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Abstract 
 

Malware attacks pose a serious threat to digital systems, potentially causing data and financial losses. The 

increasing complexity and diversity of malware attack techniques have made traditional detection methods 

ineffective,  thus AI-based approaches are needed to improve the accuracy and efficiency of malware detection, 

especially for detecting modern malware that uses obfuscation techniques. This study addresses this issue by 

applying ensemble-based machine learning algorithms to enhance malware detection accuracy. The methodology 

used involves Random Forest, Gradient Boosting, XGBoost, and AdaBoost, with feature selection using 

Information Gain. Datasets from VirusTotal and VxHeaven, including both goodware and malware samples. The 

results show that Gradient Boosting, strengthened with Information Gain, achieved the highest accuracy of 99.1%, 

indicating a significant improvement in malware detection effectiveness. This study demonstrates that applying 

Information Gain to Gradient Boosting can improve malware detection accuracy while reducing computational 

requirements, contributing significantly to the optimization of digital security systems. 

 

Keywords: Ensemble-based Algorithms, Gradient Boosting, Information Gain, Machine Learning, Malware 

Detection. 

 

 

1. INTRODUCTION 

Malware, short for "malicious software," refers 

to software specifically designed to harm, disrupt, or 

gain unauthorized access to computer systems [1]. 

The diversity of malware types, including viruses, 

worms, trojans, ransomware, and spyware, presents 

significant challenges for detection systems. Each 

operates in distinct ways to compromise data security 

[2], often causing severe consequences, such as 

network-wide infections, data theft, system damage, 

and the loss of critical information [3]. 

A notorious example of malware is WannaCry, 

a ransomware that exploits vulnerabilities in the 

Windows operating system. WannaCry encrypts 

victims' data and demands a ransom in Bitcoin for its 

decryption. The attack had a massive impact on 

hospitals, government organizations, and companies 

globally, forcing them to halt operations due to the 

inability to access critical data. This attack resulted in 

billions of dollars in losses and exposed significant 

weaknesses in global cybersecurity systems [4]. 

More recently, other soophisticated malware 

such as Emotet have emerged, evolving into complex 

threats. Initially recognized as a banking trojans, 

these malware variant now serve as delivery vehicles 

for other harmful software, spreading through 

malicious email attachments disguised as legitimate 

documents or links. Once a device is infected, these 

trojans can steal sensitive information, including 

passwords, financial data, and personal details, 

amplifying the potential damge. Emotet, in particular, 

has been widely used in high-profile cyberattacks, 

significanly amplifying the potential damage. These 

attacks have targeted sectors such as healthcare and 

government, resulting in massive data breaches and 

substantial financial losses, especially for companies 

and organizations dependent on robust information 

security [5]. 

While malware detection has advanced 

significantly, numerous challenges persist, 

particularly with the rise of more sophisticated threats 

like polymorphic malware. Traditional detection 

methods, such as signature-based detection [1], often 

fail to recognize new or unseen malware, as even 

minor code changes can evade detection. Moreover, 

advanced evasion techniques, including obfuscation 

and encryption, further complicate the detection 

process [5]. 

Machine learning has emerged as a promising 

solution for improving malware detection, offering 

greater accuracy and the ability to detect previously 

unseen threats. However, challenges remain, 

including high false positive rates and difficulty 

identifying zero-day attacks. Ensemble-based 

machine learning algorithms, such as Random Forest, 
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Gradient Boosting, XGBoost, and AdaBoost, have 

gained attention for their potential to enhance 

detection systems by leveraging multiple models to 

improve performance and reduce errors. 

This research aims to evaluate the performance 

of these ensemble-based machine learning algorithms 

in malware detection, with a focus on optimizing both 

accuracy and computational efficiency. Specifically, 

it compares the performance of Random Forest, 

Gradient Boosting, XGBoost, and AdaBoost 

algorithms using features selected by Information 

Gain. The research  also aims to address limitations 

of existing methods by investigating how feature 

selection using Information Gain can improve 

classification results, particulary in terms of accuracy, 

F1-score, and computational efficiency. The findings 

aim to provide insights into optimizing malware 

detection systems by balancing detection accuracy 

and resource utilization. 

Recent studies have shown promising results in 

machine learning-based malware detection. For 

example,  the k-Nearest Neighbor (kNN) algorithm 

achieved a high accuracy of 97.0% accuracy with 

Information Gain feature selection [1], while research 

incorporating Convolutional Neural Networks (CNN) 

and Gated Recurrent Units (GRU) attained 93% 

accuracy [6]. Other studies have demonstrated even 

higher accuracies, such as 98.58% using Recurrent 

Neural Networks (RNN) [7] and 98.65% using a  

combination of OC-SVM, LOF, and Mi-iForest [8]. 

However, these methods still face challenges related 

to handling large datasets and capturing temporal 

dependencies, highlighting the need for more 

efficient and scalable approaches. 

2. RESEARCH METHODOLOGY 

This research follows a sequential approach, 

with each stage building on the previous one. Figure 

1 provides an overview of the process. Success in this 

research depends on the seamless integration of 

hardware and software. Optimal software 

performance requires robust hardware, while high-

performance hardware benefits from efficient 

software. 

For this study, the computer specifications 

included an 11th Gen Intel® Core™ i5-1135G7 

processor (2.40 GHz), 8 GB of DDR4-3200 SDRAM 

(1 x 64-bit), and a 256 GB NVMe SSD for fast data 

access. Intel® Iris® Xe Graphics provided enhanced 

visual performance, ensuring smooth graphical 

operations during data processing and visualization. 

These hardware specifications enabled efficient 

handling of large datasets and computationally 

intensive machine learning algorithms. 

The primary software used was Orange Data 

Mining (https://orangedatamining.com/), which 

supported various stages of the research, including 

data pre-processing, feature selection, and model 

building. Orange's tools for class balancing, 

normalization, and machine learning algorithms, such 

as Random Forest, Gradient Boosting, XGBoost, and 

AdaBoost, were crucial in model evaluation and 

optimization. 
 

 
Figure 1. Research Stages 

2.1. Dataset Collection and Preparation 

At this stage, the malware dataset is downloaded 

from the UCI Machine Learning Repository, as 

described in Table 1, details of the dataset used in 

research. The dataset consists of three files: a 



Arsabilla Ramadhani, et al., IMPROVING MALWARE DETECTION …   1675 

goodware dataset and two malware datasets, one from 

VirusTotal and another from VxHeaven. Each dataset 

captures the activity of files executed in a virtual 

environment or sandbox, presenting the results in a 

tabular format with over 1,085 features. 

 

Table 1. Details of The Dataset Used in Research 

Dataset Name Malware static and dynamic features VxHeaven and VirusTotal 

Number of Files 3 (goodware, malware from VirusTotal and malware from VxHeaven file) 

Number of Rows Goodware: 595; VirusTotal: 2955; VxHeaven: 2698 

Number of Features Goodware: 1086; VirusTotal: 1087; VxHeaven: 1087 (without label) 

Class Goodware: 0; VirusTotal: 1; VxHeaven: 1 

Missing Values None 

 

The goodware dataset contains 595 benign file 

activities, each with 1,086 features. The VirusTotal 

malware dataset comprises 2,955 samples, each with 

1,087 features. The VxHeaven malware dataset 

contains 2,698 samples, also with 1,087 features. Due 

to the differing number of features across the three 

datasets, they could not be directly merged. To 

standardize the feature count, certain attributes were 

removed. Specifically, features such as 

‘vbaVarIndexLoad’ and ‘SafeArrayPtrOfIndex,’ 

which are absent in the goodware dataset, were 

eliminated from the malware datasets. Conversely, 

the feature ‘Feature 1,’ which is not present in the 

malware datasets, was removed from the goodware 

dataset. After these adjustments, all datasets 

contained 1,085 features. 

The 'filename' feature was deemed irrelevant 

and removed from both the goodware and VirusTotal 

malware datasets. Labels were then assigned, with 

goodware labeled as ‘0’ and malware labeled as ‘1’. 

The three datasets were subsequently merged into a 

single dataset containing 1,190 rows, 983 columns, 

982 features, and two target classes. 

2.2. Pre-Processing 

Pre-processing is a critical initial step in 

machine learning, involving the transformation or 

encoding of data to make it suitable for efficient 

analysis by machine learning algorithms [9]. It can 

also be seen as a process that prepares the data for 

modeling by refining features. The impact of pre-

processing on machine learning performance is 

significant, offering benefits such as reduced training 

time and improved analysis speed [7]. 

This study performed three primary pre-

processing tasks: class balancing, feature scaling, and 

feature selection. Class balancing is essential to 

prevent the model from becoming biased toward the 

majority class. Techniques such as oversampling, 

undersampling, or SMOTE can be used to address 

this imbalance [1]. In this study, undersampling was 

applied to reduce the number of instances from the 

majority class to match the number of instances in the 

minority class. Initially, the dataset exhibited an 

imbalance ratio of 1:9.5, but after undersampling, this 

was adjusted to 1:1. Without class balancing, the 

model may underperform in predicting the minority 

class, leading to inaccurate results. Undersampling 

helps balance the data distribution, allowing the 

machine learning model to perform more effectively 

and improving prediction accuracy for the minority 

class. Thus, class balancing plays a vital role in 

developing robust and accurate models [1]. 

The second stage of the pre-processing phase is 

feature scaling, which standardizes the range of 

values across features [10]. This study employs 

MinMax normalization for feature scaling, setting a 

lower bound of 0 and an upper bound of 1. MinMax 

normalization is a commonly used technique in data 

pre-processing that scales numerical data to a specific 

range, typically between 0 and 1 [11], [12]. This 

method involves a linear transformation of the 

original data to ensure that all values fall within the 

desired range [12]. As a result, the feature values are 

scaled between 0 and 1 without altering the 

relationships or distribution among them. 

MinMax normalization is particularly beneficial 

for ensemble-based algorithms, such as Random 

Forest, Gradient Boosting, XGBoost, and AdaBoost. 

Although these algorithms are not highly sensitive to 

feature scale, normalization can improve stability and 

computational efficiency. By applying normalization, 

each feature contributes more evenly, preventing 

features with larger scales from dominating the 

calculations, particularly in models that utilize 

decision trees. The formula for MinMax 

normalization is provided in Equation 1. 

𝑣′ =
𝑣−𝑚𝑖𝑛⁡(𝐴)

𝑚𝑎𝑥(𝐴)−𝑚𝑖𝑛⁡(𝐴)
 (1) 

In Equation 1, 𝑣´ denotes the normalized value, 

where 𝑣 represents the original value, and min(A) and 

max(A) indicate the minimum and maximum values 

of the attribute (A) respectively. This formula scales 

all data points within the range of 0 to 1 while 

maintaining their relative relationships. Figure 2 

shows the dataset before and after MinMax 

normalization, highlighting how the values are 

adjusted to fall within the specified range. Prior to 

normalization, the feature values can vary widely, 

which may lead to disproportionate contributions 

from certain features during model training 

After normalization, all feature values are scaled 

to a consistent range, preventing any single feature 

from dominating because of its scale. This method 

also reduces the standard deviation, which helps 

diminish the effect of outliers in the dataset. The left 

plot displays the original range of feature values, 

while the right plot illustrates the transformed values, 

now scaled between 0 and 1 
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Figure 2. Before (left) and After (right) Applying This MinMax Normalization 

 

In the final pre-processing stage, feature 

selection is performed to identify the most relevant 

features from the dataset, enhancing the performance 

of the machine learning model. This study employs 

the forward selection method, a technique used in 

machine learning and statistics that operates in stages. 

The process begins with no features and adds them 

sequentially, selecting the feature that provides the 

greatest improvement in model performance at each 

step [13]. 

For feature selection, this study uses the 

Information Gain method. Information Gain 

measures the reduction in entropy or uncertainty 

about the class label given the presence of a particular 

feature. Many studies have effectively used 

Information Gain to reduce dimensionality by 

selecting the most relevant features based on weight 

calculations [14], [1]. This approach ensures that the 

selected features contribute meaningfully to the 

model, improving both accuracy and efficiency. 

The choice of Information Gain for feature 

selection stems from its ability to provide a 

straightforward yet effective method for identifying 

features that offer the most valuable information for 

classification. By measuring how much a feature 

contributes to reducing uncertainty about the target 

class, Information Gain helps focus on the most 

relevant features while ignoring redundant or 

irrelevant ones. This results in a more compact and 

efficient model, reducing overfitting and improving 

generalization. 

Information Gain is commonly chosen for 

feature selection because it effectively quantifies the 

information contained in each feature. It ranks 

features based on the reduction in entropy 

(uncertainty) achieved when a specific feature is 

known, making it a powerful filter-based technique. 

This method has been successfully applied in data 

classification, consistently helping identify features 

most relevant to the task at hand. By retaining only 

the most informative features, it enhances model 

accuracy and computational efficiency, leading to 

better performance in real-world applications.  

The concept of Information Gain can be likened 

to a scoring system, indicating how much a feature 

contributes to improving predictions. A higher 

Information Gain score suggests greater usefulness. 

Its simplicity and efficiency in filtering out irrelevant 

or redundant features have allowed it to outperform 

other techniques in some cases [15], [16], [17], [1]. 

Further discussions on this topic can be found in 

Chapter 4. 

Before selecting the features, it is essential to 

understand how Information Gain is calculated. The 

process begins by determining the dataset’s entropy, 

as represented in Equation 2: 

𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑆) = ⁡−∑𝑃𝑖 𝑙𝑜𝑔2 𝑃𝑖 (2) 

 

Table 2. A List of The Top 47 Features with The Highest Information Gain Scores 

No. Features IG Score No. Features IG Score 

1. minor_image_version 0.728 25. sizeOfHeaders.1 0.182 

2. minor_operatimg_system_version 0.701 26. number_of_imports.1 0.181 

3. size_of_stack_reserve 0.613 27. int 0.137 

4. major_operating_system_version 0.600 28. ret 0.120 

5. minor_linker_version 0.558 29. nop 0.107 

6. compile_date 0.540 30. bt 0.099 

7. major_image_version 0.538 31. ent_max 0.096 

8. dll_characteristics 0.506 32. AddressOfEntryPoint 0.086 

https://doi.org/10.52436/1.jutif.2024.5.6.3903


Arsabilla Ramadhani, et al., IMPROVING MALWARE DETECTION …   1677 

9. major_subsystem_version 0.480 33. rol 0.082 

10. minor_subsystem_version 0.470 34. jge 0.081 

11. CheckSum 0.410 35. BaseOfCode 0.081 

12. major_linker_version 0.396 36. free 0.080 

13. characteristics 0.371 37. subsystem 0.079 

14. number_of_IAT_entires 0.288 38. rcl 0.079 

15. number_of_IAT_entires.1 0.288 39. ent_whole_file 0.078 

16. pushf 0.253 40. xor 0.078 

17. files_operations 0.246 41. test 0.076 

18. count_dll_loaded 0.204 42. fistp 0.074 

19. count_file_opened 0.197 43. sbb 0.072 

20. not 0.197 44. filesize 0.072 

21. size_of_stack_commit 0.191 45. dll 0.072 

22. number_of_sections.1 0.186 46. in 0.072 

23. sizeOfHeaders 0.182 47. file_alignment 0.071 

24. size_of_headers 0.182    

 

Here, 𝑃𝑖 represents the probability of each class 

in the dataset. Once the entropy values are 

determined, the Information Gain is calculated using 

Equation 3: 

𝐺𝑎𝑖𝑛(𝑆, 𝐴) = 𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑆) −

∑ (𝐴)
|𝑆𝑣|

𝑆
𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑆𝑣)𝑣𝑎𝑙𝑢𝑒𝑠  (3) 

After calculating the Information Gain for each 

feature, the highest Information Gain score was found 

for the feature minor_image_version, which scored 

0.728. This score indicates that minor_image_version 

plays a critical role in distinguishing between 

malware and goodware. Its high relevance is 

attributed to the significant differences it captures 

between these two categories. With the highest 

Information Gain score, this feature serves as a key 

indicator for classification, demonstrating minimal 

overlap with other features and making a unique 

contribution to malware detection models. From an 

initial set of 982 features, the feature selection process 

using Information Gain reduced the number of 

features to 47. For more details on this selected 

feature, can be found in Table 2, List of Top 47 

Features with the Highest Information Acquisition 

Score. 

2.3. Modeling 

Modeling aims to identify factors that predict 

various data dimensions and evaluate the impact of 

changes within those dimensions. The benefits of 

modeling include enhanced prediction accuracy and 

consistent performance across different scenarios. 

Additionally, modeling enables the incorporation of 

larger datasets, which facilitates more informed 

decision-making and ultimately leads to increased 

efficiency and effectiveness in the analysis [18], [19]. 

The focus of the modeling in this research is on 

implementing ensemble-based algorithms. Ensemble 

methods combine the outputs of independently 

trained weak models and aggregate or weight their 

predictions to enhance overall accuracy. Techniques 

such as Bagging, Stacking, and Boosting are 

employed to achieve improvements in predictive 

performance [2]. 

This study utilizes four ensemble algorithms: 

Random Forest, Gradient Boosting, XGBoost, and 

AdaBoost. The Random Forest algorithm is a 

supervised learning method used for classification 

and regression tasks. It improves prediction accuracy 

by aggregating the outputs of multiple decision trees, 

each trained on a random subset of the data using 

ensemble learning techniques [20]. This algorithm is 

a homogeneous ensemble learning method, where 

each decision tree or base learner is trained using a 

random subset of feature vectors [21]. The feature 

vector is represented as shown in Equation 4: 

𝑥 = {𝑥1, 𝑥2, … , 𝑥𝑃} (4) 

Here, p refers to the dimensionality of the 

feature vector available to each base learner. The 

primary objective is to identify the prediction 

function f(x), which estimates the target variable Y. 

This prediction function can be expressed as: 

𝐿(𝑌, 𝑓(𝑥)) (5) 

Where L is the loss function, and the goal is to 

minimize the expected value of this loss. In regression 

and classification applications, squared error loss and 

zero-one loss are commonly used, as defined in 

Equations 6 and 7: 

𝐿(𝑌, 𝑓(𝑥)) = (𝑌 − 𝑓(𝑥)2) (6) 

𝐿(𝑌, 𝑓(𝑥)) = 𝐼(𝑌 ≠ ⁡𝑓(𝑥)) = ⁡ {⁡
0, 𝑖𝑓⁡𝑌 = 𝑓(𝑥),
1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

(7) 

To create an ensemble, a collection of base 

learners is combined. Let the base learners be denoted 

as: 

ℎ1(𝑥), ℎ2(𝑥),… , ℎ𝐽(𝑥) (8) 

The averaging process for regression tasks is 

given by Equation 9, while the voting mechanism for 

classification tasks is defined in Equation 10: 

𝑓(𝑥) = ⁡
1

𝐽
∑ ℎ𝑗(𝑥)
𝐽
𝑗=1  (9) 
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𝑓(𝑥) = 𝑎𝑟𝑔𝑚𝑎𝑥∑ 𝐼(𝑦 = ⁡ℎ𝑗(𝑥))
𝐽
𝑗=1  (10) 

Gradient Boosting is a machine learning 

algorithm employed for both classification and 

regression tasks. It constructs a prediction model by 

combining a collection of weak models, aiming to 

minimize the loss function and reduce the 

discrepancy between predicted and actual values [22]. 

Introduced by Friedman in 2001, Gradient Boosting 

operates as a supervised learning technique that 

integrates multiple weak learners into an additive 

ensemble. The learning process is sequential, with 

each new base learner trained to correct the residual 

errors from the predictions of the current ensemble. A 

learning rate is applied to scale the output of each new 

learner before it is added to the ensemble [23]. 

XGBoost, or Extreme Gradient Boosting, is a 

robust classification and regression algorithm that 

builds on the gradient boosting framework by 

incorporating decision trees as weak learners. This 

algorithm is designed to create a more powerful and 

accurate model while mitigating overfitting [24]. 

XGBoost is a supervised learning method that has 

proven effective in a wide range of applications, from 

healthcare and finance to government and education. 

Its computational efficiency and strong predictive 

performance have made it a choice for many machine 

learning tasks, especially in machine learning 

applications and real-world data analysis [25]. 

AdaBoost, or Adaptive Boosting, is a widely 

used boosting algorithm based on decision trees, 

introduced by Freund and Schapire in 1996 [26]. It 

starts with a single weak learner and assigns equal 

weights to each observation. The algorithm then 

iteratively trains weak learners, increasing the 

weights of incorrectly predicted observations while 

decreasing those of correctly predicted ones. The 

stopping criterion is usually defined by a specified 

number of learners (M) or a threshold change in 

prediction error. After reaching the stopping criterion, 

the weak learners are combined, with their weights 

reflecting their accuracy, to form a strong final 

classifier that is essentially a weighted average of the 

weak classifiers. The algorithm operates as follows: 

1. Initialize weights: Set observation weights 𝑤𝑖 =
1

𝑛
⁡for⁡all⁡𝑖. 

2. Fit a classifier: For each weak learner m, fit a 

classifier fm(x). 

3. Compute weighted error: Calculate the 

weighted error errm of the classifier. 

𝑒𝑟𝑟𝑚 =
∑ 𝑤𝑖∙𝐼
𝑁
𝑖=1 (𝑦𝑖≠𝑓𝑚(𝑥𝑖))

∑ 𝑤𝑖
𝑁
𝑖=1

 (11) 

4. In Equation 11, m denotes the m-th weak 

learner, yi represents the class of the i-th 

observation, and fm(xi) indicates the prediction 

made by the m-th classifier for the i-th 

observation. Furthermore, I(yi ≠ fm(xi )) is an 

indicator function that takes a value of 0 when 

the prediction is correct and 1 when it is 

incorrect. 

𝛼𝑚 = 𝑙𝑜𝑔 (
1−𝑒𝑟𝑟𝑚

𝑒𝑟𝑟𝑚
) (12) 

5. Compute classifier weight: Determine the 

weight αm for the classifier based on this error. 

𝑤𝑖
𝑛𝑒𝑤 = 𝑤𝑖

𝑜𝑙𝑑 ∙ (𝛼𝑚 ∙ 𝐼(𝑦𝑖 ≠ 𝑓𝑚(𝑥𝑖))) , 𝑖 =

1, 2,… , 𝑛 (13) 

6. Update weights: Adjust the weights of 

observations for the next iteration. 

7. Repeat: Continue until the stopping criterion is 

reached. 

Finally, the strong classifier f(x) is given by the 

sign of the sum of weighted weak classifiers: 

𝑓(𝑥) = 𝑠𝑖𝑔𝑛(∑ 𝛼𝑚 ∙ 𝑓𝑚(𝑥)
𝑀
𝑚=1 ) (14) 

In this study, the primary objective is to 

compare the performance of four ensemble-based 

algorithms: Random Forest, Gradient Boosting, 

XGBoost, and AdaBoost. These algorithms were 

chosen because ensemble methods, which combine 

the outputs of multiple base models, tend to improve 

predictive accuracy and generalization compared to 

single models. Random Forest and AdaBoost are 

known for their ability to handle complex, high-

dimensional datasets like those in malware detection, 

as they reduce overfitting and improve robustness. 

XGBoost and Gradient Boosting are particularly 

effective due to their boosting mechanism, which 

focuses on correcting the errors of previous models, 

making them highly efficient in handling unbalanced 

and noisy data like malware classification tasks. 

The algorithms will be evaluated based on 

several performance metrics: accuracy, F1-score, 

training time, and testing time. These metrics will 

help identify which algorithm performs most 

effectively and efficiently in terms of both prediction 

accuracy and computational resource usage. The 

results of these comparisons will be discussed in 

Section 2.5 to determine which of the four algorithms 

offers the best overall performance for this specific 

malware dataset. 

2.4. Evaluation 

After completing the machine learning 

algorithm modeling, the next step is to evaluate the 

model's performance. In this study, data validation is 

performed first, followed by the assessment of the 

performance of the four algorithms to determine the 

most effective one. The validation method used in this 

process is 10-fold cross-validation. Cross-validation 

is a robust technique for evaluating model 

performance, optimizing hyperparameters, and 

ensuring the classification algorithm's reliability, 

particularly when the dataset is limited [1]. The k-fold 
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cross-validation method divides the dataset into 'k' 

approximately equal parts. The model is trained using 

'k-1' parts, while the remaining part is used for 

validation. This procedure is repeated ‘k’ times, each 

time using a different subset as the validation set. The 

average performance across these ‘k’ iterations 

provides a more accurate assessment of the model's 

generalizability. When ‘k’ is set to 10, it is referred to 

as 10-fold cross-validation. This approach helps 

mitigate overfitting and produces a more consistent 

estimate of model performance, offering a more 

generalizable evaluation of the model’s effectiveness 

[27], [28], [29]. 

After data validation, the performance of the 

ensemble-based algorithms, such as Random Forest, 

Gradient Boosting, XGBoost, and AdaBoost, is 

evaluated based on four key metrics: accuracy, F1-

Score, training time, and testing time. Accuracy, as a 

measure of the model's efficiency, reflects its ability 

to make correct predictions. It is calculated as the 

proportion of true positives and true negatives among 

all examined cases. In contrast, the F1-Score is a 

crucial metric in machine learning, particularly when 

balancing different types of errors is important. The 

F1-Score combines precision and recall into a single 

value, providing a balanced evaluation of models in 

situation where it is essential to account for both the 

relevance of predictions and the model's ability to 

capture all relevant cases [1]. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦⁡ = ⁡
𝑇𝑃+𝑇𝑁

(𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁)
 (15) 

Accuracy is calculated using Equation 15, 

where the TP (True Positive) value indicates the 

correct identification of positive instances, while TN 

(True Negative) refers to the correct identification of 

negative instances. In contrast, FP (False Positive) 

represents the misclassification of negative data as 

positive, and FN (False Negative) refers to the 

misclassification of positive data as negative [30]. 

The F1-Score, on the other hand, provides a more 

comprehensive evaluation of model performance, 

especially in cases where accuracy alone does not 

adequately reflect the trade-off between precision and 

recall. To compute the F1-Score, both precision and 

recall must be calculated, using Equation 17 and 

Equation 18, respectively. 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒⁡ = 2 ×
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑟𝑒𝑐𝑎𝑙𝑙
 (16) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛⁡ = ⁡
𝑇𝑃

𝐹𝑃+𝐹𝑁
 (17) 

𝑅𝑒𝑐𝑎𝑙𝑙⁡ = ⁡
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (18) 

In Equation 16, precision represents the 

proportion of true positive predictions out of all 

instances predicted as positive. At the same time, 

recall is the proportion of true positives identified out 

of all actual positive instances. The F1-Score 

harmonizes precision and recall, making it especially 

useful for imbalanced datasets, where accuracy alone 

may not fully reflect model performance. A high F1-

Score indicates a well-balanced trade-off between 

false positives (FP) and false negatives (FN), 

ensuring the model's reliability across different 

datasets. 

Training time refers to the time taken by the 

classifier to learn patterns from the training data [31]. 

This metric is crucial because it reflects the model's 

efficiency in processing and learning from large 

datasets. Models with faster training times are 

particularly beneficial when working with high-

dimensional data or when frequent retraining is 

required. 

Meanwhile, testing time measures the duration 

it takes for a classifier to make predictions on unseen 

data after training [32]. This metric is essential for 

evaluating model performance in real-time 

applications, where fast predictions are often critical. 

Shorter testing times are advantageous for classifiers 

that require real-time decision-making, ensuring that 

the model is both efficient and responsive. 

Both training and testing times contribute to 

assessing the overall computational efficiency of the 

model. Faster times for both metrics enhance the 

model's practicality, especially in time-sensitive 

environments or resource-constrained systems, while 

maintaining accurate predictions and balanced F1-

Scores. 

2.5. Result 

The final stage of this research involves 

identifying the optimal combination of results from 

the ensemble-based algorithms. This process is 

crucial for optimizing model performance and 

ensuring reliable predictions in real-world 

applications. By comparing the accuracy, training 

time, and testing time of each algorithm, this stage 

allows for the selection of the most effective model 

for malware detection. This approach focuses on 

selecting the best-performing algorithm, balancing 

predictive accuracy with computational efficiency. 

The combination of results forms the foundation for 

developing a model that can be effectively applied in 

practice. 

3. RESULT AND DISCUSSION 

This study evaluates the performance of 

ensemble-based machine learning algorithms for 

malware detection, focusing on Random Forest, 

Gradient Boosting, XGBoost, and AdaBoost to 

identify the most efficient and effective option. By 

conducting a series of experiments, we compare key 

performance indicators, including accuracy, F1-

score, training time, and testing time, to determine the 

optimal algorithm for this dataset. 
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The data collection yielded a combined dataset 

of 5,653 malware entries and 595 goodware entries. 

To ensure feature uniformity and address the 

significant class imbalance, irrelevant features were 

removed, resulting in a consistent set of 1,085 

features across all datasets.  

This step ensured that the final dataset used for 

analysis had a consistent and reliable structure, 

making it more suitable for machine learning 

applications. The uniformity of the dataset enhances 

the potential accuracy of malware detection during 

modeling. Additionally, the well-structured dataset 

streamlines the preprocessing phase, establishing a 

solid foundation for the modeling and evaluation 

stages that follow. 

The research is divided into two experimental 

phases. In the first phase, all 982 features are used 

without feature selection, allowing a comprehensive 

comparison of the four ensemble-based algorithms. 

The algorithm that demonstrates the highest accuracy, 

as shown in Table 3, "Performance of Ensemble-

Based Algorithms without Feature Selection," is 

XGBoost. Given its superior accuracy, XGBoost is 

selected for further analysis in the second phase. 
 

Table 3. Performance of Ensemble-based Algorithms without Feature Selection 

Number of Features 

No Feature Selection 

Random Forest Gradient Boosting XGBoost AdaBoost 

Accuracy F1 Accuracy F1 Accuracy F1 Accuracy F1 

All 982 features 98.4% 98.4% 98.9% 98.9% 98.7% 98.7% 97.8% 97.8% 

In the second phase, forward selection with 

Information Gain is employed as the feature selection 

technique. This method incrementally adds features 

based on their Information Gain scores, optimizing 

the feature set to achieve the highest possible 

performance. This approach enables a comparison of 

algorithm performance as the dataset is progressively 

reduced. The results of this phase are presented in 

Table 4, "Performance of Ensemble-Based 

Algorithms with Information Gain Feature 

Selection." Notably, the Gradient Boosting algorithm 

achieves an accuracy of 99.1% with a reduced set of 

47 selected features, maintaining strong performance. 

 

Table 4. Performance of Ensemble-based Algorithms with Information Gain Feature Selection Method 

Number of Features 

Information Gain 

Random Forest Gradient Boosting XGBoost AdaBoost 

Accuracy F1 Accuracy F1 Accuracy F1 Accuracy F1 

43 98.70% 98.70% 98.80% 98.80% 98.80% 98.80% 97.90% 97.90% 

44 98.80% 98.80% 98.70% 98.70% 98.80% 98.80% 97.70% 97.70% 

45 98.60% 98.60% 98.80% 98.80% 98.80% 98.80% 98.00% 98.00% 

46 98.80% 98.80% 98.70% 98.70% 98.80% 98.80% 98.00% 98.00% 

47 98.50% 98.50% 99.10% 99.10% 98.80% 98.80% 98.10% 98.10% 

48 98.70% 98.70% 99.00% 99.00% 99.00% 99.00% 98.10% 98.10% 

49 98.70% 98.70% 99.00% 99.00% 99.00% 99.00% 98.20% 98.20% 

50 98.50% 98.50% 99.10% 99.10% 99.00% 99.00% 98.00% 98.00% 

51 98.40% 98.40% 99.10% 99.10% 98.90% 98.90% 98.00% 98.00% 

52 99.10% 99.10% 99.00% 99.00% 99.00% 99.00% 98.20% 98.20% 

 

A comparison of Table 3 and Table 4 reveals 

that the Gradient Boosting algorithm demonstrates 

the highest accuracy both without feature selection 

and with 47 features selected using Information Gain. 

The identification of this optimal feature set enhances 

the Gradient Boosting algorithm's performance, 

underscoring that reducing the number of features can 

improve computational efficiency while preserving 

or even boosting accuracy. These findings highlight 

the effectiveness of feature selection in optimizing 

model performance, particularly for Gradient 

Boosting. 

The next step involves analyzing the 

computational efficiency of two feature sets: all 982 

features without feature selection and the 47 features 

selected using Information Gain. Computational 

efficiency is assessed by comparing training time and 

testing time, with the goal of accelerating the 

computational process while maintaining accuracy. 

This metric is vital as it demonstrates the algorithm's 

ability to process the dataset effectively in terms of 

both time and computational resources.  

As shown in Table 5, "Computational 

Efficiency of Gradient Boosting: All Feature Set vs. 

Information Gain Feature Selection," reducing the 

number of features not only improves accuracy but 

also significantly enhances computational efficiency 

in both training and testing times. With Information 

Gain, the Gradient Boosting algorithm achieves an 

accuracy of 99.1%, compared to 98.9% without 

feature selection, thus alleviating the computational 

burden. 
 

Table 5. Computational Efficiency of Gradient Boosting: All Feature Set vs. Information Gain Feature Selection Method 

Number of Features Feature Selection 
Gradient Boosting 

Accuracy F1-Score Training Time Testing Time 

All 982 features No Feature Selection 98.9% 98.9% 35.583 0.202 

47 features Information Gain 99.1% 99.1% 10.819 0.041 
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As shown in Table 6, the comparison of training 

time between feature selection without (NFS) and 

with Information Gain (IG), highlights the effect of 

feature reduction on training time. Training time is 

significantly reduced from 35.583 seconds to 10.819 

seconds when using the 47 features selected through 

Information Gain. This reduction is further illustrated 

in Figure 3, the training time bar chart, which clearly 

shows the correlation between fewer features and a 

substantial decrease in training time. This reduction 

offers significant benefits, particularly when the 

training process needs to be repeated on large 

datasets. 

 

Table 6. Comparison of Training Time: Feature Selection Without (NFS) vs. Information Gain (IG) Feature Selection 

Algorithm Number of Feature Training Time 

Gradient Boosting – NFS All 982 features 35.583 

Gradient Boosting - IG 47 features 10.819 

 

 
Figure 3. Training Time Bar Chart 

 

Meanwhile, Table 7 compares the testing time 

between feature selection without (NFS) and with 

Information Gain (IG), showing a significant 

reduction in testing time. The testing time decreases 

from 0.202 seconds with 982 features to just 0.041 

seconds when using the 47 features selected through 

Information Gain. This improvement is further 

depicted in Figure 4, the testing time bar chart, which 

visually demonstrates how feature selection 

effectively speeds up the testing process. 
 

Table 7. Comparison of Training Time: Feature Selection Without (NFS) vs. Information Gain (IG) Feature Selection 

Algorithm Number of Feature Training Time 

Gradient Boosting – NFS All 982 features 35.583 

Gradient Boosting - IG 47 features 10.819 

 

 
Figure 4. Testing Time Bar Chart 

 

In addition to improving training and testing 

efficiency, feature selection using the Information 

Gain method simplifies the model overall. By 

removing irrelevant features, the algorithm can focus 

on the most influential ones, enhancing model 

interpretability and reducing the risk of overfitting. 

https://doi.org/10.52436/1.jutif.2024.5.6.3903
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This leads to a more efficient model that maintains an 

optimal level of detection. Such advantages are 

particularly crucial in real-world applications, 

especially in malware detection systems that require 

quick response times. In large datasets, selecting the 

right features is pivotal to creating efficient and 

responsive models. The experimental results 

demonstrate that applying Information Gain not only 

boosts accuracy but also significantly enhances 

computational efficiency during both the training and 

testing phases. 
 

 
Figure 5. Confusion Matrix in Gradient Boosting 

 

In addition to accuracy and efficiency metrics, 

the confusion matrix shown in Figure 5 provides 

valuable insights into the Gradient Boosting model's 

classification performance with Information Gain 

feature selection. The matrix highlights the 

breakdown of true positives, true negatives, false 

positives, and false negatives, offering a detailed view 

of the model's ability to correctly classify malware 

and goodware. This granular information helps assess 

the model's precision in distinguishing between the 

two classes, providing a deeper understanding of its 

strengths and areas for improvement in the 

classification process. 

In this confusion matrix, reveals that the 

Gradient Boosting model, with Information Gain 

feature selection, correctly classifies 591 entries as 

malware (True Positives) and 588 entries as 

goodware (True Negatives). The misclassification 

rates are low, with only 7 entries incorrectly classified 

as malware (False Positives) and 4 entries incorrectly 

classified as goodware (False Negatives). From these 

values, we can calculate key performance metrics 

such as accuracy and F1-score. 

 Accuracy is calculated as: 

Accuracy  =
𝑇𝑟𝑢𝑒⁡𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠⁡+⁡𝑇𝑟𝑢𝑒⁡𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠

𝑇𝑜𝑡𝑎𝑙⁡𝐸𝑛𝑡𝑟𝑖𝑒𝑠
 

 =
591+588

591+588+7+4
 

 =
1179

1190
 

 = 99.1% 

 Precision is calculated as: 

Precision  =
𝑇𝑟𝑢𝑒⁡𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒⁡𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠+𝐹𝑎𝑙𝑠𝑒⁡𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
 

 =
591

591⁡+⁡7
 

 =
591

598
 

 = 98.8% 

 Recall is calculated as: 

Recall  =
𝑇𝑟𝑢𝑒⁡𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒⁡𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠+𝐹𝑎𝑙𝑠𝑒⁡𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
 

 =
591

591⁡+⁡4
 

 =
591

595
 

 = 99.3% 

 F1-Score is calculated as the mean of precision 

and recall: 

F1-Score  = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛⁡×⁡𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+⁡𝑅𝑒𝑐𝑎𝑙𝑙
 

 = 2 ×
0.988⁡×

0.988+0.993
 

 = 0.990 

These results highlight the excellent 

performance of the model in distinguishing between 

malware and goodware, as well as the precision, 

recall, and balanced F1 score of 99.0%. The low 

misclassification rate is indicated by a small number 

of false positives (7) and false negatives (4). This 

indicates that the Gradient Boosting model with 

Information Gain feature selection maintains strong 

classification performance, which is very important 

for practical malware detection tasks. This balance 

minimizes misclassification, making it a reliable 

choice for accurately detecting both malware and 

goodware. The model’s strong performance in the 

confusion matrix further supports its high accuracy 

(99.1%) and reinforces its suitability for malware 

detection tasks. 

The confusion matrix thus validates the 

computational efficiency and accuracy benefits 

observed with Information Gain feature selection, as 

outlined in Table 8. By reducing the feature set, the 

model not only achieves optimal accuracy but also 

improves detection precision, particularly in 

distinguishing malware from goodware. This is 

crucial for real-world applications that require rapid 

and reliable decision-making, highlighting the 

model's effectiveness in practical scenarios. 
 

Table 8. Performance Analysis Result 

No. Methods Accuracy F1-Score 

1. Gradient Boosting (47) 

[proposed] 
99.1% 99.1% 

2. kNN (32) [1] 97.0% 97.0% 

3. CNN-GRU [6] 93% 93% 

 

When compared to other studies, such as the one 

conducted by [1], which utilized k-Nearest Neighbor 

(kNN) with 32 features, the results from the 

Information Gain feature selection demonstrate that 

the Gradient Boosting algorithm achieves superior 

accuracy and F1-Score, with an accuracy of 99.1%. 

While the kNN algorithm's results are commendable, 

achieving an accuracy and F1-Score of 97.0%, kNN 

tends to struggle with large datasets, especially when 

feature selection is not properly applied. This 

limitation can hinder the classification process, 

underscoring the advantages of using Information 

Gain to reduce the feature set and enhance the 

performance of algorithms like Gradient Boosting. 

In contrast, Gradient Boosting with Information 

Gain feature selection exhibits superior performance 
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in both accuracy and computational efficiency. This 

highlights the advantage of employing feature 

selection techniques, as they not only enhance model 

performance but also optimize the overall efficiency 

of the algorithm. As a result, the model becomes more 

suitable for practical applications, particularly in 

contexts that require rapid and reliable decision-

making, such as malware detection systems. 

Additionally, research by [6] which utilized 

Convolutional Neural Networks (CNN) and Gated 

Recurrent Units (GRU), reported an accuracy of 93% 

in cross-platform malware classification. However, 

this performance falls short when compared to 

Gradient Boosting. The primary limitation of the 

CNN-GRU approach is its difficulty in capturing 

temporal dependencies and handling precision-recall 

imbalances, making it less optimal for malware 

classification. Addressing these challenges would 

require a more in-depth analysis of the relationships 

within sequential data, which is crucial for improving 

its performance in this domain. 

Gradient Boosting outperforms both CNN-GRU 

and kNN in terms of accuracy and demonstrates 

greater efficiency when handling features selected 

through Information Gain. This comparison 

highlights the advantages of using Gradient Boosting 

for malware detection tasks, where both performance 

and computational efficiency are crucial. The model's 

ability to achieve high accuracy while maintaining 

low computational overhead makes it a more suitable 

choice for real-world applications that require fast 

and reliable decision-making. 

Gradient Boosting demonstrates not only 

superior accuracy but also greater efficiency when 

handling features selected through Information Gain, 

particularly in comparison to other methods like k-

Nearest Neighbor (kNN) and Convolutional Neural 

Networks with Gated Recurrent Units (CNN-GRU). 

This enhanced performance is vital in applications 

such as malware detection, where rapid and accurate 

predictions are essential for timely and reliable 

decision-making. The combination of high accuracy 

and computational efficiency makes Gradient 

Boosting a more suitable choice for such critical 

tasks. 

Table 8 presents the results of the performance 

analysis, comparing the accuracy and efficiency of 

each method. This table highlights the significant 

advantages of our proposed approach, which 

combines Gradient Boosting with Information Gain 

for feature selection, showcasing its effectiveness in 

achieving optimal results. The combination of high 

accuracy and enhanced computational efficiency 

underscores the strength of this approach, making it a 

powerful solution for malware detection tasks. 

4. DISCUSSION 

This study demonstrates the effectiveness of 

ensemble-based algorithms for malware detection, 

emphasizing the enhancement of performance 

through feature selection using the Information Gain 

method. When coupled with Information Gain, the 

Gradient Boosting algorithm achieves the highest 

accuracy at 99.1%, outperforming Random Forest, 

XGBoost, and AdaBoost. This exceptional accuracy 

highlights the model's proficiency in correctly 

classifying both malware and goodware, showcasing 

its potential for reliable malware detection. 

The model's performance is further validated 

through the confusion matrix, which shows that the 

Gradient Boosting model correctly identifies 591 

malware entries (True Positives) and 588 goodware 

entries (True Negatives). However, it misclassifies 

only 7 goodware entries as malware (False Positives) 

and 4 malware entries as goodware (False Negatives). 

With these values, the model achieves an accuracy of 

99.1%, precision of 98.8%, recall of 99.3%, and an 

F1-score of 0.990. These metrics demonstrate a 

strong balance between accuracy, precision, and 

recall, reinforcing the model's reliability for malware 

detection tasks. 

In comparison, the k-Nearest Neighbor (kNN) 

algorithm, as reported in [1], only achieved 97.0% 

accuracy using 32 features. This disparity highlights 

the limitations of kNN in handling large-scale data 

without effective feature selection, while Gradient 

Boosting with Information Gain excels in both 

computational efficiency and accuracy, making it a 

more suitable choice for malware detection in real-

world scenarios. 

Compared to [6], which used a CNN and GRU 

model for cross-platform malware classification and 

achieved 93% accuracy, our approach shows superior 

precision and recall balance. While the CNN-GRU 

model excels at capturing temporal dependencies, its 

complexity can lead to increased computational 

demands, making it less suitable for high-speed, real-

time malware detection. In contrast, the Gradient 

Boosting structure enables efficient handling of large-

scale data, and when paired with Information Gain, 

the algorithm effectively reduces computational 

overhead without sacrificing accuracy. This makes 

Gradient Boosting with Information Gain ideal for 

real-time malware detection systems that require both 

accuracy and speed. 

An essential finding in our study is the reduction 

of features from 982 to 47, achieved through 

Information Gain. This reduction not only improves 

computational efficiency but also maintains high 

accuracy, highlighting the crucial role of feature 

selection. Information Gain is highly effective in 

identifying relevant features, helping to reduce the 

training and testing time for Gradient Boosting, 

Random Forest, XGBoost, and AdaBoost. This 

efficiency boost is critical for implementing these 

models in real-world applications where resource 

constraints, such as on mobile devices, are a concern.  

Although Gradient Boosting achieved the best 

results in this study, each algorithm has its unique 

strengths and limitations. Random Forest offers 
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stability and interpretability but can become 

computationally intensive with high-dimensional 

data. XGBoost, while typically faster, may not 

achieve the same level of accuracy without extensive 

tuning. AdaBoost tends to perform well with smaller 

datasets but may struggle with complex malware 

patterns. These limitations highlight potential areas 

for future improvement, such as exploring hybrid 

feature selection techniques or optimizing algorithms 

to handle larger datasets more efficiently. 

In terms of practical implications, our findings 

suggest that the Gradient Boosting model with 

Information Gain is an effective choice for real-time 

malware detection systems. However, applying this 

model in real-world scenarios may present 

challenges, including the need for continuous feature 

adjustments and potential computational limitations 

in real-time environments. Future research can 

address these limitations by experimenting with 

additional feature selection methods, such as 

Principal Component Analysis (PCA) or Recursive 

Feature Elimination (RFE), to further refine the 

model's performance and efficiency. 

Thus, this research demonstrates the importance 

of ensemble methods combined with Information 

Gain for enhancing malware detection accuracy and 

computational efficiency. The results not only 

contribute to the field's understanding of the impact 

of feature selection on ensemble algorithms but also 

provide insights into practical applications, laying the 

foundation for future research aimed at optimizing 

malware detection in diverse and resource-

constrained environments. 

5. CONCLUSION 

As malware threats evolves, traditional 

signature-based detection methods face increasingly 

challenges. This study evaluates the effectivesness of 

four ensemble-based machine learning algorithms, 

both with and without the application of Information 

Gain feature selection. The results show that Gradient 

Boosting with Information Gain achieved the highest 

accuracy of 99.1%, while reducing the features set 

from 982 to 47 features. This reduction enhances 

computational efficiency and simplifies thes model 

without compromising accuracy. 

By prioritizing the most relevant features, 

Information Gain optimizes the training and testing 

processes, ensuring the model remains efficient while 

maintaining optimal performance. Integrating 

ensemble-based algorithms and feature selection 

offers a balanced approach to achieving high 

accuracy and computational efficiency in malware 

detection systems. This approach is particularly 

beneficial in real-world applications where fast and 

accurate threat identification is critical for 

organizations in the cybersecurity field. 

Future research could explore the use of 

additional ensemble techniques or hybrid approaches 

to further enhance malware detection efficiency and 

accuracy across different systems. Additionally, 

testing the model on larger and more diverse datasets 

could provide insights into its scalability and 

generalizability in various environments. The 

findings of this study also suggest that combining 

ensemble algorithms with alternative feature 

selection methods could lead to better performance in 

future malware detection systems. Ultimately, this 

study provides a foundation for developing faster, 

more accurate, and more efficient malware detection 

tools, benefiting organizations seeking to strengthen 

their cybersecurity defenses. 
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