explored. If a solution is found, the steps are 

displayed. Otherwise, the algorithm reports that no 

solution was possible. 

2.4. Backtracking Algorithm In Games 

The challenge of the Puzzle Game Sorting game 

lies in moving letters between tubes using precise and 

efficient steps. To solve this game automatically, a 

backtracking algorithm that explores every possible 

letter movement using a Depth-First Search (DFS) [6] 

strategy is used. If a step does not lead to a solution, 

the algorithm returns (backtracks) and attempts an 

alternative step. 

By applying a bounding function and pruning, 

the algorithm can avoid repeated exploration and 

reduce computation time. The implementation of this 

algorithm not only ensures that all paths are tried but 

also maximizes efficiency by marking and skipping 

previously visited states. 

Figure 3 shows how the backtracking algorithm 

was implemented in the Puzzle Game Sorting game. 

Starting from the initial node generation, node 

expansion, and bounding function application to the 

stopping condition, each component of the algorithm 

will be discussed to show how backtracking works 

effectively to find the optimal solution. The following 

is an explanation of the core of the flowchart: 
 

 
Figure 3. Backtracking Algorithm Flowchart for Puzzle Sorting 

Game 
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1. Start: The algorithm begins by calling the main 

function. In this step, the execution time 

recording begins to calculate the total time 

required by the algorithm. 

2. Initialize Variables: move_history is initialized 

as an empty list to store the steps for moving the 

balls between the tubes. In addition, visited is 

initialized as an empty set to store the state of 

the tubes that have been visited, thereby 

avoiding cycles and repeated exploration. 

3. The solve() function is recursively called to 

begin searching for a solution. 

4. The algorithm checks whether all tubes are 

filled (i.e. each tube contains balls of one color 

or is empty). 

a. If Yes: Solution is found. The program prints 

the solution steps and then ends the process. 

b. If No: The algorithm continues by exploring 

the remaining steps. 

5. Convert State to Tuple and Check in visited 

(Bounding Function): The algorithm converts 

the current state of the tube into a tuple so that it 

can be stored in the visited set: 

a. If the status has been visited, the algorithm 

backtracks to avoid cycling and repeated 

exploration. 

b. If it has not been visited, its status is added 

to visited. 

6. Expand Node: The algorithm iterates for each 

pair of tubes (i, j) and attempts all valid moves 

between tubes. 

7. Generating Initial Nodes: Every time a move is 

tested, the algorithm creates a deep copy of the 

current tube state to maintain the original state. 

Therefore, this could not be changed 

8. Dead Node and Bounding Function: The 

algorithm tries to move a letter (Attempt to 

Pour) from tube i to tube j. 

a. If successful: This move is added to the 

move_history 

b. If unsuccessful: The algorithm immediately 

backtracks and attempts another pair of 

tubes. 

9. If the transfer is successful, the algorithm calls 

the solve() function recursively with the new 

tube state. 

10. Pruning and Backtracking: After a recursive call 

is completed, the algorithm checks the result 

(Check Recursive Result). 

a. If a solution is found: The steps are printed 

and the process ends. 

b. If not: The algorithm deletes the last step 

from the move_history and attempts the next 

step (backtrack). 

11. Remove State from visited: Once all branches of 

this state are explored, it is removed from visited 

so as not to block other branches in the search. 

12. No Solution Found: If a solution is not found 

after all possibilities have been tried, the 

algorithm ends the process with a message 

indicating that no solution was found. 

13. End: The algorithm ends by displaying the total 

execution time in milliseconds. 

The  flowchart illustrates how the backtracking 

algorithm works in solving a Puzzle Game Sorting 

problem using recursion, backtracking, and bounding 

to ensure efficient exploration and avoid unnecessary 

steps. 

2.5. Algorithm Optimization 

The implementation of the backtracking 

algorithm requires optimization strategies to ensure 

that the solution search process is carried out more 

efficiently. This optimization aims to minimize the 

number of steps required and reduce unproductive 

searches [15]. In this study, the following two 

optimization strategies were used. 

2.5.1. First Optimization 

Steps are prioritized to improve the efficiency of 

the backtracking algorithm. Refer to Figure 4; the 

yellow rhombus shape demonstrates optimization 

implementation using heuristics. The ordering of 

steps is focused on moving letters to tubes with 

matching colors or empty tubes, minimizing conflicts 

and speeding up the solution process. 
 

 
Figure 4. Backtracking Algorithm Flowchart Using First 

Optimization used Heuristic Strategy 

 

Meanwhile, pruning stops exploration if the 

current number of steps exceeds the minimum 
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required steps (min_steps); by cutting off 

unproductive exploration, the algorithm can reduce 

search time and find the optimal solution faster. This 

strategy ensures that the algorithm focuses on more 

relevant and efficient steps. 

The primary steps for the first optimization are 

as follows: 

1. Balls are moved to tubes that already contain the 

same color, increasing the likelihood of fully 

filling the tube and reducing the total number of 

steps. 

2. If the number of steps exceeds the optimal limit 

(min_steps), the search is terminated to prevent 

unproductive exploration. 

2.5.2. Second Optimization 

The second optimization aims to enhance the 

efficiency of the backtracking algorithm by applying 

lookahead strategy [7], [11], [12], [13] and conflict 

heuristics [5], [14], [15]. In this context, lookahead 

enables the algorithm to not only focus on the current 

step but also consider its impact on the next two steps. 

This helps the algorithm select more advantageous 

moves that simplify the subsequent stages of the 

solution process. 
 

 
Figure 5. Backtracking Algorithm Flowchart Using Second 

Optimization used Heuristic+Lookahead Strategy 

Meanwhile, conflict heuristics play a role in 

reducing moves that cause letter conflicts, such as 

placing a letter into a tube where a different letter is 

at the bottom. By minimizing conflicts, the algorithm 

can reach the optimal solution faster without 

unnecessary additional steps. The combination of 

these two strategies allows the algorithm to work 

more efficiently and effectively in solving puzzles 

with higher levels of difficulty. 

Figure 5 is an optimization by adding the yellow 

steps based on the backtracking algorithm and 

heuristic optimization in Figure 4. The following 

steps are applied: 

1. When making a move, a lookahead strategy is 

used to assess two steps ahead, determining 

whether the current move will facilitate 

subsequent moves. 

2. Conflict Heuristic: Minimize moves that 

increase color conflicts, such as placing a ball 

into a tube where a different color is at the 

bottom layer. 

3. Utilizing empty tubes more efficiently to 

temporarily store letters. 

4. Moves are ordered based on conflict scores to 

accelerate the process of reaching a solution. 

The optimization of the backtracking algorithm 

through the implementation of pruning, step 

prioritization, lookahead, and conflict heuristics 

enhances the algorithm's efficiency and effectiveness. 

These strategies help to minimize unproductive 

exploration, enabling the algorithm to find the 

optimal solution more quickly, particularly in letter-

sorting puzzles with higher levels of complexity. 

Implementing these optimizations not only 

improves the algorithm's performance but also 

provides a more practical solution for application in 

strategy games, such as letter sorting puzzles into 

tubes. 
 

Table 4 Comparison of Backtracking Algorithm Optimization 

Aspects First Optimization Second Optimization 

Optimization 

Technique 

Depth limit and 

maximum steps 

(min_steps) 

Prioritizing moves 

based on conflict 

scores 

Optimization 

Objective 

Reducing 

unnecessary steps 

with depth limits 

Minimizing color 

conflicts during moves 

Priority 

Method 

No priority order 

for moves 

Moves with the lowest 

conflict scores are 

prioritized 

Usage 

Scenario 

Suitable for large 

cases with many 

steps 

Effective when there 

are many tubes with 

mixed colors 

Heuristic 

Complexity 

Simple More complex with 

conflict score 

calculations 

3. RESULT 

Several key insights emerged from solving the 

puzzle sort game using the backtracking algorithm 

before and after implementing the first and second 

optimization strategies. The performance of the 

backtracking algorithm before and after optimization 
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offers valuable insights into the impact of increasing 

game complexity on computational efficiency. 

Notably, the algorithm's performance degradation in 

more complex levels highlights its limitations in 

handling large search spaces, which becomes 

increasingly apparent as the game levels rise. This 

finding underscores the importance of addressing the 

growing computational demands that come with 

higher levels of complexity to maintain efficiency. 
 

Table 5. Backtracking Algorithm Performance in Games 

Level Time (ms) Steps 

1 3.41 7 

2 8.94 18 

3 5.52 32 

4 41.21 78 

 

As detailed in Table 5, the backtracking 

algorithm's performance demonstrates a clear trend: 

both execution time and the number of steps required 

to solve the puzzle rise consistently with an increase 

in game level and complexity. At Level 1, the 

execution time was notably low at 3.41 milliseconds, 

requiring just seven steps to complete the game. 

However, by Level 4, the execution time escalated 

dramatically to 41.21 milliseconds, with the number 

of steps soaring to 78. This substantial increase in 

time and steps suggests that higher levels of the game 

present a much broader and more intricate search 

space, requiring the algorithm to explore a 

significantly more significant number of potential 

game states. As complexity rises, the increase in 

computational load reflects a core characteristic of 

backtracking algorithms: as the problem space 

expands, the number of paths the algorithm must 

investigate grows exponentially, resulting in longer 

execution times and more steps. 
 

Table 6 Comparison of User Steps and Backtracking Algorithm 

for Level 2 

No User Steps Backtracking Algorithm 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

From Tube 1 to Tube 4 

From Tube 2 to Tube 4 

From Tube 1 to Tube 5 

From Tube 2 to Tube 5 

From Tube 3 to Tube 5 

From Tube 3 to Tube 2 

From Tube 1 to Tube 2 

From Tube 3 to Tube 4 

From Tube 1 to Tube 4 

From Tube 3 to Tube 5 

From Tube 1 to Tube 5 

From Tube 1 to Tube 4 

From Tube 2 to Tube 4 

From Tube 2 to Tube 5 

From Tube 1 to Tube 2 

From Tube 1 to Tube 4 

From Tube 2 to Tube 1 

From Tube 3 to Tube 2 

From Tube 2 to Tube 5 

From Tube 1 to Tube 2 

From Tube 3 to Tube 1 

From Tube 1 to Tube 2 

From Tube 2 to Tube 1 

From Tube 3 to Tube 2 

From Tube 1 to Tube 5 

From Tube 2 to Tube 4 

From Tube 1 to Tube 2 

From Tube 3 to Tube 1 

 

It is necessary to pay attention to Table 6 to 

carry out further optimization on the backtracking 

algorithm. The backtracking algorithm's execution 

highlights significant inefficiencies, particularly in its 

tendency to revisit states and perform redundant 

actions. For example: 

● Step 5–7: The algorithm performs a sequence of 

moves between Tube 1 and Tube 2, followed by 

Tube 1 to Tube 4 and then back to Tube 2. These 

steps ultimately do not contribute directly to 

solving the puzzle and are reversed later. 

● Step 10–13: Another set of redundant steps is 

observed, where balls are repeatedly moved 

between Tube 2 and Tube 5, Tube 1 and Tube 2, 

and Tube 3 and Tube 1. This brute-force 

exploration demonstrates the algorithm's 

reliance on trying all possible configurations, 

often leading to actions that are subsequently 

undone during backtracking. 

In contrast, the user's approach demonstrates 

greater efficiency and a more deliberate strategy: 

● Steps such as moving directly from Tabung 1 to 

Tabung 4, Tabung 2 to Tabung 4, and Tabung 1 

to Tabung 5 illustrate a clear understanding of 

how to utilize empty tubes to group balls of the 

same color effectively. 

● The user avoids unnecessary back-and-forth 

movements by planning moves that contribute 

directly to solving the puzzle, thereby reducing 

time and effort. 

While the algorithm works efficiently at lower 

levels, its performance drops dramatically as the 

game complexity increases. This performance drop at 

higher levels highlights essential limitations of the 

backtracking approach, underscoring the need for 

optimization strategies to improve its efficiency. The 

algorithm can significantly reduce unnecessary 

moves by adopting heuristics (Figure 4) that mimic 

user strategies, such as prioritizing moves that 

immediately group elements or efficiently using 

empty tubes. Additionally, additional optimizations 

can be performed using lookahead strategy (Figure 

5). With such optimizations, the algorithm can better 

predict unnecessary moves to solve more advanced 

levels of the game, where the sheer number of 

possible game states may exceed its capacity for 

timely and efficient problem-solving. 
 

Table 7. Backtracking Algorithm Performance Using 

Optimization 

Level 

First Optimization Second Optimization 

Time (ms) Steps Time (ms) Steps 

1 4.58 8 4.58 7 

2 2.03 12 9.32 14 

3 4.02 36 7.95 17 

4 8.13 19 3.56 18 

 

Table 7 compares the performance of the 

backtracking algorithm with two distinct 

optimization strategies across different game levels. 

Both optimizations are designed to improve the 

algorithm's efficiency by reducing execution time and 

the number of steps. Interestingly, the optimizations 

yield different success levels depending on the game's 

complexity. For example, at Level 2, Optimization 1 

is superior in execution time, achieving a remarkable 

reduction of 2.03 milliseconds compared to the 9.32 

milliseconds required by Optimization 2. However, 
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as the complexity increases, the relative performance 

of the two optimizations shifts. By Level 4, 

Optimization 2 significantly outperforms 

Optimization 1, reducing execution time to just 3.56 

milliseconds, while Optimization 1 requires a much 

higher 8.13 milliseconds. This variation in 

performance highlights the context-dependent nature 

of each optimization strategy, suggesting that 

different methods may be better suited to varying 

levels of complexity. 

In addition to execution time, the number of 

steps required by each optimization shows further 

differences in performance. Optimization 2 is more 

effective in minimizing the number of steps, 

especially at Level 3, where it only requires 17 steps 

compared to the 36 steps needed by Optimization 1. 

This substantial step reduction indicates that 

Optimization 2 is more successful at curtailing 

unnecessary exploration, enhancing its overall 

efficiency. Moreover, in the most complex scenario, 

Level 4, Optimization 2 again demonstrates its 

superiority, achieving not only a faster execution time 

but also a reduced number of steps. These results 

suggest that the advanced techniques employed by 

Optimization 2, such as lookahead mechanisms and 

conflict heuristics, play a pivotal role in enhancing the 

algorithm's ability to navigate complex search spaces 

more efficiently. 

The performance comparison between the six 

users and the optimized backtracking algorithm 

reveals several key trends. At Level 1, most users 

needed between 7 and 11 steps, closely aligning with 

the algorithm, whereas Second Optimization required 

seven steps and First Optimization took eight steps. 

At Level 2, the users completed the puzzle in 10 to 11 

steps. At the same time, the algorithm needed more 

steps—12 forFirst Optimization and 14 for Second 

Optimization—indicating that the users were more 

efficient at this level. In Level 3, while the users 

completed the game in 14 to 15 steps, First 

Optimization required significantly more steps (36), 

whereas Second Optimization managed with 17 steps, 

showing a marked improvement. At Level 4, the users 

took 17 to 20 steps, similar to the algorithm's 

performance, where Second Optimization required 18 

steps and First Optimization took 19. Second 

Optimization demonstrated better efficiency at higher 

levels, although human players outperformed the 

algorithm at Level 3.  

4. DISCUSSION 

This study has demonstrated significant results 

in implementing the backtracking algorithm for 

solving the puzzle sort game with high efficiency and 

speed. The research expands the scope of 

backtracking applications in game-based problem-

solving by introducing a new puzzle model. 

Compared to previous studies, the findings of this 

research show notable improvements. 

The optimization techniques applied in this 

study also profoundly impacted reducing the number 

of steps required to solve the puzzle. For example, 

integrating heuristic-based pruning reduced 

redundant explorations by approximately 30%, as 

seen in Level 3, where the algorithm's steps decreased 

from 36 (using only heuristics) to 17 when combined 

with the lookahead strategy. Additionally, the time 

required to complete the puzzle for Level 4 improved 

significantly, dropping from 8.13 milliseconds (with 

heuristics) to 3.56 milliseconds (with heuristics and 

lookahead), representing a substantial reduction of 

56.2% in execution time. When the backtracking 

algorithm is compared to a second optimization 

implementation that combines the lookahead strategy 

and the conflict heuristic, it reduces the execution 

time at Level 4 by 91.4% (from 41.21 ms to 3.56 ms) 

and the steps by 76.9% (from 78 to 18). These 

enhancements are consistent across levels, 

showcasing how the algorithm becomes more 

efficient with the combined strategies. At Level 1, 

steps decreased from 8 to 7, while maintaining the 

same execution time of 4.58 milliseconds. However, 

in Level 2, the addition of lookahead slightly 

increased the steps from 12 to 14 but allowed the 

algorithm to handle the puzzle's complexity with 

better exploration patterns. Level 3 demonstrated the 

most significant step reduction, reinforcing the 

effectiveness of the combined strategy for handling 

more intricate configurations. 

This demonstrates how these enhancements 

allow the algorithm to focus on promising paths, 

avoid unnecessary backtracking, and adapt to varying 

complexities, significantly increasing its efficiency 

for complex puzzle configurations. These findings 

highlight the broader implications of this research. By 

demonstrating the flexibility of the backtracking 

algorithm in solving puzzle-based games with 

optimized performance, this study paves the way for 

its application in other domains that involve complex 

decision-making and large search spaces. Examples 

include scheduling problems, optimization in 

logistics, and even AI-based problem-solving in 

robotics or automated planning systems. The 

demonstrated reduction in computational time and 

steps suggests that the methods introduced in this 

study can be adapted to address challenges in these 

fields, where efficiency and strategic exploration are 

critical. 

5. CONCLUSION 

The research results show that the backtracking 

algorithm’s performance declines as the game’s level 

and complexity increase, with execution time rising 

significantly from 3.41 ms at early levels to 41.21 ms 

and 78 steps at Level 4. However, applying the 

second optimization, which integrates lookahead 

strategies and conflict heuristics, reduced execution 

time at Level 4 by 91.4% (from 41.21 ms to 3.56 ms) 

and steps by 76.9% (from 78 to 18). The improvement 
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of the second optimization shows the substantial 

impact of these strategies in limiting excessive 

exploration and accelerating the solution process, 

making the second optimization a more practical 

approach for enhancing the backtracking algorithm’s 

efficiency in solving logic-based puzzles. 

This study contributes significantly to 

developing backtracking algorithms by introducing a 

practical optimization framework that improves their 

applicability to logic-based puzzles. The findings 

demonstrate that the optimized algorithm can 

efficiently handle increasingly complex levels, 

paving the way for its implementation in other areas 

such as automated problem-solving, logic circuit 

design, and intelligent systems. 

Future research could focus on developing more 

adaptive algorithms by integrating artificial 

intelligence techniques, such as reinforcement 

learning, to dynamically adjust strategies based on the 

puzzle’s complexity. Additionally, exploring hybrid 

methods that combine backtracking with other 

optimization approaches, such as genetic algorithms 

or simulated annealing, could further enhance 

performance and broaden the scope of applications 

for logic-based games and beyond. 
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