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Abstract 

 

Malware poses a serious threat to Android security systems. In recent years, Android malware has rapidly evolved, 

employing obfuscation techniques such as polymorphic and metamorphic. Unfortunately, signature-based 

malware detection cannot identify modern variants of Android malware. This study aims to compare various 

feature selection methods and machine learning algorithms to identify the most effective and efficient combination 

for classifying Android malware. The dataset used in this research is the Drebin dataset. Four classification 

algorithms are used in this comparison: Naive Bayes, Logistic Regression, Neural Network, and Random Forest. 

The best-performing algorithm is then implemented in three different scenarios: without feature selection, with 

Information Gain, and with Chi-Squared (X²). In the latter two scenarios, the appropriate number of features was 

selected using the backward elimination method. Both feature selections achieved the same performance, but 

Information Gain required fewer features. The evaluation metrics used in this study include AUC, accuracy, F1-

score, training time, and testing time. Measuring training and testing time benefits the model by making it more 

efficient, thus allowing for faster detection in real-world applications. The results show that the combination of 

the Information Gain feature selection method and the Neural Network algorithm achieves the highest 

performance, with an accuracy and F1-Score of 98.6%. Additionally, this combination achieves a training time of 

81.135 seconds and a testing time of 1.095 seconds. Compared to the Neural Network algorithm without feature 

selection, this combination results in a 17.7597 % reduction in training time and a 57.9977 % reduction in testing 

time while maintaining the same performance values. This research contributes to improving the speed and 

accuracy of malware detection systems, enhancing mobile security. 
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1. INTRODUCTION 

Over the past five years, the number of Android 

smartphone users has increased significantly, making 

it the most popular smartphone operating system (OS) 

by user count, with 2.5 billion active users in 2019 

[1]. The trend indicates that Android’s market share 

has grown from 37% to 75% over seven years [2]. 

Between April and June 2021, 313 million gadgets 

(smartphones and tablets) were shipped, with over 

80% of these devices running on the Android OS. 

However, a study found that over 1 billion devices 

were using an outdated version of the Android 

operating system, leading to numerous security 

vulnerabilities [3].  

Android security has improved significantly 

over the years, incorporating features like device and 

file-based encryption, which are mandatory for all 

Android devices [4]. The Android security system 

enforces protections at runtime or during program 

execution to mitigate malicious code that has already 

run on the device [5]. Despite these advancements, 

malware remains a serious threat to the Android OS. 

Google Play Protect scans 200 billion apps in the 

Google Play Store daily to safeguard users from 

malware apps, which are designed to attack 

smartphone operating systems [6].  

In 2010, a mobile malware called FakePlayer 

became the first trojan targeting the Android OS [7]. 

FakePlayer generated revenue by sending SMS 

messages to paid services [8]. These messages could 

result in charges to the user without their consent. 

Another notable mobile malware is Exodus 

Spyware, which, once installed on a device, grants the 

attacker full control and access to the device and its 

data [9]. This malware first verifies the phone number 

and IMEI to determine if the smartphone is the 

intended target. If it is, the malware downloads the 

actual malicious software to hack the phone [10]. 

Exodus has been used by various public prosecution 

offices in Italy [11]. In 2016, Google mitigated this 

malware by closing the vulnerability exploited by 

DirtyCOW, the program installed by Exodus. 

The new generation of malware employs 

masking techniques such as polymorphic and 

metamorphic methods, which signature-based 
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malware detection cannot detect [12].  Polymorphic 

and metamorphic malware types change their form 

each time they replicate to infect new files [13]. 

Signature-based malware detection classifies 

malware by matching the program’s signature with 

existing malware signatures [14]. The signature of a 

malware file is created using hash algorithms like 

SHA1 and MD5. This detection method relies on an 

existing malware signature database; if the malware 

file is modified, a new signature must be generated 

and added to the database, making it less effective 

[15]. Therefore, an Artificial Intelligence-based 

detection method is needed to address the weaknesses 

of signature-based detection. 

In this study, Artificial Intelligence (AI) was 

implemented for malware detection. We aim to 

identify the best combination of classification 

algorithms and feature selection methods. The AI 

malware detection model is trained using 

classification algorithms, while feature selection 

methods are employed to enhance the model’s 

process efficiency. 

Rana [16] conducted research to evaluate 

advanced ensemble learning techniques for detecting 

Android malware. The Drebin dataset was used in this 

research and underwent substring-based feature 

selection (SBFS) and data balancing. The model was 

trained using an advanced ensemble method 

incorporating Decision Tree, Random Forest, 

Gradient Boosting Tree, Support Vector Machine, 

and Logistic Regression. The performance results 

showed that the highest accuracy achieved was 

97.96%. However, this accuracy is not ideal for 

classifying malware, since it needs zero tolerance for 

false positive and false negative detection. 

Roseline [17] conducted research to detect and 

classify Android malware using the Leave One 

Feature Out (LOFO) feature selection method and 

various tree-based models. The Drebin dataset was 

utilized for this study. The LOFO method was 

employed to assess the importance of the dataset’s 

features. The models used in this research included 

Decision Tree, Random Forest, ExtraTrees, GBM, 

LightGBM, AdaBoost, and XGBoost. The results 

indicated that the XGBoost model achieved the best 

performance with 30 features, attaining an accuracy 

of 95.59% and an F1-Score of 93.89%. However, this 

accuracy is not optimal for malware classification, 

and class balancing was not implemented in this 

research. 

Supriyanto [18] conducted research on detecting 

malware using the K-Nearest Neighbor (kNN) 

algorithm with a feature-selected dataset. The 

datasets used were VxHeaven and VirusTotal. To 

improve model performance, the dataset underwent 

Information Gain and Principal Component Analysis 

(PCA), reducing the number of features to 32. The 

kNN algorithm was used for classification. The 

research achieved an accuracy and F1-score of 

95.8%. However, the kNN algorithm requires 

calculating the distance between the query instance 

and all training instances, making it computationally 

expensive. 

Rafrastara [19] conducted research to detect 

malware using an ensemble-based stacking method. 

The dataset used in this research was named 

“Malware Static and Dynamic Features VxHeaven 

and VirusTotal Data Set.” Due to class imbalance, the 

dataset underwent class balancing using an 

undersampling method, reducing the number of 

instances in each class to 595. Additionally, feature 

selection reduced the dataset to 1,086 features. The 

research achieved a score of 95.5% in both accuracy 

and recall. However, the stacking ensemble method 

can be computationally intensive, requiring 

significant resources for training and inference. 

Albahar [20] conducted research on the 

implementation of a modified ResNeXt model for 

identifying Android malware. The Drebin image 

dataset was used for this research, and the dataset was 

transformed into grayscale images for the model to 

classify. The author used the ResNeXt classification 

model, a convolutional neural network that employs 

a strategy called “split-transform-merge,” resulting in 

an accuracy of 98.2%. However, the accuracy 

achieved in this research is not ideal for classifying 

malware. Additionally, the effectiveness of the 

proposed regularization technique is difficult to 

assess, as the paper does not provide a comparison 

with other regularization methods. 

Based on the literature review above, there are 

two state-of-the-art studies that utilized the same 

dataset used in this research, called the Drebin 

dataset, as conducted by [16], [18]. However, the 

accuracy of their performance is still not ideal for 

malware classification. This study aims to identify the 

optimal combination of machine learning algorithms 

and feature selection techniques for effective and 

efficient Android malware detection. 

2. RESEARCH METHOD 

This study involves five sequential stages, as 

illustrated in Figure 1. The first stage is dataset 

collection. The gathered data often has certain issues 

that need to be addressed, making it crucial to 

preprocess it in the second stage, Pre-Processing. 

After preprocessing, the data moves to the Modeling 

stage, where we implement and compare four 

algorithms: Naïve Bayes, Neural Network, Logistic 

Regression, and Random Forest, with and without 

feature selection. In the Evaluation stage, we use 10-

fold cross-validation before evaluating the model’s 

performance based on accuracy, F1-Score, training 

time and testing time. Lastly, the best combination of 

feature selection method, number of features, and 

model becomes the outcome of this research. 

A. Hardware and Software 

The success of the experiment heavily relies on 

the use of capable software and hardware. For 

software, Microsoft Excel is utilized for pre-
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processing tasks, such as balancing the data classes in 

the dataset. For model implementation, the Orange 

data mining tool (https://orangedatamining.com/) is 

employed. Orange offers comprehensive features for 

model development and performance evaluation, 

enabling quick and precise calculation of metrics like 

Classification Accuracy, Recall, F1-Score, and 

Precision, as well as the processing time. Regarding 

the hardware, this study utilized a computer with the 

following specifications: 

Processor : AMD Ryzen 5 PRO 4650G  

RAM   : 16 GB 

HD   : 256 GB SSD + 1 TB SSD  

VGA   : NVIDIA GeForce RTX 3060 

B. Data Collection 

The dataset used in this study is Drebin dataset 

that available in Kaggle dataset repository. The 

specifications of the dataset are listed below:  

Dataset name : Drebin dataset 

Number of classes : 2 (B and S) 

Number of records : 15036 

Number of features : 215 (label excluded) 

Missing Value : 5 

The dataset contains 5,560 malware records and 

9,476 benign records. Due to the differences in the 

number of records between the classes, the dataset is 

considered imbalanced. A dataset is said to be 

imbalanced when one of the target values has 

significantly fewer instances than the other [21]. 

Handling imbalanced datasets is recommended, as 

unequal class distribution can negatively impact the 

performance of classifiers [22]. 

C. Pre-Processing 

Data preprocessing is defined as a group of 

methods used to improve the quality of the raw data 

[23]. Preprocessing reduces data complexity and 

enhances algorithm performance [24]. In this study, 

the preprocessing methods used include data 

cleaning, class balancing, and feature selection. Upon 

evaluating the dataset, we identified five instances 

with missing values. If not addressed, these missing 

values could lead to inaccurate classification [25]. 

Therefore, a data cleaning method was implemented 

to remove the instances with missing values. 

The Drebin dataset is imbalanced, with the 

number of records labeled as Benign (B) being 

approximately 4,000 higher than those labeled as 

Malware (S). To address this issue, we balanced 

the dataset using the Random Under-Sampling (RUS) 

method, performed with Microsoft Excel. Random 

Under-Sampling is an algorithm that balances the 

target distribution by randomly eliminating instances 

from the majority class [26]. 

After balancing the data, the dataset underwent 

feature selection using the Information Gain and Chi-

Squared (X2) methods to make the training process 

more efficient. Information Gain and X2 are reliable 

feature selection algorithms [27], [28]. Both are 

useful for identifying the features that most 

significantly impact model performance. Then 

Backward Elimination method are performed to find 

the best number of features. 
 

Figure 1. Research stages 

 

Backward elimination is a variable selection 

method that removes features from the dataset until 

the optimal number of features is found. The least 

significant features will be removed first [29]. In this 

experiment, the least significant feature is removed in 

each iteration. 

 Information Gain quantifies a feature's 

importance for classification. If the Information Gain 

value increased, the feature would have greater 

significance [27]. The significant feature is chosen by 

computing the entropy value. Entropy is a measure of 

uncertainty that effectively summarizes feature 

distributions in a concise manner [30]. The equation 

of entropy can be seen in Equation 1. 

𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑆) =  ∑ −𝑃𝑖𝑙𝑜𝑔2𝑃𝑖
𝑐
𝑖  (1) 

https://orangedatamining/
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In this equation, C is the total number of 

instances that exist in the class. Pi is the total count of 

samples of class i. When entropy value is obtained, 

the calculation of the Information Gain (IG) can be 

performed using Equation 2. 

𝐼𝐺(𝑆, 𝐴) = 𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑠) −  𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑆𝑣) (2) 

In this equation, if A is an attribute, all the 

possible value of A are represented by v. The 

collection of all potential values for A is shown by 

values A. Whereas S is the total number of samples in 

the collection, Sv is the count of samples that have the 

value v. The entropy of the samples with value v is 

denoted by Entropy(Sv).  

On the other hand, the Chi-Squared feature 

selection measures the significance of each original 

feature by doing Chi-Squared statistic test [28]. By 

thoroughly analyzing the Chi-Squared statistics, we 

can identify valuable features for the specific class 

[31]. This method’s equation can be seen in equation 

3. O depicts as number of observed class while E 

depicts as number of expected class. A high Chi-

squared test score suggests that the feature and the 

target class are likely dependent. Therefore, the final 

dataset with selected features will be used in the 

modeling and evaluation stage. 

𝑋2 =  ∑ 〖(
(𝑂−𝐸)2

(𝐸)
〗) (3) 

D. Modeling 

In the modeling stage, this experiment involves 

four models: Random Forest, Neural Network, Naïve 

Bayes, and Logistic Regression. These algorithms are 

selected due to their popularity and effectiveness in 

data classification. Alternative algorithms like 

Support Vector Machines and AdaBoost will be 

explored in future research. The experiment is 

initially conducted without any feature selection. It is 

then repeated using the two feature selection methods 

mentioned in the previous sub-chapter. The four 

algorithms are implemented simultaneously during 

the first experiment. In the second and third 

experiments, only the best algorithm from the first 

experiment is used.  

Random Forest is an algorithm method that is 

based on ensemble tree. The method predict by 

averaging many individual trees [32]. The detailed 

process of Random Forest is illustrated in Figure 2. 

A Neural Network is a type of artificial 

intelligence that mimics the functioning of the human 

brain. It processes input by creating connections 

between processing elements, also known as neurons. 

The output is determined by the arrangement and 

weights of these connections [33]. Figure 3 provides 

detailed information about how a neural network 

processes data. The Neural Network used in this 

experiment consists of 2 layers with 100 neurons in 

the first layer and 40 neurons in the second layer. The 

algorithm uses the ReLU activation function and is 

configured with a maximum of 200 iterations. 

 
Figure 2. Block Diagram of Random Forest Algorithm 

 

 
Figure 3. Block Diagram of Neural Network Algorithm 

 

Naive Bayes is a classification method based on 

Bayes’ theorem. This method predict using 

conditional probability [34]. The following Bayes 

formula (Equation 4) serves as the foundation for the 

Naïve Bayes theorem.  

𝑃(𝐴|𝐵) =
𝑝(𝐴)𝑝(𝐵|𝐴)

𝑝(𝐵)
 (4) 

Where, 

 B : attributes 

 A : class 

 P(A|B) : probability of even A given B has 

occurred 

 P(B|A) : probability of even B given A has 

occurred 

 P(A) : probability of event A 

 P(B) : probability of event B 

Logistic Regression is a statistical method 

commonly used to predict the dichotomous 

dependent variable using one or more than one 

variables. This method can be used to derive how the 

independent variables can influence dependent 

variable [35]. The logistic equation can be found in 

Equation 5.  

𝐿𝑅 =  
𝑒(𝛽0𝑥0+𝛽1𝑥1+⋯𝛽𝑖𝑥𝑖)

1+𝑒(𝛽0𝑥0+𝛽1𝑥1+⋯𝛽𝑖𝑥𝑖)
 (5) 

In this equation, the coefficients of regression in 

the preceding equation are denoted as β0, β1, βi while 

the independent variables are represented by 𝑥0, 𝑥1, 
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𝑥i. At the conclusion of the modeling stage, the 

accuracy, F1-Score, and training and testing times of 

each experiment are compared to identify the 

algorithm that performs best and most efficiently in 

classifying the data. 

E. Evaluation 

The evaluation stage is conducted at the end of 

this experiment. Prior to evaluating the model, 10-

fold cross-validation is implemented. The model’s 

performance is assessed by calculating the accuracy, 

F1-Score, training time and testing time. 

10-fold cross-validation is used to prevent 

overfitting in classification tasks and to evaluate the 

performance of models when applied to new data 

[36]. This method divides the dataset into 10 

approximately equal subgroups. One subgroup is 

utilized for testing and the other nine subgroups are 

used for training for each of the ten iterations [37]. 

After implementing 10-fold cross-validation, a 

confusion matrix is used to assess the model to 

calculate its AUC, accuracy and F1-Score. 

 A confusion matrix is a visual review tool that 

shows the actual class results in rows, while columns 

indicate the predicted class results [38]. The four 

components of a confusion matrix are: True Positive 

(TP), True Negative (TN), False Positive (FP), and 

False Negative (FN).  

True Positive (TP) means that the predicted 

positive result matches the actual positive result. True 

Negative (TN) means that the predicted negative 

result matches the actual negative result. False 

Positive (FP) occurs when the predicted positive 

result differs from the actual negative result. False 

Negative (FN) occurs when the predicted negative 

result differs from the actual positive result [39]. 

These four components are used to calculate 

accuracy, recall, precision, and F1-Score. Given the 

potentially fatal consequences of false positives and 

false negatives in malware detection, this research 

measures the AUC (area under the curve), accuracy 

and F1-score for each model variation. 

Area Under the Curve (AUC) is a metric derived 

from the Receiver Operating Characteristic (ROC) 

curve, which summarizes the performance of a 

predictor. The ROC curve method illustrates how 

well a predictor distinguishes between different 

outcomes by plotting True Positive Rate (TPR) 

against False Positive Rate (FPR). ROC analysis 

employs a series of thresholds to evaluate a model's 

performance [40]. The equations for AUC, FPR, and 

TPR are shown below. 

𝐴𝑈𝐶 =  ∑ (𝐹𝑃𝑅𝑖+1 − 𝐹𝑃𝑅𝑖) ×
𝑇𝑃𝑅𝑖+1+𝑇𝑃𝑅𝑖

2
𝑥𝑓𝑜𝑠𝑐

𝑛−1
𝑖=1  (6) 

Where, 

 FPRi  : False Positive Rate at threshold i 

 TPRi : True Positive Rate at threshold i 

𝐹𝑃𝑅 =  
𝐹𝑃

𝐹𝑃+𝑇𝑁
 (7) 

𝑇𝑃𝑅 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (8) 

The accuracy value provides a measure of how 

often a model correctly classifies instances [41]. The 

equation for calculating accuracy is shown in 

Equation 6. In this equation, accuracy is obtained by 

dividing the total number of correct predictions (TP 

and TN) by the total number of predictions (TP, FP, 

TN, FN). 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁

(𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁)
 (9) 

Meanwhile, the precision and recall harmonic 

mean yields the F1-Score value [42]. A harmonic 

mean is a kind of average that is computed by 

multiplying the total number of values in a dataset by 

the reciprocal of each value in the dataset. An 

averaging metric that is helpful for rates and ratios is 

the harmonic mean. The following formula is used to 

compute it: 

𝐹1 = 2 × 
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
 (10) 

In this context, Recall is the ratio of true positive 

predictions to all actual positives, whereas precision 

is the ratio of true positive predicted results to all 

positive predictions. The formula of precision can be 

seen in Equation 8, whereas formula of recall is in 

Equation 9. The F1-Score is a matrix that represents 

precision and recall, making it a valuable metric for 

evaluating the performance of a classification model, 

especially when dealing with imbalanced datasets. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (11) 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (12) 

Additionally, the model’s performance in term 

of efficiency is measured based on its training and 

testing time. Training time refers to the period during 

which a model is trained using the complete dataset 

[43]. Testing time refers to the duration the model 

takes to make predictions on the test data [44]. 

Therefore, we evaluate the training time of a model 

both with and without feature selection. The increase 

in processing speed is calculated to assess the 

efficiency of the model. 

3. RESULT 

In the data collection stage, the dataset was 

obtained from Kaggle dataset repository. The dataset 

contains 15036 instances and had two classes in its 

label, which consists of 5560 instances that labeled as 

‘S’ (suspicious) and 9476 instances that labeled as ‘B’ 

(benign). The dataset also had 215 features that 

excluding the label and 5 instances with missing 

values. Those 5 instances with missing values were 

removed from the dataset. 
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The number of instances between malware and 

benign class were different, it could be said that the 

dataset is imbalance. To solve the issue, class 

balancing is carried out to balance the classes 

between benign and malware using Random 

Undersampling Method. 9476 instances with the 

benign label were reduced to match the number of 

instances with malware label after data cleaning 

which is 5555 instances. 

In the feature selection method and modeling 

stage, three experiments were conducted. Backward 

Elimination method was used to search the optimal 

number of features. The first experiment aimed to 

compare four machine learning models to determine 

the best one for classifying Android malware. The 

results showed that the Neural Network model 

achieved the accuracy and F1-score at 98.6%. The 

training and testing times were recorded as 98.656 

seconds and 2.607 seconds, respectively. Detailed 

performance results of the experiment are presented 

in Table 1. Since the Neural Network performed the 

best, it was used in the subsequent experiments. 

The second experiment employed the 

Information Gain feature selection method with the 

Neural Network algorithm. Our findings indicate that 

the combination of the Neural Network and 

Information Gain, using 131 features, achieved an 

accuracy and F1-score of 98.6%. Additionally, the 

combination attained an AUC score of 99.7%. The 

confusion matrix for this combination shows 5488 

true positives, 5461 true negatives, 94 false positives, 

and 67 false negatives. The detailed results are 

presented in Table 2. 

 

Table 1. Performance of Classification Algorithms without Feature Selection 

Machine Learning Methods Accuracy (%) F1-Score (%) Train Time (S) Test Time (S) 

Random Forest 98.2 98.2 4.259 1.003 

Neural Network 98.6 98.6 98.656 2.607 

Naïve Bayes 84.9 84.8 0.523 0.065 

Logistic Regression 97.6 97.6 24.853 0.993 

 

Table 2. The experiment test result with and without Feature Selection (FS). 

Number of Features 

Neural Network 

Information Gain X2 

Acc (%) F1-Score (%) Acc (%) F1-Score (%) 

126 98.5 98.5 98.5 98.5 

127 98.5 98.5 98.2 98.2 

128 98.5 98.5 98.4 98.4 

129 98.5 98.5 98.4 98.4 

130 98.4 98.4 98.5 98.5 

131 98.6 98.6 98.4 98.4 

132 98.5 98.5 98.3 98.3 

133 98.5 98.5 98.3 98.3 

134 98.5 98.5 98.5 98.5 

135 98.5 98.5 98.4 98.4 

136 98.5 98.5 98.5 98.5 

137 98.6 98.6 98.5 98.5 

138 98.6 98.6 98.6 98.6 

 

In the third experiment, we applied the Chi-

Squared method for feature selection. The results 

demonstrated that the combination of the Neural 

Network and Chi-Squared achieved 98.6% for both 

accuracy and F1-score using 138 features. 

Additionally, this combination attained an AUC score 

of 99.7%. The confusion matrix for this combination 

indicates 5480 true positives, 5476 true negatives, 79 

false positives, and 75 false negatives. The detailed 

results of this experiment are presented in Table 2. 
 

Table 3. Neural Network comparison results before and after using feature selection 

Number of Features Feature Selection Acc (%) F1-Score (%) Train Time (S) Test Time (S) 

All (215) No Feature Selection 98.6 98.6 98.656 2.607 

131 Features Information Gain 98.6 98.6 81.135 1.095 

Time Reduction 17.7597 % 57.9977 % 

 

Table 4. Performance analysis results 

No. Methods AUC (%) Accuracy (%) F1-Score (%) Train Time (S) Test Time (S) 

1. NN + IG (131) 99.7 98.6 98.6 81.135 1.095 

2. NN + X2 (138) 99.7 98.6 98.6 84.755 1.299 

3. Stacking + SBFS (8 extracted features) [16] - 97.96 - - - 

4. XGBoost + LOFO (30) [17] - 95.59 93.89 - - 
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Figure 4. ROC curve comparison of Neural Networks with different feature selection methods 

 

  
Figure 5. NN + IG confusion matrix    Figure 6. NN + X2 confusion matrix 

 

4. DISCUSSION 

In the first experiment, the Neural Network 

algorithm achieved the best performance but had a 

longer training time compared to other algorithms. In 

the second experiment, based on Table 3, there was a 

notable improvement in both training and testing 

times while retaining the same performance after 

implementing Information Gain, which removed 84 

of the least significant features. The training time 

decreased by 17.7597 %, resulting in a reduction of 

17.521 seconds, and the testing time decreased by 

57.9977 %, reducing the time by 1.512 seconds. This 

feature selection significantly enhances the speed of 

malware identification, which is crucial for 

preventing the spread of malicious software. In the 

third experiment, the combination of the Neural 

Network and Chi-Squared (X²) achieved the same 

performance score as the second experiment's 

combination, but required 3 more features to attain 

the same performance. 

Based on Figures 5 and 6, both confusion 

matrices indicate that both combinations achieved 

high performance, despite a slight difference in the 

number of false positives and false negatives. The 

ROC curve, shown in Figure 4, demonstrates that 

both combinations exhibit nearly identical results 

with almost perfect predictive accuracy. 

Additionally, the standard error for both methods is 

consistent, further validating the reliability of the 

models' performance. 

As shown in Table 4 and Figure 7, the 

combination of the Neural Network and Information 

Gain provided the best performance with an accuracy 

score of 98.6%, outperforming three other methods. 

The second-best method used the same algorithm but 

employed a different feature selection method, the 
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chi-squared method (X2). In terms of performance, 

the second-best method achieved the same AUC 

,accuracy, and F1-Score as the best method, but the 

training and testing times were longer.  

The third and fourth methods were researched 

by [16] and [17], respectively. The third method 

consisted of a Stacking algorithm and a substring-

based feature selection method. The accuracy of this 

method was 0.64% lower than that of the best method. 

The fourth method consisted of the XGBoost 

algorithm and the Leave-One-Feature-Out (LOFO) 

technique for feature selection. This method achieved 

an accuracy of 95.59% and an F1-Score of 93.89%. 

Compared to the best method, this method’s 

performance dropped considerably by 3.05274% in 

accuracy and 4.77688% in F1-Score.   

The combination of the Neural Network 

algorithm and the Information Gain feature selection 

method outperforms other algorithms for two reasons. 

First, with only the most significant features, the 

Neural Network can focus on the most relevant data, 

leading to more accurate predictions. Second, the 

reduction in the number of features makes the Neural 

Network process faster and more efficient. 
 

 
Figure 7. Accuracy comparison between four combinations 

5. CONCLUSION 

In recent years, polymorphic and metamorphic 

malware have become prevalent, rendering 

traditional malware classification methods based on 

signature matching ineffective. To effectively 

classify these types of malwares, Artificial 

Intelligence (AI) is essential to enhance malware 

detection capabilities. This study explores the 

implementation of the Neural Network algorithm and 

the Chi-Squared (X²) feature selection method to 

detect malware using the Drebin dataset. 

In addition to feature selection, two 

preprocessing methods, data cleaning and class 

balancing, were applied to the dataset to ensure 

accurate classification. For data cleaning, five 

instances with missing values were removed. Class 

balancing was achieved using the Random Under 

Sampling method. 

The experiment aimed to identify the best 

combination of feature selection methods and 

classification algorithms, including Random Forest, 

Neural Network, Naïve Bayes, and Logistic 

Regression. The results indicated that the 

combination of Neural Network and Information 

Gain achieved the highest accuracy and F1-score, 

with a score of 98.6% on 131 features. This study 

demonstrates that combining Neural Networks with 

Information Gain significantly enhances both the 

accuracy and efficiency of Android malware 

detection. In the future, this combination of 

algorithms can be applied in AI-based antivirus 

systems to detect viruses more effectively and 

efficiently. 

However, the combination's effectiveness relies 

on high-quality labeled malware data, and its 

accuracy is not yet at the ideal 100% for malware 

classification. Future work could optimize 

classification using other methods, such as Deep 

Learning. 
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