
Jurnal Teknik Informatika (JUTIF) DOI: https://doi.org/10.52436/1.jutif.2024.5.6.3898
Vol. 5, No. 6, December 2024, pp. 1663-1672 p-ISSN: 2723-3863
 e-ISSN: 2723-3871

1663

OPTIMIZING ANDROID MALWARE DETECTION USING NEURAL NETWORKS

AND FEATURE SELECTION METHOD

Jevan Bintoro1, Fauzi Adi Rafrastara*2, Ines Aulia Latifah3, Wildani Ghozi4, Warusia Yassin5

1,2,3,4Informatics Engineering, Faculty of Computer Science, Universitas Dian Nuswantoro, Indonesia
5Fakulti Teknologi Maklumat dan Komunikasi, Universiti Teknikal Malaysia Melaka, Malaysia

Email: 1111202113433@mhs.dinus.ac.id, 2fauziadi@dsn.dinus.ac.id, 3111202113408@mhs.dinus.ac.id,
4wildanil.ghozi@dsn.dinus.ac.id, 5s.m.warusia@utem.edu.my

(Article received: October 06, 2024; Revision: November 27, 2024; published: December 29, 2024)

Abstract

Malware poses a serious threat to Android security systems. In recent years, Android malware has rapidly evolved,

employing obfuscation techniques such as polymorphic and metamorphic. Unfortunately, signature-based

malware detection cannot identify modern variants of Android malware. This study aims to compare various

feature selection methods and machine learning algorithms to identify the most effective and efficient combination

for classifying Android malware. The dataset used in this research is the Drebin dataset. Four classification

algorithms are used in this comparison: Naive Bayes, Logistic Regression, Neural Network, and Random Forest.

The best-performing algorithm is then implemented in three different scenarios: without feature selection, with

Information Gain, and with Chi-Squared (X²). In the latter two scenarios, the appropriate number of features was

selected using the backward elimination method. Both feature selections achieved the same performance, but

Information Gain required fewer features. The evaluation metrics used in this study include AUC, accuracy, F1-

score, training time, and testing time. Measuring training and testing time benefits the model by making it more

efficient, thus allowing for faster detection in real-world applications. The results show that the combination of

the Information Gain feature selection method and the Neural Network algorithm achieves the highest

performance, with an accuracy and F1-Score of 98.6%. Additionally, this combination achieves a training time of

81.135 seconds and a testing time of 1.095 seconds. Compared to the Neural Network algorithm without feature

selection, this combination results in a 17.7597 % reduction in training time and a 57.9977 % reduction in testing

time while maintaining the same performance values. This research contributes to improving the speed and

accuracy of malware detection systems, enhancing mobile security.

Keywords: android malware detection, drebin, information gain, machine learning, neural network.

1. INTRODUCTION

Over the past five years, the number of Android

smartphone users has increased significantly, making

it the most popular smartphone operating system (OS)

by user count, with 2.5 billion active users in 2019

[1]. The trend indicates that Android’s market share

has grown from 37% to 75% over seven years [2].

Between April and June 2021, 313 million gadgets

(smartphones and tablets) were shipped, with over

80% of these devices running on the Android OS.

However, a study found that over 1 billion devices

were using an outdated version of the Android

operating system, leading to numerous security

vulnerabilities [3].

Android security has improved significantly

over the years, incorporating features like device and

file-based encryption, which are mandatory for all

Android devices [4]. The Android security system

enforces protections at runtime or during program

execution to mitigate malicious code that has already

run on the device [5]. Despite these advancements,

malware remains a serious threat to the Android OS.

Google Play Protect scans 200 billion apps in the

Google Play Store daily to safeguard users from

malware apps, which are designed to attack

smartphone operating systems [6].

In 2010, a mobile malware called FakePlayer

became the first trojan targeting the Android OS [7].

FakePlayer generated revenue by sending SMS

messages to paid services [8]. These messages could

result in charges to the user without their consent.

Another notable mobile malware is Exodus

Spyware, which, once installed on a device, grants the

attacker full control and access to the device and its

data [9]. This malware first verifies the phone number

and IMEI to determine if the smartphone is the

intended target. If it is, the malware downloads the

actual malicious software to hack the phone [10].

Exodus has been used by various public prosecution

offices in Italy [11]. In 2016, Google mitigated this

malware by closing the vulnerability exploited by

DirtyCOW, the program installed by Exodus.

The new generation of malware employs

masking techniques such as polymorphic and

metamorphic methods, which signature-based

https://doi.org/10.52436/1.jutif.2024.5.6.3898
mailto:111202113433@mhs.dinus.ac.id
mailto:fauziadi@dsn.dinus.ac.id
mailto:111202113408@mhs.dinus.ac.id
mailto:wildanil.ghozi@dsn.dinus.ac.id
mailto:s.m.warusia@utem.edu.my

1664 Jurnal Teknik Informatika (JUTIF), Vol. 5, No. 6, December 2024, pp. 1663-1672

malware detection cannot detect [12]. Polymorphic

and metamorphic malware types change their form

each time they replicate to infect new files [13].

Signature-based malware detection classifies

malware by matching the program’s signature with

existing malware signatures [14]. The signature of a

malware file is created using hash algorithms like

SHA1 and MD5. This detection method relies on an

existing malware signature database; if the malware

file is modified, a new signature must be generated

and added to the database, making it less effective

[15]. Therefore, an Artificial Intelligence-based

detection method is needed to address the weaknesses

of signature-based detection.

In this study, Artificial Intelligence (AI) was

implemented for malware detection. We aim to

identify the best combination of classification

algorithms and feature selection methods. The AI

malware detection model is trained using

classification algorithms, while feature selection

methods are employed to enhance the model’s

process efficiency.

Rana [16] conducted research to evaluate

advanced ensemble learning techniques for detecting

Android malware. The Drebin dataset was used in this

research and underwent substring-based feature

selection (SBFS) and data balancing. The model was

trained using an advanced ensemble method

incorporating Decision Tree, Random Forest,

Gradient Boosting Tree, Support Vector Machine,

and Logistic Regression. The performance results

showed that the highest accuracy achieved was

97.96%. However, this accuracy is not ideal for

classifying malware, since it needs zero tolerance for

false positive and false negative detection.

Roseline [17] conducted research to detect and

classify Android malware using the Leave One

Feature Out (LOFO) feature selection method and

various tree-based models. The Drebin dataset was

utilized for this study. The LOFO method was

employed to assess the importance of the dataset’s

features. The models used in this research included

Decision Tree, Random Forest, ExtraTrees, GBM,

LightGBM, AdaBoost, and XGBoost. The results

indicated that the XGBoost model achieved the best

performance with 30 features, attaining an accuracy

of 95.59% and an F1-Score of 93.89%. However, this

accuracy is not optimal for malware classification,

and class balancing was not implemented in this

research.

Supriyanto [18] conducted research on detecting

malware using the K-Nearest Neighbor (kNN)

algorithm with a feature-selected dataset. The

datasets used were VxHeaven and VirusTotal. To

improve model performance, the dataset underwent

Information Gain and Principal Component Analysis

(PCA), reducing the number of features to 32. The

kNN algorithm was used for classification. The

research achieved an accuracy and F1-score of

95.8%. However, the kNN algorithm requires

calculating the distance between the query instance

and all training instances, making it computationally

expensive.

Rafrastara [19] conducted research to detect

malware using an ensemble-based stacking method.

The dataset used in this research was named

“Malware Static and Dynamic Features VxHeaven

and VirusTotal Data Set.” Due to class imbalance, the

dataset underwent class balancing using an

undersampling method, reducing the number of

instances in each class to 595. Additionally, feature

selection reduced the dataset to 1,086 features. The

research achieved a score of 95.5% in both accuracy

and recall. However, the stacking ensemble method

can be computationally intensive, requiring

significant resources for training and inference.

Albahar [20] conducted research on the

implementation of a modified ResNeXt model for

identifying Android malware. The Drebin image

dataset was used for this research, and the dataset was

transformed into grayscale images for the model to

classify. The author used the ResNeXt classification

model, a convolutional neural network that employs

a strategy called “split-transform-merge,” resulting in

an accuracy of 98.2%. However, the accuracy

achieved in this research is not ideal for classifying

malware. Additionally, the effectiveness of the

proposed regularization technique is difficult to

assess, as the paper does not provide a comparison

with other regularization methods.

Based on the literature review above, there are

two state-of-the-art studies that utilized the same

dataset used in this research, called the Drebin

dataset, as conducted by [16], [18]. However, the

accuracy of their performance is still not ideal for

malware classification. This study aims to identify the

optimal combination of machine learning algorithms

and feature selection techniques for effective and

efficient Android malware detection.

2. RESEARCH METHOD

This study involves five sequential stages, as

illustrated in Figure 1. The first stage is dataset

collection. The gathered data often has certain issues

that need to be addressed, making it crucial to

preprocess it in the second stage, Pre-Processing.

After preprocessing, the data moves to the Modeling

stage, where we implement and compare four

algorithms: Naïve Bayes, Neural Network, Logistic

Regression, and Random Forest, with and without

feature selection. In the Evaluation stage, we use 10-

fold cross-validation before evaluating the model’s

performance based on accuracy, F1-Score, training

time and testing time. Lastly, the best combination of

feature selection method, number of features, and

model becomes the outcome of this research.

A. Hardware and Software

The success of the experiment heavily relies on

the use of capable software and hardware. For

software, Microsoft Excel is utilized for pre-

Jevan Bintoro, et al., OPTIMIZING ANDROID MALWARE DETECTION … 1665

processing tasks, such as balancing the data classes in

the dataset. For model implementation, the Orange

data mining tool (https://orangedatamining.com/) is

employed. Orange offers comprehensive features for

model development and performance evaluation,

enabling quick and precise calculation of metrics like

Classification Accuracy, Recall, F1-Score, and

Precision, as well as the processing time. Regarding

the hardware, this study utilized a computer with the

following specifications:

Processor : AMD Ryzen 5 PRO 4650G

RAM : 16 GB

HD : 256 GB SSD + 1 TB SSD

VGA : NVIDIA GeForce RTX 3060

B. Data Collection

The dataset used in this study is Drebin dataset

that available in Kaggle dataset repository. The

specifications of the dataset are listed below:

Dataset name : Drebin dataset

Number of classes : 2 (B and S)

Number of records : 15036

Number of features : 215 (label excluded)

Missing Value : 5

The dataset contains 5,560 malware records and

9,476 benign records. Due to the differences in the

number of records between the classes, the dataset is

considered imbalanced. A dataset is said to be

imbalanced when one of the target values has

significantly fewer instances than the other [21].

Handling imbalanced datasets is recommended, as

unequal class distribution can negatively impact the

performance of classifiers [22].

C. Pre-Processing

Data preprocessing is defined as a group of

methods used to improve the quality of the raw data

[23]. Preprocessing reduces data complexity and

enhances algorithm performance [24]. In this study,

the preprocessing methods used include data

cleaning, class balancing, and feature selection. Upon

evaluating the dataset, we identified five instances

with missing values. If not addressed, these missing

values could lead to inaccurate classification [25].

Therefore, a data cleaning method was implemented

to remove the instances with missing values.

The Drebin dataset is imbalanced, with the

number of records labeled as Benign (B) being

approximately 4,000 higher than those labeled as

Malware (S). To address this issue, we balanced

the dataset using the Random Under-Sampling (RUS)

method, performed with Microsoft Excel. Random

Under-Sampling is an algorithm that balances the

target distribution by randomly eliminating instances

from the majority class [26].

After balancing the data, the dataset underwent

feature selection using the Information Gain and Chi-

Squared (X2) methods to make the training process

more efficient. Information Gain and X2 are reliable

feature selection algorithms [27], [28]. Both are

useful for identifying the features that most

significantly impact model performance. Then

Backward Elimination method are performed to find

the best number of features.

Figure 1. Research stages

Backward elimination is a variable selection

method that removes features from the dataset until

the optimal number of features is found. The least

significant features will be removed first [29]. In this

experiment, the least significant feature is removed in

each iteration.

 Information Gain quantifies a feature's

importance for classification. If the Information Gain

value increased, the feature would have greater

significance [27]. The significant feature is chosen by

computing the entropy value. Entropy is a measure of

uncertainty that effectively summarizes feature

distributions in a concise manner [30]. The equation

of entropy can be seen in Equation 1.

𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑆) = ∑ −𝑃𝑖𝑙𝑜𝑔2𝑃𝑖
𝑐
𝑖 (1)

https://orangedatamining/

1666 Jurnal Teknik Informatika (JUTIF), Vol. 5, No. 6, December 2024, pp. 1663-1672

In this equation, C is the total number of

instances that exist in the class. Pi is the total count of

samples of class i. When entropy value is obtained,

the calculation of the Information Gain (IG) can be

performed using Equation 2.

𝐼𝐺(𝑆, 𝐴) = 𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑠) − 𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑆𝑣) (2)

In this equation, if A is an attribute, all the

possible value of A are represented by v. The

collection of all potential values for A is shown by

values A. Whereas S is the total number of samples in

the collection, Sv is the count of samples that have the

value v. The entropy of the samples with value v is

denoted by Entropy(Sv).

On the other hand, the Chi-Squared feature

selection measures the significance of each original

feature by doing Chi-Squared statistic test [28]. By

thoroughly analyzing the Chi-Squared statistics, we

can identify valuable features for the specific class

[31]. This method’s equation can be seen in equation

3. O depicts as number of observed class while E

depicts as number of expected class. A high Chi-

squared test score suggests that the feature and the

target class are likely dependent. Therefore, the final

dataset with selected features will be used in the

modeling and evaluation stage.

𝑋2 = ∑ 〖(
(𝑂−𝐸)2

(𝐸)
〗) (3)

D. Modeling

In the modeling stage, this experiment involves

four models: Random Forest, Neural Network, Naïve

Bayes, and Logistic Regression. These algorithms are

selected due to their popularity and effectiveness in

data classification. Alternative algorithms like

Support Vector Machines and AdaBoost will be

explored in future research. The experiment is

initially conducted without any feature selection. It is

then repeated using the two feature selection methods

mentioned in the previous sub-chapter. The four

algorithms are implemented simultaneously during

the first experiment. In the second and third

experiments, only the best algorithm from the first

experiment is used.

Random Forest is an algorithm method that is

based on ensemble tree. The method predict by

averaging many individual trees [32]. The detailed

process of Random Forest is illustrated in Figure 2.

A Neural Network is a type of artificial

intelligence that mimics the functioning of the human

brain. It processes input by creating connections

between processing elements, also known as neurons.

The output is determined by the arrangement and

weights of these connections [33]. Figure 3 provides

detailed information about how a neural network

processes data. The Neural Network used in this

experiment consists of 2 layers with 100 neurons in

the first layer and 40 neurons in the second layer. The

algorithm uses the ReLU activation function and is

configured with a maximum of 200 iterations.

Figure 2. Block Diagram of Random Forest Algorithm

Figure 3. Block Diagram of Neural Network Algorithm

Naive Bayes is a classification method based on

Bayes’ theorem. This method predict using

conditional probability [34]. The following Bayes

formula (Equation 4) serves as the foundation for the

Naïve Bayes theorem.

𝑃(𝐴|𝐵) =
𝑝(𝐴)𝑝(𝐵|𝐴)

𝑝(𝐵)
 (4)

Where,

 B : attributes

 A : class

 P(A|B) : probability of even A given B has

occurred

 P(B|A) : probability of even B given A has

occurred

 P(A) : probability of event A

 P(B) : probability of event B

Logistic Regression is a statistical method

commonly used to predict the dichotomous

dependent variable using one or more than one

variables. This method can be used to derive how the

independent variables can influence dependent

variable [35]. The logistic equation can be found in

Equation 5.

𝐿𝑅 =
𝑒(𝛽0𝑥0+𝛽1𝑥1+⋯𝛽𝑖𝑥𝑖)

1+𝑒(𝛽0𝑥0+𝛽1𝑥1+⋯𝛽𝑖𝑥𝑖)
 (5)

In this equation, the coefficients of regression in

the preceding equation are denoted as β0, β1, βi while

the independent variables are represented by 𝑥0, 𝑥1,

Jevan Bintoro, et al., OPTIMIZING ANDROID MALWARE DETECTION … 1667

𝑥i. At the conclusion of the modeling stage, the

accuracy, F1-Score, and training and testing times of

each experiment are compared to identify the

algorithm that performs best and most efficiently in

classifying the data.

E. Evaluation

The evaluation stage is conducted at the end of

this experiment. Prior to evaluating the model, 10-

fold cross-validation is implemented. The model’s

performance is assessed by calculating the accuracy,

F1-Score, training time and testing time.

10-fold cross-validation is used to prevent

overfitting in classification tasks and to evaluate the

performance of models when applied to new data

[36]. This method divides the dataset into 10

approximately equal subgroups. One subgroup is

utilized for testing and the other nine subgroups are

used for training for each of the ten iterations [37].

After implementing 10-fold cross-validation, a

confusion matrix is used to assess the model to

calculate its AUC, accuracy and F1-Score.

 A confusion matrix is a visual review tool that

shows the actual class results in rows, while columns

indicate the predicted class results [38]. The four

components of a confusion matrix are: True Positive

(TP), True Negative (TN), False Positive (FP), and

False Negative (FN).

True Positive (TP) means that the predicted

positive result matches the actual positive result. True

Negative (TN) means that the predicted negative

result matches the actual negative result. False

Positive (FP) occurs when the predicted positive

result differs from the actual negative result. False

Negative (FN) occurs when the predicted negative

result differs from the actual positive result [39].

These four components are used to calculate

accuracy, recall, precision, and F1-Score. Given the

potentially fatal consequences of false positives and

false negatives in malware detection, this research

measures the AUC (area under the curve), accuracy

and F1-score for each model variation.

Area Under the Curve (AUC) is a metric derived

from the Receiver Operating Characteristic (ROC)

curve, which summarizes the performance of a

predictor. The ROC curve method illustrates how

well a predictor distinguishes between different

outcomes by plotting True Positive Rate (TPR)

against False Positive Rate (FPR). ROC analysis

employs a series of thresholds to evaluate a model's

performance [40]. The equations for AUC, FPR, and

TPR are shown below.

𝐴𝑈𝐶 = ∑ (𝐹𝑃𝑅𝑖+1 − 𝐹𝑃𝑅𝑖) ×
𝑇𝑃𝑅𝑖+1+𝑇𝑃𝑅𝑖

2
𝑥𝑓𝑜𝑠𝑐

𝑛−1
𝑖=1 (6)

Where,

 FPRi : False Positive Rate at threshold i

 TPRi : True Positive Rate at threshold i

𝐹𝑃𝑅 =
𝐹𝑃

𝐹𝑃+𝑇𝑁
 (7)

𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (8)

The accuracy value provides a measure of how

often a model correctly classifies instances [41]. The

equation for calculating accuracy is shown in

Equation 6. In this equation, accuracy is obtained by

dividing the total number of correct predictions (TP

and TN) by the total number of predictions (TP, FP,

TN, FN).

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

(𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁)
 (9)

Meanwhile, the precision and recall harmonic

mean yields the F1-Score value [42]. A harmonic

mean is a kind of average that is computed by

multiplying the total number of values in a dataset by

the reciprocal of each value in the dataset. An

averaging metric that is helpful for rates and ratios is

the harmonic mean. The following formula is used to

compute it:

𝐹1 = 2 ×
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
 (10)

In this context, Recall is the ratio of true positive

predictions to all actual positives, whereas precision

is the ratio of true positive predicted results to all

positive predictions. The formula of precision can be

seen in Equation 8, whereas formula of recall is in

Equation 9. The F1-Score is a matrix that represents

precision and recall, making it a valuable metric for

evaluating the performance of a classification model,

especially when dealing with imbalanced datasets.

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (11)

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (12)

Additionally, the model’s performance in term

of efficiency is measured based on its training and

testing time. Training time refers to the period during

which a model is trained using the complete dataset

[43]. Testing time refers to the duration the model

takes to make predictions on the test data [44].

Therefore, we evaluate the training time of a model

both with and without feature selection. The increase

in processing speed is calculated to assess the

efficiency of the model.

3. RESULT

In the data collection stage, the dataset was

obtained from Kaggle dataset repository. The dataset

contains 15036 instances and had two classes in its

label, which consists of 5560 instances that labeled as

‘S’ (suspicious) and 9476 instances that labeled as ‘B’

(benign). The dataset also had 215 features that

excluding the label and 5 instances with missing

values. Those 5 instances with missing values were

removed from the dataset.

1668 Jurnal Teknik Informatika (JUTIF), Vol. 5, No. 6, December 2024, pp. 1663-1672

The number of instances between malware and

benign class were different, it could be said that the

dataset is imbalance. To solve the issue, class

balancing is carried out to balance the classes

between benign and malware using Random

Undersampling Method. 9476 instances with the

benign label were reduced to match the number of

instances with malware label after data cleaning

which is 5555 instances.

In the feature selection method and modeling

stage, three experiments were conducted. Backward

Elimination method was used to search the optimal

number of features. The first experiment aimed to

compare four machine learning models to determine

the best one for classifying Android malware. The

results showed that the Neural Network model

achieved the accuracy and F1-score at 98.6%. The

training and testing times were recorded as 98.656

seconds and 2.607 seconds, respectively. Detailed

performance results of the experiment are presented

in Table 1. Since the Neural Network performed the

best, it was used in the subsequent experiments.

The second experiment employed the

Information Gain feature selection method with the

Neural Network algorithm. Our findings indicate that

the combination of the Neural Network and

Information Gain, using 131 features, achieved an

accuracy and F1-score of 98.6%. Additionally, the

combination attained an AUC score of 99.7%. The

confusion matrix for this combination shows 5488

true positives, 5461 true negatives, 94 false positives,

and 67 false negatives. The detailed results are

presented in Table 2.

Table 1. Performance of Classification Algorithms without Feature Selection

Machine Learning Methods Accuracy (%) F1-Score (%) Train Time (S) Test Time (S)

Random Forest 98.2 98.2 4.259 1.003

Neural Network 98.6 98.6 98.656 2.607

Naïve Bayes 84.9 84.8 0.523 0.065

Logistic Regression 97.6 97.6 24.853 0.993

Table 2. The experiment test result with and without Feature Selection (FS).

Number of Features

Neural Network

Information Gain X2

Acc (%) F1-Score (%) Acc (%) F1-Score (%)

126 98.5 98.5 98.5 98.5

127 98.5 98.5 98.2 98.2

128 98.5 98.5 98.4 98.4

129 98.5 98.5 98.4 98.4

130 98.4 98.4 98.5 98.5

131 98.6 98.6 98.4 98.4

132 98.5 98.5 98.3 98.3

133 98.5 98.5 98.3 98.3

134 98.5 98.5 98.5 98.5

135 98.5 98.5 98.4 98.4

136 98.5 98.5 98.5 98.5

137 98.6 98.6 98.5 98.5

138 98.6 98.6 98.6 98.6

In the third experiment, we applied the Chi-

Squared method for feature selection. The results

demonstrated that the combination of the Neural

Network and Chi-Squared achieved 98.6% for both

accuracy and F1-score using 138 features.

Additionally, this combination attained an AUC score

of 99.7%. The confusion matrix for this combination

indicates 5480 true positives, 5476 true negatives, 79

false positives, and 75 false negatives. The detailed

results of this experiment are presented in Table 2.

Table 3. Neural Network comparison results before and after using feature selection

Number of Features Feature Selection Acc (%) F1-Score (%) Train Time (S) Test Time (S)

All (215) No Feature Selection 98.6 98.6 98.656 2.607

131 Features Information Gain 98.6 98.6 81.135 1.095

Time Reduction 17.7597 % 57.9977 %

Table 4. Performance analysis results

No. Methods AUC (%) Accuracy (%) F1-Score (%) Train Time (S) Test Time (S)

1. NN + IG (131) 99.7 98.6 98.6 81.135 1.095

2. NN + X2 (138) 99.7 98.6 98.6 84.755 1.299

3. Stacking + SBFS (8 extracted features) [16] - 97.96 - - -

4. XGBoost + LOFO (30) [17] - 95.59 93.89 - -

Jevan Bintoro, et al., OPTIMIZING ANDROID MALWARE DETECTION … 1669

Figure 4. ROC curve comparison of Neural Networks with different feature selection methods

Figure 5. NN + IG confusion matrix Figure 6. NN + X2 confusion matrix

4. DISCUSSION

In the first experiment, the Neural Network

algorithm achieved the best performance but had a

longer training time compared to other algorithms. In

the second experiment, based on Table 3, there was a

notable improvement in both training and testing

times while retaining the same performance after

implementing Information Gain, which removed 84

of the least significant features. The training time

decreased by 17.7597 %, resulting in a reduction of

17.521 seconds, and the testing time decreased by

57.9977 %, reducing the time by 1.512 seconds. This

feature selection significantly enhances the speed of

malware identification, which is crucial for

preventing the spread of malicious software. In the

third experiment, the combination of the Neural

Network and Chi-Squared (X²) achieved the same

performance score as the second experiment's

combination, but required 3 more features to attain

the same performance.

Based on Figures 5 and 6, both confusion

matrices indicate that both combinations achieved

high performance, despite a slight difference in the

number of false positives and false negatives. The

ROC curve, shown in Figure 4, demonstrates that

both combinations exhibit nearly identical results

with almost perfect predictive accuracy.

Additionally, the standard error for both methods is

consistent, further validating the reliability of the

models' performance.

As shown in Table 4 and Figure 7, the

combination of the Neural Network and Information

Gain provided the best performance with an accuracy

score of 98.6%, outperforming three other methods.

The second-best method used the same algorithm but

employed a different feature selection method, the

1670 Jurnal Teknik Informatika (JUTIF), Vol. 5, No. 6, December 2024, pp. 1663-1672

chi-squared method (X2). In terms of performance,

the second-best method achieved the same AUC

,accuracy, and F1-Score as the best method, but the

training and testing times were longer.

The third and fourth methods were researched

by [16] and [17], respectively. The third method

consisted of a Stacking algorithm and a substring-

based feature selection method. The accuracy of this

method was 0.64% lower than that of the best method.

The fourth method consisted of the XGBoost

algorithm and the Leave-One-Feature-Out (LOFO)

technique for feature selection. This method achieved

an accuracy of 95.59% and an F1-Score of 93.89%.

Compared to the best method, this method’s

performance dropped considerably by 3.05274% in

accuracy and 4.77688% in F1-Score.

The combination of the Neural Network

algorithm and the Information Gain feature selection

method outperforms other algorithms for two reasons.

First, with only the most significant features, the

Neural Network can focus on the most relevant data,

leading to more accurate predictions. Second, the

reduction in the number of features makes the Neural

Network process faster and more efficient.

Figure 7. Accuracy comparison between four combinations

5. CONCLUSION

In recent years, polymorphic and metamorphic

malware have become prevalent, rendering

traditional malware classification methods based on

signature matching ineffective. To effectively

classify these types of malwares, Artificial

Intelligence (AI) is essential to enhance malware

detection capabilities. This study explores the

implementation of the Neural Network algorithm and

the Chi-Squared (X²) feature selection method to

detect malware using the Drebin dataset.

In addition to feature selection, two

preprocessing methods, data cleaning and class

balancing, were applied to the dataset to ensure

accurate classification. For data cleaning, five

instances with missing values were removed. Class

balancing was achieved using the Random Under

Sampling method.

The experiment aimed to identify the best

combination of feature selection methods and

classification algorithms, including Random Forest,

Neural Network, Naïve Bayes, and Logistic

Regression. The results indicated that the

combination of Neural Network and Information

Gain achieved the highest accuracy and F1-score,

with a score of 98.6% on 131 features. This study

demonstrates that combining Neural Networks with

Information Gain significantly enhances both the

accuracy and efficiency of Android malware

detection. In the future, this combination of

algorithms can be applied in AI-based antivirus

systems to detect viruses more effectively and

efficiently.

However, the combination's effectiveness relies

on high-quality labeled malware data, and its

accuracy is not yet at the ideal 100% for malware

classification. Future work could optimize

classification using other methods, such as Deep

Learning.

REFERENCES

[1] S. Garg and N. Baliyan, “Comparative

analysis of Android and iOS from security

viewpoint,” Comput Sci Rev, vol. 40, p.

100372, May 2021, doi:

10.1016/J.COSREV.2021.100372.

[2] T. Sharma and D. Rattan, “Malicious

application detection in android — A

systematic literature review,” Comput Sci

Rev, vol. 40, p. 100373, May 2021, doi:

10.1016/J.COSREV.2021.100373.

[3] J. D. Ndibwile, E. T. Luhanga, D. Fall, and Y.

Kadobayashi, “A demographic perspective of

smartphone security and its redesigned

notifications,” Journal of Information

Processing, vol. 27, pp. 773–786, 2019, doi:

10.2197/ipsjjip.27.773.

[4] S. Garg and N. Baliyan, “Android security

assessment: A review, taxonomy and

research gap study,” Comput Secur, vol. 100,

p. 102087, Jan. 2021, doi:

10.1016/J.COSE.2020.102087.

[5] R. Mayrhofer, J. Vander Stoep, C. Brubaker,

and N. Kralevich, “The Android Platform

Security Model,” ACM Transactions on

Privacy and Security, vol. 24, no. 3, Apr.

2021, doi: 10.1145/3448609.

[6] R. Sikder, M. S. Khan, M. S. Hossain, and W.

Z. Khan, “A survey on android security:

Development and deployment hindrance and

best practices,” Telkomnika

(Telecommunication Computing Electronics

and Control), vol. 18, no. 1, pp. 485–499,

Feb. 2020, doi:

10.12928/TELKOMNIKA.V18I1.13288.

[7] A. Qamar, A. Karim, and V. Chang, “Mobile

malware attacks: Review, taxonomy & future

directions,” Future Generation Computer

Systems, vol. 97, pp. 887–909, Aug. 2019,

doi: 10.1016/J.FUTURE.2019.03.007.

94 95 96 97 98 99

Accuracy (%)

XGBoost + LOFO [18] Stacking + SBFS [17]

NN + Chi-squared NN + IG

Jevan Bintoro, et al., OPTIMIZING ANDROID MALWARE DETECTION … 1671

[8] T. Yerlikaya and S. Sen, “Hacking Android

Mobile Phone with Phishing,” Journal"

Fundamental Sciences and Applications",

vol. 27, pp. 1–7, Dec. 2021.

[9] J. Ferdous, R. Islam, A. Mahboubi, and M. Z.

Islam, “A Review of State-of-the-Art

Malware Attack Trends and Defense

Mechanisms,” IEEE Access, vol. 11, pp.

121118–121141, 2023, doi:

10.1109/ACCESS.2023.3328351.

[10] L. Franceschi-Bicchierai and R. Coluccini,

“Researchers find google play store apps

were actually government malware,” 2019.

[11] M. Caianiello, “Criminal Process faced with

the Challenges of Scientific and

Technological Development,” European

Journal of Crime, Criminal Law and

Criminal Justice, vol. 27, no. 4, pp. 267–291,

Dec. 2019, doi: 10.1163/15718174-

02704001.

[12] O. Aslan and R. Samet, “A Comprehensive

Review on Malware Detection Approaches,”

2020, Institute of Electrical and Electronics

Engineers Inc. doi:

10.1109/ACCESS.2019.2963724.

[13] D. Gibert, C. Mateu, J. Planes, and J.

Marques-Silva, “Auditing static machine

learning anti-Malware tools against

metamorphic attacks,” Comput Secur, vol.

102, Mar. 2021, doi:

10.1016/j.cose.2020.102159.

[14] D. H. Gillani, “A perspective study on

Malware detection and protection, A review,”

2022, doi:

10.22541/au.166308976.63086986/v1.

[15] J. Singh and J. Singh, “A survey on machine

learning-based malware detection in

executable files,” Journal of Systems

Architecture, vol. 112, p. 101861, Jan. 2021,

doi: 10.1016/J.SYSARC.2020.101861.

[16] M. S. Rana and A. H. Sung, “Evaluation of

Advanced Ensemble Learning Techniques

for Android Malware Detection,” Vietnam

Journal of Computer Science, vol. 7, no. 2,

pp. 145–159, May 2020, doi:

10.1142/S2196888820500086.

[17] S. A. Roseline and S. Geetha, “Android

Malware Detection and Classification using

LOFO Feature Selection and Tree-based

Models,” in Journal of Physics: Conference

Series, IOP Publishing Ltd, Jun. 2021. doi:

10.1088/1742-6596/1911/1/012031.

[18] C. Supriyanto, F. A. Rafrastara, A. Amiral, S.

R. Amalia, M. D. Al Fahreza, and Mohd. F.

Abdollah, “Malware Detection Using K-

Nearest Neighbor Algorithm and Feature

Selection,” JURNAL MEDIA

INFORMATIKA BUDIDARMA, vol. 8, no. 1,

p. 412, Jan. 2024, doi:

10.30865/mib.v8i1.6970.

[19] F. A. Rafrastara, C. Supriyanto, C. Paramita,

and Y. P. Astuti, “Deteksi Malware

menggunakan Metode Stacking berbasis

Ensemble,” Jurnal Informatika: Jurnal

Pengembangan IT, vol. 8, no. 1, pp. 11–6,

2023.

[20] M. A. Albahar, M. S. Elsayed, and A. Jurcut,

“A Modified ResNeXt for Android Malware

Identification and Classification,” Comput

Intell Neurosci, vol. 2022, 2022, doi:

10.1155/2022/8634784.

[21] F. Thabtah, S. Hammoud, F. Kamalov, and

A. Gonsalves, “Data imbalance in

classification: Experimental evaluation,” Inf

Sci (N Y), vol. 513, pp. 429–441, Mar. 2020,

doi: 10.1016/J.INS.2019.11.004.

[22] K. Md. Hasib et al., “A Survey of Methods

for Managing the Classification and Solution

of Data Imbalance Problem,” Journal of

Computer Science, vol. 16, no. 11, pp. 1546–

1557, Dec. 2020, doi:

10.3844/jcssp.2020.1546.1557.

[23] C. Fan, M. Chen, X. Wang, J. Wang, and B.

Huang, “A Review on Data Preprocessing

Techniques Toward Efficient and Reliable

Knowledge Discovery From Building

Operational Data,” Mar. 29, 2021, Frontiers

Media S.A. doi: 10.3389/fenrg.2021.652801.

[24] S. Rao, P. Poojary, J. Somaiya, and P.

Mahajan, “A COMPARATIVE STUDY

BETWEEN VARIOUS PREPROCESSING

TECHNIQUES FOR MACHINE

LEARNING,” International Journal of

Engineering Applied Sciences and

Technology, vol. 5, no. 3, pp. 431–438, Jul.

2020.

[25] V. Çetin and O. Yıldız, “A comprehensive

review on data preprocessing techniques in

data analysis,” Pamukkale University Journal

of Engineering Sciences, vol. 28, no. 2, pp.

299–312, 2022, doi:

10.5505/pajes.2021.62687.

[26] R. Mohammed, J. Rawashdeh, and M.

Abdullah, “Machine Learning with

Oversampling and Undersampling

Techniques: Overview Study and

Experimental Results,” 2020 11th

International Conference on Information and

Communication Systems, ICICS 2020, pp.

243–248, Apr. 2020, doi:

10.1109/ICICS49469.2020.239556.

[27] S. Tangirala, “Evaluating the Impact of GINI

Index and Information Gain on Classification

using Decision Tree Classifier Algorithm*,”

International Journal of Advanced Computer

Science and Applications, vol. 11, no. 2, pp.

1672 Jurnal Teknik Informatika (JUTIF), Vol. 5, No. 6, December 2024, pp. 1663-1672

612–619, 2020.

[28] R. Spencer, F. Thabtah, N. Abdelhamid, and

M. Thompson, “Exploring feature selection

and classification methods for predicting

heart disease,” Digit Health, vol. 6, 2020, doi:

10.1177/2055207620914777.

[29] M. Z. I. Chowdhury and T. C. Turin,

“Variable selection strategies and its

importance in clinical prediction modelling,”

Fam Med Community Health, vol. 8, no. 1,

Feb. 2020, doi: 10.1136/fmch-2019-000262.

[30] K. Kurniabudi, A. Harris, and A. E. Mintaria,

“Komparasi Information Gain, Gain Ratio,

CFs-Bestfirst dan CFs-PSO Search Terhadap

Performa Deteksi Anomali,” JURNAL

MEDIA INFORMATIKA BUDIDARMA, vol.

5, no. 1, p. 332, Jan. 2021, doi:

10.30865/mib.v5i1.2258.

[31] S. K. Trivedi, “A study on credit scoring

modeling with different feature selection and

machine learning approaches,” Technol Soc,

vol. 63, Nov. 2020, doi:

10.1016/j.techsoc.2020.101413.

[32] M. Schonlau and R. Y. Zou, “The random

forest algorithm for statistical learning,”

Stata Journal, vol. 20, no. 1, pp. 3–29, Mar.

2020, doi: 10.1177/1536867X20909688.

[33] M. Islam, G. Chen, and S. Jin, “An Overview

of Neural Network,” American Journal of

Neural Networks and Applications, vol. 5, no.

1, p. 7, 2019, doi:

10.11648/j.ajnna.20190501.12.

[34] S. Bhatia and J. Malhotra, “Naïve bayes

classifier for predicting the novel

coronavirus,” in Proceedings of the 3rd

International Conference on Intelligent

Communication Technologies and Virtual

Mobile Networks, ICICV 2021, Institute of

Electrical and Electronics Engineers Inc.,

Feb. 2021, pp. 880–883. doi:

10.1109/ICICV50876.2021.9388410.

[35] N. R. Panda, J. K. Pati, J. N. Mohanty, and R.

Bhuyan, “A Review on Logistic Regression

in Medical Research,” National Journal of

Community Medicine, vol. 13, no. 04, pp.

265–270, Apr. 2022, doi:

10.55489/NJCM.134202222.

[36] B. G. Marcot and A. M. Hanea, “What is an

optimal value of k in k-fold cross-validation

in discrete Bayesian network analysis?,”

Comput Stat, vol. 36, no. 3, pp. 2009–2031,

Sep. 2021, doi: 10.1007/S00180-020-00999-

9/METRICS.

[37] S. M. Malakouti, M. B. Menhaj, and A. A.

Suratgar, “The usage of 10-fold cross-

validation and grid search to enhance ML

methods performance in solar farm power

generation prediction,” Clean Eng Technol,

vol. 15, Aug. 2023, doi:

10.1016/j.clet.2023.100664.

[38] J. Xu, Y. Zhang, and D. Miao, “Three-way

confusion matrix for classification: A

measure driven view,” Inf Sci (N Y), vol. 507,

pp. 772–794, Jan. 2020, doi:

10.1016/J.INS.2019.06.064.

[39] M. Te Wu, “Confusion matrix and minimum

cross-entropy metrics based motion

recognition system in the classroom,” Sci

Rep, vol. 12, no. 1, Dec. 2022, doi:

10.1038/s41598-022-07137-z.

[40] J. Muschelli, “ROC and AUC with a Binary

Predictor: a Potentially Misleading Metric,” J

Classif, vol. 37, no. 3, pp. 696–708, Oct.

2020, doi: 10.1007/s00357-019-09345-1.

[41] F. A. Rafrastara, C. Supriyanto, C. Paramita,

Y. P. Astuti, and F. Ahmed, “Performance

Improvement of Random Forest Algorithm

for Malware Detection on Imbalanced

Dataset using Random Under-Sampling

Method,” urnal Informatika: Jurnal

Pengembangan IT, vol. 8, no. 2, pp. 113–118,

May 2023.

[42] D. Chicco and G. Jurman, “The advantages of

the Matthews correlation coefficient (MCC)

over F1 score and accuracy in binary

classification evaluation,” BMC Genomics,

vol. 21, no. 1, Jan. 2020, doi:

10.1186/s12864-019-6413-7.

[43] I. D. Apostolopoulos, I. Athanasoula, M.

Tzani, and P. P. Groumpos, “An Explainable

Deep Learning Framework for Detecting and

Localising Smoke and Fire Incidents:

Evaluation of Grad-CAM++ and LIME,”

Mach Learn Knowl Extr, vol. 4, no. 4, pp.

1124–1135, Dec. 2022, doi:

10.3390/make4040057.

[44] J. Woo, S. H. Jo, G. S. Byun, B. S. Kwon, and

J. H. Jeong, “Wearable airbag system for real-

time bicycle rider accident recognition by

orthogonal convolutional neural network (O-

cnn) model,” Electronics (Switzerland), vol.

10, no. 12, Jun. 2021, doi:

10.3390/electronics10121423..

