
Jurnal Teknik Informatika (JUTIF) DOI: https://doi.org/10.52436/1.jutif.2024.5.6.3903
Vol. 5, No. 6, December 2024, pp. 1673-1686 p-ISSN: 2723-3863
 e-ISSN: 2723-3871

1673

IMPROVING MALWARE DETECTION USING INFORMATION GAIN AND

ENSEMBLE MACHINE LEARNING

Arsabilla Ramadhani1, Fauzi Adi Rafrastara*2, Salma Rosyada3, Wildanil Ghozi4, Waleed Mahgoub

Osman5

1,2,3,4Informatics Engineering, Faculty of Computer Science, Universitas Dian Nuswantoro, Indonesia

5Mathematics Department, College of Education, Sudan University of Science and Technology, Sudan

Email: 1111202113384@mhs.dinus.ac.id, 2fauziadi@dsn.dinus.ac.id, 3111202113382@mhs.dinus.ac.id,
4wildanil.ghozi@dsn.dinus.ac.id, 5waleedmo@sustech.edu

(Article received: October 14, 2024; Revision: November 22, 2024; published: December 29, 2024)

Abstract

Malware attacks pose a serious threat to digital systems, potentially causing data and financial losses. The

increasing complexity and diversity of malware attack techniques have made traditional detection methods

ineffective, thus AI-based approaches are needed to improve the accuracy and efficiency of malware detection,

especially for detecting modern malware that uses obfuscation techniques. This study addresses this issue by

applying ensemble-based machine learning algorithms to enhance malware detection accuracy. The methodology

used involves Random Forest, Gradient Boosting, XGBoost, and AdaBoost, with feature selection using

Information Gain. Datasets from VirusTotal and VxHeaven, including both goodware and malware samples. The

results show that Gradient Boosting, strengthened with Information Gain, achieved the highest accuracy of 99.1%,

indicating a significant improvement in malware detection effectiveness. This study demonstrates that applying

Information Gain to Gradient Boosting can improve malware detection accuracy while reducing computational

requirements, contributing significantly to the optimization of digital security systems.

Keywords: Ensemble-based Algorithms, Gradient Boosting, Information Gain, Machine Learning, Malware

Detection.

1. INTRODUCTION

Malware, short for "malicious software," refers

to software specifically designed to harm, disrupt, or

gain unauthorized access to computer systems [1].

The diversity of malware types, including viruses,

worms, trojans, ransomware, and spyware, presents

significant challenges for detection systems. Each

operates in distinct ways to compromise data security

[2], often causing severe consequences, such as

network-wide infections, data theft, system damage,

and the loss of critical information [3].

A notorious example of malware is WannaCry,

a ransomware that exploits vulnerabilities in the

Windows operating system. WannaCry encrypts

victims' data and demands a ransom in Bitcoin for its

decryption. The attack had a massive impact on

hospitals, government organizations, and companies

globally, forcing them to halt operations due to the

inability to access critical data. This attack resulted in

billions of dollars in losses and exposed significant

weaknesses in global cybersecurity systems [4].

More recently, other soophisticated malware

such as Emotet have emerged, evolving into complex

threats. Initially recognized as a banking trojans,

these malware variant now serve as delivery vehicles

for other harmful software, spreading through

malicious email attachments disguised as legitimate

documents or links. Once a device is infected, these

trojans can steal sensitive information, including

passwords, financial data, and personal details,

amplifying the potential damge. Emotet, in particular,

has been widely used in high-profile cyberattacks,

significanly amplifying the potential damage. These

attacks have targeted sectors such as healthcare and

government, resulting in massive data breaches and

substantial financial losses, especially for companies

and organizations dependent on robust information

security [5].

While malware detection has advanced

significantly, numerous challenges persist,

particularly with the rise of more sophisticated threats

like polymorphic malware. Traditional detection

methods, such as signature-based detection [1], often

fail to recognize new or unseen malware, as even

minor code changes can evade detection. Moreover,

advanced evasion techniques, including obfuscation

and encryption, further complicate the detection

process [5].

Machine learning has emerged as a promising

solution for improving malware detection, offering

greater accuracy and the ability to detect previously

unseen threats. However, challenges remain,

including high false positive rates and difficulty

identifying zero-day attacks. Ensemble-based

machine learning algorithms, such as Random Forest,

https://doi.org/10.52436/1.jutif.2024.5.6.3903
mailto:111202113384@mhs.dinus.ac.id
mailto:fauziadi@dsn.dinus.ac.id
mailto:111202113382@mhs.dinus.ac.id
mailto:wildanil.ghozi@dsn.dinus.ac.id
mailto:waleedmo@sustech.edu

1674 Jurnal Teknik Informatika (JUTIF), Vol. 5, No. 6, December 2024, pp. 1673-1686

Gradient Boosting, XGBoost, and AdaBoost, have

gained attention for their potential to enhance

detection systems by leveraging multiple models to

improve performance and reduce errors.

This research aims to evaluate the performance

of these ensemble-based machine learning algorithms

in malware detection, with a focus on optimizing both

accuracy and computational efficiency. Specifically,

it compares the performance of Random Forest,

Gradient Boosting, XGBoost, and AdaBoost

algorithms using features selected by Information

Gain. The research also aims to address limitations

of existing methods by investigating how feature

selection using Information Gain can improve

classification results, particulary in terms of accuracy,

F1-score, and computational efficiency. The findings

aim to provide insights into optimizing malware

detection systems by balancing detection accuracy

and resource utilization.

Recent studies have shown promising results in

machine learning-based malware detection. For

example, the k-Nearest Neighbor (kNN) algorithm

achieved a high accuracy of 97.0% accuracy with

Information Gain feature selection [1], while research

incorporating Convolutional Neural Networks (CNN)

and Gated Recurrent Units (GRU) attained 93%

accuracy [6]. Other studies have demonstrated even

higher accuracies, such as 98.58% using Recurrent

Neural Networks (RNN) [7] and 98.65% using a

combination of OC-SVM, LOF, and Mi-iForest [8].

However, these methods still face challenges related

to handling large datasets and capturing temporal

dependencies, highlighting the need for more

efficient and scalable approaches.

2. RESEARCH METHODOLOGY

This research follows a sequential approach,

with each stage building on the previous one. Figure

1 provides an overview of the process. Success in this

research depends on the seamless integration of

hardware and software. Optimal software

performance requires robust hardware, while high-

performance hardware benefits from efficient

software.

For this study, the computer specifications

included an 11th Gen Intel® Core™ i5-1135G7

processor (2.40 GHz), 8 GB of DDR4-3200 SDRAM

(1 x 64-bit), and a 256 GB NVMe SSD for fast data

access. Intel® Iris® Xe Graphics provided enhanced

visual performance, ensuring smooth graphical

operations during data processing and visualization.

These hardware specifications enabled efficient

handling of large datasets and computationally

intensive machine learning algorithms.

The primary software used was Orange Data

Mining (https://orangedatamining.com/), which

supported various stages of the research, including

data pre-processing, feature selection, and model

building. Orange's tools for class balancing,

normalization, and machine learning algorithms, such

as Random Forest, Gradient Boosting, XGBoost, and

AdaBoost, were crucial in model evaluation and

optimization.

Figure 1. Research Stages

2.1. Dataset Collection and Preparation

At this stage, the malware dataset is downloaded

from the UCI Machine Learning Repository, as

described in Table 1, details of the dataset used in

research. The dataset consists of three files: a

Arsabilla Ramadhani, et al., IMPROVING MALWARE DETECTION … 1675

goodware dataset and two malware datasets, one from

VirusTotal and another from VxHeaven. Each dataset

captures the activity of files executed in a virtual

environment or sandbox, presenting the results in a

tabular format with over 1,085 features.

Table 1. Details of The Dataset Used in Research

Dataset Name Malware static and dynamic features VxHeaven and VirusTotal

Number of Files 3 (goodware, malware from VirusTotal and malware from VxHeaven file)

Number of Rows Goodware: 595; VirusTotal: 2955; VxHeaven: 2698

Number of Features Goodware: 1086; VirusTotal: 1087; VxHeaven: 1087 (without label)

Class Goodware: 0; VirusTotal: 1; VxHeaven: 1

Missing Values None

The goodware dataset contains 595 benign file

activities, each with 1,086 features. The VirusTotal

malware dataset comprises 2,955 samples, each with

1,087 features. The VxHeaven malware dataset

contains 2,698 samples, also with 1,087 features. Due

to the differing number of features across the three

datasets, they could not be directly merged. To

standardize the feature count, certain attributes were

removed. Specifically, features such as

‘vbaVarIndexLoad’ and ‘SafeArrayPtrOfIndex,’

which are absent in the goodware dataset, were

eliminated from the malware datasets. Conversely,

the feature ‘Feature 1,’ which is not present in the

malware datasets, was removed from the goodware

dataset. After these adjustments, all datasets

contained 1,085 features.

The 'filename' feature was deemed irrelevant

and removed from both the goodware and VirusTotal

malware datasets. Labels were then assigned, with

goodware labeled as ‘0’ and malware labeled as ‘1’.

The three datasets were subsequently merged into a

single dataset containing 1,190 rows, 983 columns,

982 features, and two target classes.

2.2. Pre-Processing

Pre-processing is a critical initial step in

machine learning, involving the transformation or

encoding of data to make it suitable for efficient

analysis by machine learning algorithms [9]. It can

also be seen as a process that prepares the data for

modeling by refining features. The impact of pre-

processing on machine learning performance is

significant, offering benefits such as reduced training

time and improved analysis speed [7].

This study performed three primary pre-

processing tasks: class balancing, feature scaling, and

feature selection. Class balancing is essential to

prevent the model from becoming biased toward the

majority class. Techniques such as oversampling,

undersampling, or SMOTE can be used to address

this imbalance [1]. In this study, undersampling was

applied to reduce the number of instances from the

majority class to match the number of instances in the

minority class. Initially, the dataset exhibited an

imbalance ratio of 1:9.5, but after undersampling, this

was adjusted to 1:1. Without class balancing, the

model may underperform in predicting the minority

class, leading to inaccurate results. Undersampling

helps balance the data distribution, allowing the

machine learning model to perform more effectively

and improving prediction accuracy for the minority

class. Thus, class balancing plays a vital role in

developing robust and accurate models [1].

The second stage of the pre-processing phase is

feature scaling, which standardizes the range of

values across features [10]. This study employs

MinMax normalization for feature scaling, setting a

lower bound of 0 and an upper bound of 1. MinMax

normalization is a commonly used technique in data

pre-processing that scales numerical data to a specific

range, typically between 0 and 1 [11], [12]. This

method involves a linear transformation of the

original data to ensure that all values fall within the

desired range [12]. As a result, the feature values are

scaled between 0 and 1 without altering the

relationships or distribution among them.

MinMax normalization is particularly beneficial

for ensemble-based algorithms, such as Random

Forest, Gradient Boosting, XGBoost, and AdaBoost.

Although these algorithms are not highly sensitive to

feature scale, normalization can improve stability and

computational efficiency. By applying normalization,

each feature contributes more evenly, preventing

features with larger scales from dominating the

calculations, particularly in models that utilize

decision trees. The formula for MinMax

normalization is provided in Equation 1.

𝑣′ =
𝑣−𝑚𝑖𝑛⁡(𝐴)

𝑚𝑎𝑥(𝐴)−𝑚𝑖𝑛⁡(𝐴)
 (1)

In Equation 1, 𝑣´ denotes the normalized value,

where 𝑣 represents the original value, and min(A) and

max(A) indicate the minimum and maximum values

of the attribute (A) respectively. This formula scales

all data points within the range of 0 to 1 while

maintaining their relative relationships. Figure 2

shows the dataset before and after MinMax

normalization, highlighting how the values are

adjusted to fall within the specified range. Prior to

normalization, the feature values can vary widely,

which may lead to disproportionate contributions

from certain features during model training

After normalization, all feature values are scaled

to a consistent range, preventing any single feature

from dominating because of its scale. This method

also reduces the standard deviation, which helps

diminish the effect of outliers in the dataset. The left

plot displays the original range of feature values,

while the right plot illustrates the transformed values,

now scaled between 0 and 1

Jurnal Teknik Informatika (JUTIF) DOI: https://doi.org/10.52436/1.jutif.2024.5.6.3903
Vol. 5, No. 6, December 2024, pp. 1673-1686 p-ISSN: 2723-3863
 e-ISSN: 2723-3871

1676

Figure 2. Before (left) and After (right) Applying This MinMax Normalization

In the final pre-processing stage, feature

selection is performed to identify the most relevant

features from the dataset, enhancing the performance

of the machine learning model. This study employs

the forward selection method, a technique used in

machine learning and statistics that operates in stages.

The process begins with no features and adds them

sequentially, selecting the feature that provides the

greatest improvement in model performance at each

step [13].

For feature selection, this study uses the

Information Gain method. Information Gain

measures the reduction in entropy or uncertainty

about the class label given the presence of a particular

feature. Many studies have effectively used

Information Gain to reduce dimensionality by

selecting the most relevant features based on weight

calculations [14], [1]. This approach ensures that the

selected features contribute meaningfully to the

model, improving both accuracy and efficiency.

The choice of Information Gain for feature

selection stems from its ability to provide a

straightforward yet effective method for identifying

features that offer the most valuable information for

classification. By measuring how much a feature

contributes to reducing uncertainty about the target

class, Information Gain helps focus on the most

relevant features while ignoring redundant or

irrelevant ones. This results in a more compact and

efficient model, reducing overfitting and improving

generalization.

Information Gain is commonly chosen for

feature selection because it effectively quantifies the

information contained in each feature. It ranks

features based on the reduction in entropy

(uncertainty) achieved when a specific feature is

known, making it a powerful filter-based technique.

This method has been successfully applied in data

classification, consistently helping identify features

most relevant to the task at hand. By retaining only

the most informative features, it enhances model

accuracy and computational efficiency, leading to

better performance in real-world applications.

The concept of Information Gain can be likened

to a scoring system, indicating how much a feature

contributes to improving predictions. A higher

Information Gain score suggests greater usefulness.

Its simplicity and efficiency in filtering out irrelevant

or redundant features have allowed it to outperform

other techniques in some cases [15], [16], [17], [1].

Further discussions on this topic can be found in

Chapter 4.

Before selecting the features, it is essential to

understand how Information Gain is calculated. The

process begins by determining the dataset’s entropy,

as represented in Equation 2:

𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑆) = ⁡−∑𝑃𝑖 𝑙𝑜𝑔2 𝑃𝑖 (2)

Table 2. A List of The Top 47 Features with The Highest Information Gain Scores

No. Features IG Score No. Features IG Score

1. minor_image_version 0.728 25. sizeOfHeaders.1 0.182

2. minor_operatimg_system_version 0.701 26. number_of_imports.1 0.181

3. size_of_stack_reserve 0.613 27. int 0.137

4. major_operating_system_version 0.600 28. ret 0.120

5. minor_linker_version 0.558 29. nop 0.107

6. compile_date 0.540 30. bt 0.099

7. major_image_version 0.538 31. ent_max 0.096

8. dll_characteristics 0.506 32. AddressOfEntryPoint 0.086

https://doi.org/10.52436/1.jutif.2024.5.6.3903

Arsabilla Ramadhani, et al., IMPROVING MALWARE DETECTION … 1677

9. major_subsystem_version 0.480 33. rol 0.082

10. minor_subsystem_version 0.470 34. jge 0.081

11. CheckSum 0.410 35. BaseOfCode 0.081

12. major_linker_version 0.396 36. free 0.080

13. characteristics 0.371 37. subsystem 0.079

14. number_of_IAT_entires 0.288 38. rcl 0.079

15. number_of_IAT_entires.1 0.288 39. ent_whole_file 0.078

16. pushf 0.253 40. xor 0.078

17. files_operations 0.246 41. test 0.076

18. count_dll_loaded 0.204 42. fistp 0.074

19. count_file_opened 0.197 43. sbb 0.072

20. not 0.197 44. filesize 0.072

21. size_of_stack_commit 0.191 45. dll 0.072

22. number_of_sections.1 0.186 46. in 0.072

23. sizeOfHeaders 0.182 47. file_alignment 0.071

24. size_of_headers 0.182

Here, 𝑃𝑖 represents the probability of each class

in the dataset. Once the entropy values are

determined, the Information Gain is calculated using

Equation 3:

𝐺𝑎𝑖𝑛(𝑆, 𝐴) = 𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑆) −

∑ (𝐴)
|𝑆𝑣|

𝑆
𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑆𝑣)𝑣𝑎𝑙𝑢𝑒𝑠 (3)

After calculating the Information Gain for each

feature, the highest Information Gain score was found

for the feature minor_image_version, which scored

0.728. This score indicates that minor_image_version

plays a critical role in distinguishing between

malware and goodware. Its high relevance is

attributed to the significant differences it captures

between these two categories. With the highest

Information Gain score, this feature serves as a key

indicator for classification, demonstrating minimal

overlap with other features and making a unique

contribution to malware detection models. From an

initial set of 982 features, the feature selection process

using Information Gain reduced the number of

features to 47. For more details on this selected

feature, can be found in Table 2, List of Top 47

Features with the Highest Information Acquisition

Score.

2.3. Modeling

Modeling aims to identify factors that predict

various data dimensions and evaluate the impact of

changes within those dimensions. The benefits of

modeling include enhanced prediction accuracy and

consistent performance across different scenarios.

Additionally, modeling enables the incorporation of

larger datasets, which facilitates more informed

decision-making and ultimately leads to increased

efficiency and effectiveness in the analysis [18], [19].

The focus of the modeling in this research is on

implementing ensemble-based algorithms. Ensemble

methods combine the outputs of independently

trained weak models and aggregate or weight their

predictions to enhance overall accuracy. Techniques

such as Bagging, Stacking, and Boosting are

employed to achieve improvements in predictive

performance [2].

This study utilizes four ensemble algorithms:

Random Forest, Gradient Boosting, XGBoost, and

AdaBoost. The Random Forest algorithm is a

supervised learning method used for classification

and regression tasks. It improves prediction accuracy

by aggregating the outputs of multiple decision trees,

each trained on a random subset of the data using

ensemble learning techniques [20]. This algorithm is

a homogeneous ensemble learning method, where

each decision tree or base learner is trained using a

random subset of feature vectors [21]. The feature

vector is represented as shown in Equation 4:

𝑥 = {𝑥1, 𝑥2, … , 𝑥𝑃} (4)

Here, p refers to the dimensionality of the

feature vector available to each base learner. The

primary objective is to identify the prediction

function f(x), which estimates the target variable Y.

This prediction function can be expressed as:

𝐿(𝑌, 𝑓(𝑥)) (5)

Where L is the loss function, and the goal is to

minimize the expected value of this loss. In regression

and classification applications, squared error loss and

zero-one loss are commonly used, as defined in

Equations 6 and 7:

𝐿(𝑌, 𝑓(𝑥)) = (𝑌 − 𝑓(𝑥)2) (6)

𝐿(𝑌, 𝑓(𝑥)) = 𝐼(𝑌 ≠ ⁡𝑓(𝑥)) = ⁡ {⁡
0, 𝑖𝑓⁡𝑌 = 𝑓(𝑥),
1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

(7)

To create an ensemble, a collection of base

learners is combined. Let the base learners be denoted

as:

ℎ1(𝑥), ℎ2(𝑥),… , ℎ𝐽(𝑥) (8)

The averaging process for regression tasks is

given by Equation 9, while the voting mechanism for

classification tasks is defined in Equation 10:

𝑓(𝑥) = ⁡
1

𝐽
∑ ℎ𝑗(𝑥)
𝐽
𝑗=1 (9)

1678 Jurnal Teknik Informatika (JUTIF), Vol. 5, No. 6, December 2024, pp. 1673-1686

𝑓(𝑥) = 𝑎𝑟𝑔𝑚𝑎𝑥∑ 𝐼(𝑦 = ⁡ℎ𝑗(𝑥))
𝐽
𝑗=1 (10)

Gradient Boosting is a machine learning

algorithm employed for both classification and

regression tasks. It constructs a prediction model by

combining a collection of weak models, aiming to

minimize the loss function and reduce the

discrepancy between predicted and actual values [22].

Introduced by Friedman in 2001, Gradient Boosting

operates as a supervised learning technique that

integrates multiple weak learners into an additive

ensemble. The learning process is sequential, with

each new base learner trained to correct the residual

errors from the predictions of the current ensemble. A

learning rate is applied to scale the output of each new

learner before it is added to the ensemble [23].

XGBoost, or Extreme Gradient Boosting, is a

robust classification and regression algorithm that

builds on the gradient boosting framework by

incorporating decision trees as weak learners. This

algorithm is designed to create a more powerful and

accurate model while mitigating overfitting [24].

XGBoost is a supervised learning method that has

proven effective in a wide range of applications, from

healthcare and finance to government and education.

Its computational efficiency and strong predictive

performance have made it a choice for many machine

learning tasks, especially in machine learning

applications and real-world data analysis [25].

AdaBoost, or Adaptive Boosting, is a widely

used boosting algorithm based on decision trees,

introduced by Freund and Schapire in 1996 [26]. It

starts with a single weak learner and assigns equal

weights to each observation. The algorithm then

iteratively trains weak learners, increasing the

weights of incorrectly predicted observations while

decreasing those of correctly predicted ones. The

stopping criterion is usually defined by a specified

number of learners (M) or a threshold change in

prediction error. After reaching the stopping criterion,

the weak learners are combined, with their weights

reflecting their accuracy, to form a strong final

classifier that is essentially a weighted average of the

weak classifiers. The algorithm operates as follows:

1. Initialize weights: Set observation weights 𝑤𝑖 =
1

𝑛
⁡for⁡all⁡𝑖.

2. Fit a classifier: For each weak learner m, fit a

classifier fm(x).

3. Compute weighted error: Calculate the

weighted error errm of the classifier.

𝑒𝑟𝑟𝑚 =
∑ 𝑤𝑖∙𝐼
𝑁
𝑖=1 (𝑦𝑖≠𝑓𝑚(𝑥𝑖))

∑ 𝑤𝑖
𝑁
𝑖=1

 (11)

4. In Equation 11, m denotes the m-th weak

learner, yi represents the class of the i-th

observation, and fm(xi) indicates the prediction

made by the m-th classifier for the i-th

observation. Furthermore, I(yi ≠ fm(xi)) is an

indicator function that takes a value of 0 when

the prediction is correct and 1 when it is

incorrect.

𝛼𝑚 = 𝑙𝑜𝑔 (
1−𝑒𝑟𝑟𝑚

𝑒𝑟𝑟𝑚
) (12)

5. Compute classifier weight: Determine the

weight αm for the classifier based on this error.

𝑤𝑖
𝑛𝑒𝑤 = 𝑤𝑖

𝑜𝑙𝑑 ∙ (𝛼𝑚 ∙ 𝐼(𝑦𝑖 ≠ 𝑓𝑚(𝑥𝑖))) , 𝑖 =

1, 2,… , 𝑛 (13)

6. Update weights: Adjust the weights of

observations for the next iteration.

7. Repeat: Continue until the stopping criterion is

reached.

Finally, the strong classifier f(x) is given by the

sign of the sum of weighted weak classifiers:

𝑓(𝑥) = 𝑠𝑖𝑔𝑛(∑ 𝛼𝑚 ∙ 𝑓𝑚(𝑥)
𝑀
𝑚=1) (14)

In this study, the primary objective is to

compare the performance of four ensemble-based

algorithms: Random Forest, Gradient Boosting,

XGBoost, and AdaBoost. These algorithms were

chosen because ensemble methods, which combine

the outputs of multiple base models, tend to improve

predictive accuracy and generalization compared to

single models. Random Forest and AdaBoost are

known for their ability to handle complex, high-

dimensional datasets like those in malware detection,

as they reduce overfitting and improve robustness.

XGBoost and Gradient Boosting are particularly

effective due to their boosting mechanism, which

focuses on correcting the errors of previous models,

making them highly efficient in handling unbalanced

and noisy data like malware classification tasks.

The algorithms will be evaluated based on

several performance metrics: accuracy, F1-score,

training time, and testing time. These metrics will

help identify which algorithm performs most

effectively and efficiently in terms of both prediction

accuracy and computational resource usage. The

results of these comparisons will be discussed in

Section 2.5 to determine which of the four algorithms

offers the best overall performance for this specific

malware dataset.

2.4. Evaluation

After completing the machine learning

algorithm modeling, the next step is to evaluate the

model's performance. In this study, data validation is

performed first, followed by the assessment of the

performance of the four algorithms to determine the

most effective one. The validation method used in this

process is 10-fold cross-validation. Cross-validation

is a robust technique for evaluating model

performance, optimizing hyperparameters, and

ensuring the classification algorithm's reliability,

particularly when the dataset is limited [1]. The k-fold

Arsabilla Ramadhani, et al., IMPROVING MALWARE DETECTION … 1679

cross-validation method divides the dataset into 'k'

approximately equal parts. The model is trained using

'k-1' parts, while the remaining part is used for

validation. This procedure is repeated ‘k’ times, each

time using a different subset as the validation set. The

average performance across these ‘k’ iterations

provides a more accurate assessment of the model's

generalizability. When ‘k’ is set to 10, it is referred to

as 10-fold cross-validation. This approach helps

mitigate overfitting and produces a more consistent

estimate of model performance, offering a more

generalizable evaluation of the model’s effectiveness

[27], [28], [29].

After data validation, the performance of the

ensemble-based algorithms, such as Random Forest,

Gradient Boosting, XGBoost, and AdaBoost, is

evaluated based on four key metrics: accuracy, F1-

Score, training time, and testing time. Accuracy, as a

measure of the model's efficiency, reflects its ability

to make correct predictions. It is calculated as the

proportion of true positives and true negatives among

all examined cases. In contrast, the F1-Score is a

crucial metric in machine learning, particularly when

balancing different types of errors is important. The

F1-Score combines precision and recall into a single

value, providing a balanced evaluation of models in

situation where it is essential to account for both the

relevance of predictions and the model's ability to

capture all relevant cases [1].

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦⁡ = ⁡
𝑇𝑃+𝑇𝑁

(𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁)
 (15)

Accuracy is calculated using Equation 15,

where the TP (True Positive) value indicates the

correct identification of positive instances, while TN

(True Negative) refers to the correct identification of

negative instances. In contrast, FP (False Positive)

represents the misclassification of negative data as

positive, and FN (False Negative) refers to the

misclassification of positive data as negative [30].

The F1-Score, on the other hand, provides a more

comprehensive evaluation of model performance,

especially in cases where accuracy alone does not

adequately reflect the trade-off between precision and

recall. To compute the F1-Score, both precision and

recall must be calculated, using Equation 17 and

Equation 18, respectively.

𝐹1 − 𝑆𝑐𝑜𝑟𝑒⁡ = 2 ×
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑟𝑒𝑐𝑎𝑙𝑙
 (16)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛⁡ = ⁡
𝑇𝑃

𝐹𝑃+𝐹𝑁
 (17)

𝑅𝑒𝑐𝑎𝑙𝑙⁡ = ⁡
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (18)

In Equation 16, precision represents the

proportion of true positive predictions out of all

instances predicted as positive. At the same time,

recall is the proportion of true positives identified out

of all actual positive instances. The F1-Score

harmonizes precision and recall, making it especially

useful for imbalanced datasets, where accuracy alone

may not fully reflect model performance. A high F1-

Score indicates a well-balanced trade-off between

false positives (FP) and false negatives (FN),

ensuring the model's reliability across different

datasets.

Training time refers to the time taken by the

classifier to learn patterns from the training data [31].

This metric is crucial because it reflects the model's

efficiency in processing and learning from large

datasets. Models with faster training times are

particularly beneficial when working with high-

dimensional data or when frequent retraining is

required.

Meanwhile, testing time measures the duration

it takes for a classifier to make predictions on unseen

data after training [32]. This metric is essential for

evaluating model performance in real-time

applications, where fast predictions are often critical.

Shorter testing times are advantageous for classifiers

that require real-time decision-making, ensuring that

the model is both efficient and responsive.

Both training and testing times contribute to

assessing the overall computational efficiency of the

model. Faster times for both metrics enhance the

model's practicality, especially in time-sensitive

environments or resource-constrained systems, while

maintaining accurate predictions and balanced F1-

Scores.

2.5. Result

The final stage of this research involves

identifying the optimal combination of results from

the ensemble-based algorithms. This process is

crucial for optimizing model performance and

ensuring reliable predictions in real-world

applications. By comparing the accuracy, training

time, and testing time of each algorithm, this stage

allows for the selection of the most effective model

for malware detection. This approach focuses on

selecting the best-performing algorithm, balancing

predictive accuracy with computational efficiency.

The combination of results forms the foundation for

developing a model that can be effectively applied in

practice.

3. RESULT AND DISCUSSION

This study evaluates the performance of

ensemble-based machine learning algorithms for

malware detection, focusing on Random Forest,

Gradient Boosting, XGBoost, and AdaBoost to

identify the most efficient and effective option. By

conducting a series of experiments, we compare key

performance indicators, including accuracy, F1-

score, training time, and testing time, to determine the

optimal algorithm for this dataset.

1680 Jurnal Teknik Informatika (JUTIF), Vol. 5, No. 6, December 2024, pp. 1673-1686

The data collection yielded a combined dataset

of 5,653 malware entries and 595 goodware entries.

To ensure feature uniformity and address the

significant class imbalance, irrelevant features were

removed, resulting in a consistent set of 1,085

features across all datasets.

This step ensured that the final dataset used for

analysis had a consistent and reliable structure,

making it more suitable for machine learning

applications. The uniformity of the dataset enhances

the potential accuracy of malware detection during

modeling. Additionally, the well-structured dataset

streamlines the preprocessing phase, establishing a

solid foundation for the modeling and evaluation

stages that follow.

The research is divided into two experimental

phases. In the first phase, all 982 features are used

without feature selection, allowing a comprehensive

comparison of the four ensemble-based algorithms.

The algorithm that demonstrates the highest accuracy,

as shown in Table 3, "Performance of Ensemble-

Based Algorithms without Feature Selection," is

XGBoost. Given its superior accuracy, XGBoost is

selected for further analysis in the second phase.

Table 3. Performance of Ensemble-based Algorithms without Feature Selection

Number of Features

No Feature Selection

Random Forest Gradient Boosting XGBoost AdaBoost

Accuracy F1 Accuracy F1 Accuracy F1 Accuracy F1

All 982 features 98.4% 98.4% 98.9% 98.9% 98.7% 98.7% 97.8% 97.8%

In the second phase, forward selection with

Information Gain is employed as the feature selection

technique. This method incrementally adds features

based on their Information Gain scores, optimizing

the feature set to achieve the highest possible

performance. This approach enables a comparison of

algorithm performance as the dataset is progressively

reduced. The results of this phase are presented in

Table 4, "Performance of Ensemble-Based

Algorithms with Information Gain Feature

Selection." Notably, the Gradient Boosting algorithm

achieves an accuracy of 99.1% with a reduced set of

47 selected features, maintaining strong performance.

Table 4. Performance of Ensemble-based Algorithms with Information Gain Feature Selection Method

Number of Features

Information Gain

Random Forest Gradient Boosting XGBoost AdaBoost

Accuracy F1 Accuracy F1 Accuracy F1 Accuracy F1

43 98.70% 98.70% 98.80% 98.80% 98.80% 98.80% 97.90% 97.90%

44 98.80% 98.80% 98.70% 98.70% 98.80% 98.80% 97.70% 97.70%

45 98.60% 98.60% 98.80% 98.80% 98.80% 98.80% 98.00% 98.00%

46 98.80% 98.80% 98.70% 98.70% 98.80% 98.80% 98.00% 98.00%

47 98.50% 98.50% 99.10% 99.10% 98.80% 98.80% 98.10% 98.10%

48 98.70% 98.70% 99.00% 99.00% 99.00% 99.00% 98.10% 98.10%

49 98.70% 98.70% 99.00% 99.00% 99.00% 99.00% 98.20% 98.20%

50 98.50% 98.50% 99.10% 99.10% 99.00% 99.00% 98.00% 98.00%

51 98.40% 98.40% 99.10% 99.10% 98.90% 98.90% 98.00% 98.00%

52 99.10% 99.10% 99.00% 99.00% 99.00% 99.00% 98.20% 98.20%

A comparison of Table 3 and Table 4 reveals

that the Gradient Boosting algorithm demonstrates

the highest accuracy both without feature selection

and with 47 features selected using Information Gain.

The identification of this optimal feature set enhances

the Gradient Boosting algorithm's performance,

underscoring that reducing the number of features can

improve computational efficiency while preserving

or even boosting accuracy. These findings highlight

the effectiveness of feature selection in optimizing

model performance, particularly for Gradient

Boosting.

The next step involves analyzing the

computational efficiency of two feature sets: all 982

features without feature selection and the 47 features

selected using Information Gain. Computational

efficiency is assessed by comparing training time and

testing time, with the goal of accelerating the

computational process while maintaining accuracy.

This metric is vital as it demonstrates the algorithm's

ability to process the dataset effectively in terms of

both time and computational resources.

As shown in Table 5, "Computational

Efficiency of Gradient Boosting: All Feature Set vs.

Information Gain Feature Selection," reducing the

number of features not only improves accuracy but

also significantly enhances computational efficiency

in both training and testing times. With Information

Gain, the Gradient Boosting algorithm achieves an

accuracy of 99.1%, compared to 98.9% without

feature selection, thus alleviating the computational

burden.

Table 5. Computational Efficiency of Gradient Boosting: All Feature Set vs. Information Gain Feature Selection Method

Number of Features Feature Selection
Gradient Boosting

Accuracy F1-Score Training Time Testing Time

All 982 features No Feature Selection 98.9% 98.9% 35.583 0.202

47 features Information Gain 99.1% 99.1% 10.819 0.041

Jurnal Teknik Informatika (JUTIF) DOI: https://doi.org/10.52436/1.jutif.2024.5.6.3903
Vol. 5, No. 6, December 2024, pp. 1673-1686 p-ISSN: 2723-3863
 e-ISSN: 2723-3871

1681

As shown in Table 6, the comparison of training

time between feature selection without (NFS) and

with Information Gain (IG), highlights the effect of

feature reduction on training time. Training time is

significantly reduced from 35.583 seconds to 10.819

seconds when using the 47 features selected through

Information Gain. This reduction is further illustrated

in Figure 3, the training time bar chart, which clearly

shows the correlation between fewer features and a

substantial decrease in training time. This reduction

offers significant benefits, particularly when the

training process needs to be repeated on large

datasets.

Table 6. Comparison of Training Time: Feature Selection Without (NFS) vs. Information Gain (IG) Feature Selection

Algorithm Number of Feature Training Time

Gradient Boosting – NFS All 982 features 35.583

Gradient Boosting - IG 47 features 10.819

Figure 3. Training Time Bar Chart

Meanwhile, Table 7 compares the testing time

between feature selection without (NFS) and with

Information Gain (IG), showing a significant

reduction in testing time. The testing time decreases

from 0.202 seconds with 982 features to just 0.041

seconds when using the 47 features selected through

Information Gain. This improvement is further

depicted in Figure 4, the testing time bar chart, which

visually demonstrates how feature selection

effectively speeds up the testing process.

Table 7. Comparison of Training Time: Feature Selection Without (NFS) vs. Information Gain (IG) Feature Selection

Algorithm Number of Feature Training Time

Gradient Boosting – NFS All 982 features 35.583

Gradient Boosting - IG 47 features 10.819

Figure 4. Testing Time Bar Chart

In addition to improving training and testing

efficiency, feature selection using the Information

Gain method simplifies the model overall. By

removing irrelevant features, the algorithm can focus

on the most influential ones, enhancing model

interpretability and reducing the risk of overfitting.

https://doi.org/10.52436/1.jutif.2024.5.6.3903

1682 Jurnal Teknik Informatika (JUTIF), Vol. 5, No. 6, December 2024, pp. 1673-1686

This leads to a more efficient model that maintains an

optimal level of detection. Such advantages are

particularly crucial in real-world applications,

especially in malware detection systems that require

quick response times. In large datasets, selecting the

right features is pivotal to creating efficient and

responsive models. The experimental results

demonstrate that applying Information Gain not only

boosts accuracy but also significantly enhances

computational efficiency during both the training and

testing phases.

Figure 5. Confusion Matrix in Gradient Boosting

In addition to accuracy and efficiency metrics,

the confusion matrix shown in Figure 5 provides

valuable insights into the Gradient Boosting model's

classification performance with Information Gain

feature selection. The matrix highlights the

breakdown of true positives, true negatives, false

positives, and false negatives, offering a detailed view

of the model's ability to correctly classify malware

and goodware. This granular information helps assess

the model's precision in distinguishing between the

two classes, providing a deeper understanding of its

strengths and areas for improvement in the

classification process.

In this confusion matrix, reveals that the

Gradient Boosting model, with Information Gain

feature selection, correctly classifies 591 entries as

malware (True Positives) and 588 entries as

goodware (True Negatives). The misclassification

rates are low, with only 7 entries incorrectly classified

as malware (False Positives) and 4 entries incorrectly

classified as goodware (False Negatives). From these

values, we can calculate key performance metrics

such as accuracy and F1-score.

 Accuracy is calculated as:

Accuracy =
𝑇𝑟𝑢𝑒⁡𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠⁡+⁡𝑇𝑟𝑢𝑒⁡𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠

𝑇𝑜𝑡𝑎𝑙⁡𝐸𝑛𝑡𝑟𝑖𝑒𝑠

 =
591+588

591+588+7+4

 =
1179

1190

 = 99.1%

 Precision is calculated as:

Precision =
𝑇𝑟𝑢𝑒⁡𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒⁡𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠+𝐹𝑎𝑙𝑠𝑒⁡𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

 =
591

591⁡+⁡7

 =
591

598

 = 98.8%

 Recall is calculated as:

Recall =
𝑇𝑟𝑢𝑒⁡𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒⁡𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠+𝐹𝑎𝑙𝑠𝑒⁡𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠

 =
591

591⁡+⁡4

 =
591

595

 = 99.3%

 F1-Score is calculated as the mean of precision

and recall:

F1-Score = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛⁡×⁡𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+⁡𝑅𝑒𝑐𝑎𝑙𝑙

 = 2 ×
0.988⁡×

0.988+0.993

 = 0.990

These results highlight the excellent

performance of the model in distinguishing between

malware and goodware, as well as the precision,

recall, and balanced F1 score of 99.0%. The low

misclassification rate is indicated by a small number

of false positives (7) and false negatives (4). This

indicates that the Gradient Boosting model with

Information Gain feature selection maintains strong

classification performance, which is very important

for practical malware detection tasks. This balance

minimizes misclassification, making it a reliable

choice for accurately detecting both malware and

goodware. The model’s strong performance in the

confusion matrix further supports its high accuracy

(99.1%) and reinforces its suitability for malware

detection tasks.

The confusion matrix thus validates the

computational efficiency and accuracy benefits

observed with Information Gain feature selection, as

outlined in Table 8. By reducing the feature set, the

model not only achieves optimal accuracy but also

improves detection precision, particularly in

distinguishing malware from goodware. This is

crucial for real-world applications that require rapid

and reliable decision-making, highlighting the

model's effectiveness in practical scenarios.

Table 8. Performance Analysis Result

No. Methods Accuracy F1-Score

1. Gradient Boosting (47)

[proposed]
99.1% 99.1%

2. kNN (32) [1] 97.0% 97.0%

3. CNN-GRU [6] 93% 93%

When compared to other studies, such as the one

conducted by [1], which utilized k-Nearest Neighbor

(kNN) with 32 features, the results from the

Information Gain feature selection demonstrate that

the Gradient Boosting algorithm achieves superior

accuracy and F1-Score, with an accuracy of 99.1%.

While the kNN algorithm's results are commendable,

achieving an accuracy and F1-Score of 97.0%, kNN

tends to struggle with large datasets, especially when

feature selection is not properly applied. This

limitation can hinder the classification process,

underscoring the advantages of using Information

Gain to reduce the feature set and enhance the

performance of algorithms like Gradient Boosting.

In contrast, Gradient Boosting with Information

Gain feature selection exhibits superior performance

Arsabilla Ramadhani, et al., IMPROVING MALWARE DETECTION … 1683

in both accuracy and computational efficiency. This

highlights the advantage of employing feature

selection techniques, as they not only enhance model

performance but also optimize the overall efficiency

of the algorithm. As a result, the model becomes more

suitable for practical applications, particularly in

contexts that require rapid and reliable decision-

making, such as malware detection systems.

Additionally, research by [6] which utilized

Convolutional Neural Networks (CNN) and Gated

Recurrent Units (GRU), reported an accuracy of 93%

in cross-platform malware classification. However,

this performance falls short when compared to

Gradient Boosting. The primary limitation of the

CNN-GRU approach is its difficulty in capturing

temporal dependencies and handling precision-recall

imbalances, making it less optimal for malware

classification. Addressing these challenges would

require a more in-depth analysis of the relationships

within sequential data, which is crucial for improving

its performance in this domain.

Gradient Boosting outperforms both CNN-GRU

and kNN in terms of accuracy and demonstrates

greater efficiency when handling features selected

through Information Gain. This comparison

highlights the advantages of using Gradient Boosting

for malware detection tasks, where both performance

and computational efficiency are crucial. The model's

ability to achieve high accuracy while maintaining

low computational overhead makes it a more suitable

choice for real-world applications that require fast

and reliable decision-making.

Gradient Boosting demonstrates not only

superior accuracy but also greater efficiency when

handling features selected through Information Gain,

particularly in comparison to other methods like k-

Nearest Neighbor (kNN) and Convolutional Neural

Networks with Gated Recurrent Units (CNN-GRU).

This enhanced performance is vital in applications

such as malware detection, where rapid and accurate

predictions are essential for timely and reliable

decision-making. The combination of high accuracy

and computational efficiency makes Gradient

Boosting a more suitable choice for such critical

tasks.

Table 8 presents the results of the performance

analysis, comparing the accuracy and efficiency of

each method. This table highlights the significant

advantages of our proposed approach, which

combines Gradient Boosting with Information Gain

for feature selection, showcasing its effectiveness in

achieving optimal results. The combination of high

accuracy and enhanced computational efficiency

underscores the strength of this approach, making it a

powerful solution for malware detection tasks.

4. DISCUSSION

This study demonstrates the effectiveness of

ensemble-based algorithms for malware detection,

emphasizing the enhancement of performance

through feature selection using the Information Gain

method. When coupled with Information Gain, the

Gradient Boosting algorithm achieves the highest

accuracy at 99.1%, outperforming Random Forest,

XGBoost, and AdaBoost. This exceptional accuracy

highlights the model's proficiency in correctly

classifying both malware and goodware, showcasing

its potential for reliable malware detection.

The model's performance is further validated

through the confusion matrix, which shows that the

Gradient Boosting model correctly identifies 591

malware entries (True Positives) and 588 goodware

entries (True Negatives). However, it misclassifies

only 7 goodware entries as malware (False Positives)

and 4 malware entries as goodware (False Negatives).

With these values, the model achieves an accuracy of

99.1%, precision of 98.8%, recall of 99.3%, and an

F1-score of 0.990. These metrics demonstrate a

strong balance between accuracy, precision, and

recall, reinforcing the model's reliability for malware

detection tasks.

In comparison, the k-Nearest Neighbor (kNN)

algorithm, as reported in [1], only achieved 97.0%

accuracy using 32 features. This disparity highlights

the limitations of kNN in handling large-scale data

without effective feature selection, while Gradient

Boosting with Information Gain excels in both

computational efficiency and accuracy, making it a

more suitable choice for malware detection in real-

world scenarios.

Compared to [6], which used a CNN and GRU

model for cross-platform malware classification and

achieved 93% accuracy, our approach shows superior

precision and recall balance. While the CNN-GRU

model excels at capturing temporal dependencies, its

complexity can lead to increased computational

demands, making it less suitable for high-speed, real-

time malware detection. In contrast, the Gradient

Boosting structure enables efficient handling of large-

scale data, and when paired with Information Gain,

the algorithm effectively reduces computational

overhead without sacrificing accuracy. This makes

Gradient Boosting with Information Gain ideal for

real-time malware detection systems that require both

accuracy and speed.

An essential finding in our study is the reduction

of features from 982 to 47, achieved through

Information Gain. This reduction not only improves

computational efficiency but also maintains high

accuracy, highlighting the crucial role of feature

selection. Information Gain is highly effective in

identifying relevant features, helping to reduce the

training and testing time for Gradient Boosting,

Random Forest, XGBoost, and AdaBoost. This

efficiency boost is critical for implementing these

models in real-world applications where resource

constraints, such as on mobile devices, are a concern.

Although Gradient Boosting achieved the best

results in this study, each algorithm has its unique

strengths and limitations. Random Forest offers

1684 Jurnal Teknik Informatika (JUTIF), Vol. 5, No. 6, December 2024, pp. 1673-1686

stability and interpretability but can become

computationally intensive with high-dimensional

data. XGBoost, while typically faster, may not

achieve the same level of accuracy without extensive

tuning. AdaBoost tends to perform well with smaller

datasets but may struggle with complex malware

patterns. These limitations highlight potential areas

for future improvement, such as exploring hybrid

feature selection techniques or optimizing algorithms

to handle larger datasets more efficiently.

In terms of practical implications, our findings

suggest that the Gradient Boosting model with

Information Gain is an effective choice for real-time

malware detection systems. However, applying this

model in real-world scenarios may present

challenges, including the need for continuous feature

adjustments and potential computational limitations

in real-time environments. Future research can

address these limitations by experimenting with

additional feature selection methods, such as

Principal Component Analysis (PCA) or Recursive

Feature Elimination (RFE), to further refine the

model's performance and efficiency.

Thus, this research demonstrates the importance

of ensemble methods combined with Information

Gain for enhancing malware detection accuracy and

computational efficiency. The results not only

contribute to the field's understanding of the impact

of feature selection on ensemble algorithms but also

provide insights into practical applications, laying the

foundation for future research aimed at optimizing

malware detection in diverse and resource-

constrained environments.

5. CONCLUSION

As malware threats evolves, traditional

signature-based detection methods face increasingly

challenges. This study evaluates the effectivesness of

four ensemble-based machine learning algorithms,

both with and without the application of Information

Gain feature selection. The results show that Gradient

Boosting with Information Gain achieved the highest

accuracy of 99.1%, while reducing the features set

from 982 to 47 features. This reduction enhances

computational efficiency and simplifies thes model

without compromising accuracy.

By prioritizing the most relevant features,

Information Gain optimizes the training and testing

processes, ensuring the model remains efficient while

maintaining optimal performance. Integrating

ensemble-based algorithms and feature selection

offers a balanced approach to achieving high

accuracy and computational efficiency in malware

detection systems. This approach is particularly

beneficial in real-world applications where fast and

accurate threat identification is critical for

organizations in the cybersecurity field.

Future research could explore the use of

additional ensemble techniques or hybrid approaches

to further enhance malware detection efficiency and

accuracy across different systems. Additionally,

testing the model on larger and more diverse datasets

could provide insights into its scalability and

generalizability in various environments. The

findings of this study also suggest that combining

ensemble algorithms with alternative feature

selection methods could lead to better performance in

future malware detection systems. Ultimately, this

study provides a foundation for developing faster,

more accurate, and more efficient malware detection

tools, benefiting organizations seeking to strengthen

their cybersecurity defenses.

REFERENCES

[1] F. A. Rafrastara, C. Supriyanto, A. Amiral, S.

R. Amalia, M. D. Al Fahreza, and F. Ahmed,

“Performance Comparison of k-Nearest

Neighbor Algorithm with Various k Values

and Distance Metrics for Malware

Detection,” mib, vol. 8, no. 1, p. 450, Jan.

2024, doi: 10.30865/mib.v8i1.6971.

[2] D. Sigh and J. S. Samagh, “A

COMPREHENSIVE REVIEW OF HEART

DISEASE PREDICTION USING

MACHINE LEARNING,” jcr, vol. 7, no. 12,

Jun. 2020, doi: 10.31838/jcr.07.12.54.

[3] S. Aurangzeb, H. Anwar, M. A. Naeem, and

M. Aleem, “BigRC-EML: big-data based

ransomware classification using ensemble

machine learning,” Cluster Comput, vol. 25,

no. 5, pp. 3405–3422, Oct. 2022, doi:

10.1007/s10586-022-03569-4.

[4] S. Ghafur, S. Kristensen, K. Honeyford, G.

Martin, A. Darzi, and P. Aylin, “A

retrospective impact analysis of the

WannaCry cyberattack on the NHS,” npj

Digit. Med., vol. 2, no. 1, p. 98, Oct. 2019,

doi: 10.1038/s41746-019-0161-6.

[5] M. S. Akhtar and T. Feng, “Malware

Analysis and Detection Using Machine

Learning Algorithms,” Symmetry, vol. 14, no.

11, p. 2304, Nov. 2022, doi:

10.3390/sym14112304.

[6] N. Pachhala, S. Jothilakshmi, and B. P.

Battula, “Cross-Platform Malware

Classification: Fusion of CNN and GRU

Models,” IJSSE, vol. 14, no. 2, pp. 477–486,

Apr. 2024, doi: 10.18280/ijsse.140215.

[7] M. Almahmoud, D. Alzu’bi, and Q. Yaseen,

“ReDroidDet: Android Malware Detection

Based on Recurrent Neural Network,”

Procedia Computer Science, vol. 184, pp.

841–846, 2021, doi:

10.1016/j.procs.2021.03.105.

[8] O. AbuAlghanam, H. Alazzam, M.

Qatawneh, O. Aladwan, M. A. Alsharaiah,

and M. A. Almaiah, “Android Malware

Detection System Based on Ensemble

Arsabilla Ramadhani, et al., IMPROVING MALWARE DETECTION … 1685

Learning,” Jan. 31, 2023. doi:

10.21203/rs.3.rs-2521341/v1.

[9] K. Maharana, S. Mondal, and B. Nemade, “A

review: Data pre-processing and data

augmentation techniques,” Global

Transitions Proceedings, vol. 3, no. 1, pp.

91–99, Jun. 2022, doi:

10.1016/j.gltp.2022.04.020.

[10] A. Mihoub, S. Zidi, and L. Laouamer,

“Investigating Best Approaches for Activity

Classification in a Fully Instrumented

Smarthome Environment,” IJMLC, vol. 10,

no. 2, pp. 299–308, Feb. 2020, doi:

10.18178/ijmlc.2020.10.2.935.

[11] D. Singh and B. Singh, “Investigating the

impact of data normalization on classification

performance,” Applied Soft Computing, vol.

97, p. 105524, Dec. 2020, doi:

10.1016/j.asoc.2019.105524.

[12] A. M. Priyatno, L. Ningsih, and M. Noor,

“Harnessing Machine Learning for Stock

Price Prediction with Random Forest and

Simple Moving Average Techniques,” jesa,

vol. 1, no. 1, pp. 1–8, Mar. 2024, doi:

10.69693/jesa.v1i1.1.

[13] Y.-W. Chong, T. Emad Ali, S. Manickam, M.

N. Yusoff, K.-L. Alvin Yau, and S.-L. Keoh,

“A Ddos Attack Detection Framework:

Leveraging Feature Selection Integration and

Random Forest Optimization for Improved

Security,” 2023. doi: 10.2139/ssrn.4651305.

[14] Kurniabudi, D. Stiawan, Darmawijoyo, M. Y.

Bin Idris, A. M. Bamhdi, and R. Budiarto,

“CICIDS-2017 Dataset Feature Analysis

With Information Gain for Anomaly

Detection,” IEEE Access, vol. 8, pp. 132911–

132921, 2020, doi:

10.1109/ACCESS.2020.3009843.

[15] T. A. Alhaj, M. M. Siraj, A. Zainal, H. T.

Elshoush, and F. Elhaj, “Feature Selection

Using Information Gain for Improved

Structural-Based Alert Correlation,” PLoS

ONE, vol. 11, no. 11, p. e0166017, Nov.

2016, doi: 10.1371/journal.pone.0166017.

[16] M. I. Prasetiyowati, N. U. Maulidevi, and K.

Surendro, “Determining threshold value on

information gain feature selection to increase

speed and prediction accuracy of random

forest,” J Big Data, vol. 8, no. 1, p. 84, Dec.

2021, doi: 10.1186/s40537-021-00472-4.

[17] D. Theng and K. K. Bhoyar, “Feature

selection techniques for machine learning: a

survey of more than two decades of

research,” Knowl Inf Syst, vol. 66, no. 3, pp.

1575–1637, Mar. 2024, doi: 10.1007/s10115-

023-02010-5.

[18] M. Pompiliu Cristescu, “Tools Used in

Modeling of the Economic Processes,” KSS,

Jan. 2020, doi: 10.18502/kss.v4i1.5985.

[19] D. Goretzko and M. Bühner, “One model to

rule them all? Using machine learning

algorithms to determine the number of factors

in exploratory factor analysis.,”

Psychological Methods, vol. 25, no. 6, pp.

776–786, Dec. 2020, doi:

10.1037/met0000262.

[20] S. Tamilselvi and S. Ragul, “Classification of

IoT Network Traffic using Random Forest

Classifier,” vol. 3, no. 02, pp. 16–25, Feb.

2024.

[21] M. Savargiv, B. Masoumi, and M. R.

Keyvanpour, “A New Random Forest

Algorithm Based on Learning Automata,”

Computational Intelligence and

Neuroscience, vol. 2021, no. 1, p. 5572781,

Jan. 2021, doi: 10.1155/2021/5572781.

[22] A. Farki, R. Baradaran Kazemzadeh, and E.

Akhondzadeh Noughabi, “A Novel

Clustering-Based Algorithm for Continuous

and Noninvasive Cuff-Less Blood Pressure

Estimation,” Journal of Healthcare

Engineering, vol. 2022, pp. 1–13, Jan. 2022,

doi: 10.1155/2022/3549238.

[23] T. Duan et al., “NGBoost: Natural Gradient

Boosting for Probabilistic Prediction,” vol.

119, pp. 2690–2700, 2020.

[24] N. Fragkis, “Assessment and comparison of

existing methods and datasets for sentiment

analysis of Greek texts,” Πανεπιστήμιο

Δυτικής Αττικής, 2022. Accessed: Sep. 20,

2024. [Online]. Available:

https://polynoe.lib.uniwa.gr/xmlui/handle/11

400/2411

[25] Kartina Diah Kusuma Wardani and Memen

Akbar, “Diabetes Risk Prediction using

Feature Importance Extreme Gradient

Boosting (XGBoost),” J. RESTI (Rekayasa

Sist. Teknol. Inf.), vol. 7, no. 4, pp. 824–831,

Aug. 2023, doi: 10.29207/resti.v7i4.4651.

[26] B. Perry, “AdaBoost And Its Variants:

Boosting Methods For Classification With

Small Sample Size And Brain Activity In

Schizophrenia,” 2023. [Online]. Available:

http://hdl.handle.net/10464/17817

[27] G. Battineni, G. G. Sagaro, C. Nalini, F.

Amenta, and S. K. Tayebati, “Comparative

Machine-Learning Approach: A Follow-Up

Study on Type 2 Diabetes Predictions by

Cross-Validation Methods,” Machines, vol.

7, no. 4, p. 74, Dec. 2019, doi:

10.3390/machines7040074.

[28] G. Orrù, M. Monaro, C. Conversano, A.

Gemignani, and G. Sartori, “Machine

Learning in Psychometrics and Psychological

Research,” Front. Psychol., vol. 10, p. 2970,

Jan. 2020, doi: 10.3389/fpsyg.2019.02970.

1686 Jurnal Teknik Informatika (JUTIF), Vol. 5, No. 6, December 2024, pp. 1673-1686

[29] C. Supriyanto, F. A. Rafrastara, A. Amiral, S.

R. Amalia, M. D. Al Fahreza, and Mohd. F.

Abdollah, “Malware Detection Using K-

Nearest Neighbor Algorithm and Feature

Selection,” mib, vol. 8, no. 1, p. 412, Jan.

2024, doi: 10.30865/mib.v8i1.6970.

[30] C. Ciciana, R. Rahmawati, and L. Qadrini,

“The Utilization of Resampling Techniques

and the Random Forest Method in Data

Classification,” tin, vol. 4, no. 4, pp. 252–

259, Sep. 2023, doi: 10.47065/tin.v4i4.4342.

[31] M. D. Ramasamy, K. Periasamy, L.

Krishnasamy, R. K. Dhanaraj, S. Kadry, and

Y. Nam, “Multi-Disease Classification

Model Using Strassen’s Half of Threshold

(SHoT) Training Algorithm in Healthcare

Sector,” IEEE Access, vol. 9, pp. 112624–

112636, 2021, doi:

10.1109/ACCESS.2021.3103746.

[32] S. Gupta and B. Singh, “An intelligent multi-

layer framework with SHAP integration for

botnet detection and classification,”

Computers & Security, vol. 140, p. 103783,

May 2024, doi: 10.1016/j.cose.2024.103783.

