
Jurnal Teknik Informatika (JUTIF) DOI: https://doi.org/10.52436/1.jutif.2024.5.6.2617
Vol. 5, No. 6, December 2024, pp. 1861-1872 p-ISSN: 2723-3863
 e-ISSN: 2723-3871

1861

ANALYSIS THE IMPACT OF REFACTORING FROM MONOLITHIC APPLICATIONS

TO MICROSERVICES ON RESPONSE TIME USING THE MDA AND SCA

APPROACHES

Shidqi Fadhlurrahman Yusri*1, Dawam Dwi Jatmiko Suwawi2, Monterico Adrian3

1,2,3Informatics, School of Computing, Telkom University, Indonesia

Email: 1shidqify@student.telkomuniversity.ac.id, 2dawamdjs@telkomuniversity.ac.id,
3monterico@telkomuniversity.ac.id

(Article received: August 06, 2024; Revision: August 21, 2024; published: December 29, 2024)

Abstract

This study investigates the impact of refactoring from a monolithic to a microservices architecture on application

response time. Monolithic architecture, initially chosen for ease of development, faces scalability challenges as

the application grows. Microservices offer a solution by enabling independent service deployment and enhanced

scalability. This research uses Meta-Data Aided (MDA) and Static Code Analysis (SCA) methodologies to

facilitate the refactoring process, applying them to the inventory-application project from a collaborative software

development platform (GitHub). The refactoring involves decomposing the monolithic application, containerizing

it with Docker, and evaluating performance using JMeter. Results show that microservices significantly reduce

response time, particularly in API interaction tasks. While microservices improve scalability and flexibility, they

require careful management of service communication. This research enhances understanding of the benefits of

microservices in terms of response time and offers practical guidance for developers considering refactoring.

Keywords: Microservices, Meta-data Aided, Monolithic, Refactor, Response Time, Static Code Analysis.

1. INTRODUCTION

Monolithic architecture is the first choice for

software developers when building their applications.

This choice is not without reason, as it offers ease in

development, testing, and deployment, which can be

managed through a single deployment [1], [2].

However, this convenience cannot be maintained as

the application evolves, leading to increasing

challenges in its maintenance. Issues such as

scalability requirements, complex code structures,

and the growing size of the application contribute to

longer deployment times, which become significant

obstacles in maintenance [1], [3], [4].

Given the above reasons, microservices present

a solution to these issues. Microservices offer

advantages such as better scalability, services focused

on specific functionalities, and independent service

deployments [5], [6], [7]. However, despite these

benefits, the challenges remain, particularly in

transforming an application from a monolithic

structure to a microservices architecture. Refactoring

is one of the approaches that can be used to address

this challenge.

Refactoring is a common practice among

software developers to improve the quality of their

software. The focus is on enhancing the quality and

maintainability of the software without altering its

functionality [8], [9]. This approach is adopted

because software continuously evolves to meet new

requirements, enhance existing features, and address

existing shortcomings [8]. Although refactoring is a

practical method for structural changes and quality

improvements in applications, it is a complex process

for both developers and companies [5]. This

complexity arises from the need to consider various

aspects, particularly regarding software performance,

such as response time.

In the ISO/IEC 25010:2011 standard [10],

which outlines software quality, one of the

measurement aspects is Time Behavior, with

response time being a component of this aspect.

Response time represents the wait time for results

processed by the application. This wait time is the

duration taken by data from when the client sends a

request until the client receives the data back from the

server [11], [12]. The longer the time required, the

worse the user experience becomes. Furthermore,

Khan R. [11] explains that response time is a

parameter used to evaluate the performance and

efficiency of an application.

To ensure that software performance remains

optimal after the refactoring process, particularly

regarding response time, developers need to select the

appropriate approaches for refactoring. Several

refactoring approaches are available, including Meta-

data Aided (MDA) and Static Code Analysis (SCA)

[1], [4]. MDA is an approach that analyzes

applications based on available data sources such as

diagrams, application descriptions, system

specifications, and other documents [13]. In contrast,

https://doi.org/10.52436/1.jutif.2024.5.6.2617
mailto:shidqify@student.telkomuniversity.ac.id
mailto:dawamdjs@telkomuniversity.ac.id
mailto:monterico@telkomuniversity.ac.id

1862 Jurnal Teknik Informatika (JUTIF), Vol. 5, No. 6, December 2024, pp. 1861-1872

SCA is an approach that uses source code data from

the application as input for analysis [1], [14].

Research on refactoring monolithic applications

to microservices has been discussed in several

journals [5], [6], [8], [15]. Goncalves N. et al. [15]

highlight the challenges of refactoring and its impact

on performance, showing variations in latency results

between monolithic and microservices architectures.

Traini L. et al. [8] examine the impact of refactoring

on execution time, finding that approximately 55% of

commits affect performance, with 75% showing no

significant change. Ren Q. et al. [5] discuss the stages

and challenges of refactoring as well as the benefits

of microservices architecture in terms of resilience

and management. This research emphasizes the

importance of selecting the appropriate method for

refactoring to improve application performance.

Zaragoza [6], in his study, explores the migration

process from monolithic software systems to

microservices architecture (MSA). He emphasizes

the benefits of MSA, such as improved

maintainability, better scalability, and faster

deployment. This migration consists of two main

phases: first, building the microservices architecture

from the existing monolithic source code, and second,

transforming the code into microservices that adhere

to MSA principles.

This study proposes a new method using

transformation patterns to support this transition

without compromising business logic and application

performance. Zaragoza [6] also addresses the

complexities that arise, particularly concerning class

dependencies, which often disrupt effective

microservices encapsulation. By utilizing an

automated tool called MonoToMicro, this approach

was tested in the context of monolithic Java system

applications. The method aims to simplify the

identification and grouping of classes into potential

microservices, thus addressing challenges in code

transformation and ensuring that the operational

characteristics of MSA can be met.

Thus, this research will focus on a thorough

exploration of the response time effects resulting

from refactoring monolithic applications into

microservices applications using the MDA and SCA

approaches. Testing will be conducted on both

architectures with the same test cases and

environment, ensuring a fair comparison between

them. This study aims to provide developers with

greater insight into choosing the most appropriate

architecture for their application development and the

approaches to be used.

2. RESEARCH METHODS

The methodology used in this study generally

includes project search, decomposition or separation

of the monolithic application, construction of the

microservices application, and testing as described in

Figure 1.

Figure 1. Research Method

The research begins with a project search on

collaborative software development platforms such

as GitHub. Once a suitable project is identified based

on the research criteria, monolithic decomposition

will be performed to separate modules that have no

dependencies [15]. The monolithic decomposition

process utilizes two approaches: Meta-data Aided

(MDA) and Static Code Analysis (SCA). After

applying and analyzing the MDA and SCA

approaches, it is necessary to separate the related

functions based on the results from MDA and SCA.

Once the decomposition process is complete, the next

step is the implementation of microservices according

to the decomposition results. During the

microservices implementation process, adjustments

to the code will be made to facilitate communication

between functions within the application and those in

other APIs. After implementing the microservices,

the application will be containerized to enable API

communication. Containerization will also be applied

to the monolithic application, ensuring that the

development environment for the monolithic

application is consistent with that of the

microservices application. The final process to be

conducted is testing, which will compare the response

time performance results between the monolithic and

microservices applications.

Shidqi Fadhlurrahman Yusri, et al., ANALYSIS THE IMPACT OF REFACTORING … 1863

2.1. Project Search

The project used in this research will be selected

through a search on GitHub. GitHub is a platform that

hosts many open-source projects across various

domains [16]. The chosen project will use the

JavaScript programming language, as microservices

are generally associated with lightweight

programming languages like JavaScript and have

proven effective in practice[17]. Additionally, the

selected project must have related artifact documents

within its GitHub repository. These documents are

used for implementing the MDA approach, which

requires artifacts such as diagrams and application

specifications.

From the researcher’s search for applications

based on the mentioned criteria, one suitable

repository was found: the inventory-application

developed by Mohamed Eleshmawy [18]. This

application is designed to track order status from the

moment a customer places an order until the order is

marked as shipped by the seller and then as received

by the recipient. The project uses JavaScript as its

programming language and includes an ERD (Entity

Relationship Diagram) and Functional Requirements

documents to explain the application’s specifications.

2.2. Decomposition Monolithic

Monolithic decomposition is the stage of

separating modules that have no dependencies [15].

In this phase, the researcher will use two approaches:

Meta-data Aided (MDA) and Static Code Analysis

(SCA). For the MDA approach, the researcher will

use the artifact documents available in the GitHub

repository of the selected project, including the Entity

Relationship Diagram (ERD) and the application

specifications. For the SCA approach, the researcher

will identify functions within the source code and

then scan the source code using SonarQube to

identify code duplications.

2.2.1. MDA Approach

Meta-Data Aided (MDA) is an approach to

refactoring applications that utilizes common sources

such as diagrams, specifications, and application

descriptions [3]. Documents such as the ERD and

functional requirements are available for use in the

selected application. In addition to these documents,

the researcher also includes a Use Case diagram in

accordance with the requirements found in the

GitHub repository. The ERD and Use Case for this

application are described in Figure 2 Entity Relation

Diagram dan Figure 3 Use Case Diagram.

It can be concluded from the diagram above that

the application can be divided based on user roles.

The division of functions and services is based on the

use cases performed by each type of user. For

example, the seller service can only execute functions

specific to sellers, and the shipper service can only

perform functions relevant to shippers. Although the

separation of functions and services has been

formulated, there is still one more approach that needs

to be undertaken before finalizing the service

division.

Figure 2 Entity Relation Diagram

1864 Jurnal Teknik Informatika (JUTIF), Vol. 5, No. 6, December 2024, pp. 1861-1872

Figure 3 Use Case Diagram

2.2.2. SCA Approach

The Static Code Analysis (SCA) approach

involves taking source code data from the application

as input for analysis [1], [14]. Therefore, the

researcher uses the source code from the inventory

application for analysis. The analysis process

involves scanning the source code with SonarQube.

SonarQube is an application that helps developers

analyze the source code of an application [19].

Based on the scan results, categories that need

attention are bugs and duplication. Most of the

detected bugs originate from CSS code used for

styling, which does not significantly impact the

application's performance. Regarding duplication,

approximately 56.4% is found in the Validation

folder, which contains files for data validation. This

can be disregarded as the duplicated code is used

repeatedly by design. Additionally, there is 14% code

duplication in the controller folder, with 21.9%

coming from cartController.js and 37% from

userController.js. The duplicated code in

cartController.js involves a block that is responsible

for updating the total price in the cart. This can be

resolved by creating a function

updateTotalCartPrice(), which can be called by other

functions that need to update the total price.

Similarly, in userController.js, the duplicated code

pertains to generating a hashed password. This can be

addressed by encapsulating the block of code into a

new function named genHashedPassword().

Table 1 List of Controllers from the Monolithic Application

Module Method

Address Post : AddAddress

 Put : EditAddress

 Delete : DeleteAddress

 Get : GetAddress

Cart Put : addToCart

 Get : userCartInfo

 Get : removeFromCart

 Put : changeQuantityFromCart

 Put : chooseOrderAddress

Category Get : categoryIndex

 Post : createCategory

 Get : categoryDetails

 Delete : deleteCategory

 Put : updateCategory

Order Get : orderSuccess

 Get : userOrderHistory

 Get : ordersToShip

 Get : shippedOrder

 Get : markAsShipped

 Get : ordersToDeliver

 Get : markAsDelivered

Permission Get : getAllUsers

 Get : getAllShipers

 Put : addShipper

 Put : addShiperInfo

 Put : addAdmin

 Put : restrictUser

Product Get : allProducts

 Get : userProducts

 Post : createProduct

 Get : productDetails

 Delete : deleteProduct

 Post : updateProduct

User Post : createUser

 Post : login

 Get : getUser

 Put : editUser

Wishlist Get : addToWishlist

 Get : userWishlist

 Get : removeFromWishlist

In addition to scanning with SonarQube, the

analysis process will also review the usage of each

function within the application. This will assist in

separating the dependent modules.

Shidqi Fadhlurrahman Yusri, et al., ANALYSIS THE IMPACT OF REFACTORING … 1865

2.2.3. Function Decomposition

After the analysis process is conducted using the

two previous approaches, the separation of functions

can be carried out based on the analysis results

obtained from the previous steps. The separation of

functions and services is based on the analysis results

using the MDA and SCA approaches, which have

helped identify modules that can be separated and

optimized. With this separation, it is hoped that each

service can operate independently and efficiently,

supporting further development of the application

towards a microservices architecture. This process is

crucial to ensure that each function operates with

minimal load and reduces dependencies between

services, ultimately improving the overall

performance of the application.

2.3. Microservices Implementation

The implementation of microservices is a key

stage in refactoring a monolithic application. At this

stage, the design patterns used will be the same as

those used in the original application, ensuring that no

design pattern factors will alter the application's

performance. Below are the design patterns that will

be employed in the microservices application.

Services

├── controllers/

│ └── ...

├── middlewares/

│ ├── validation/

│ └── ...

├── models/

│ └── ...

├── routes/

│ └── ...

├── index.js

└── package*.json

Views

├── public/

│ └── ...

├── src/

│ ├── assets/

│ │ └── ...

│ ├── Component/

│ │ ├── account-settings/

│ │ │ └── ...

│ │ ├── cart/

│ │ │ └── ...

│ │ ├── dashboard/

│ │ │ └── ...

│ │ ├── home-page/

│ │ │ └── ...

│ │ ├── login&signup/

│ │ │ └── ...

│ │ └── ...

│ ├── redux/

│ │ ├── actions/

│ │ │ └── ...

│ │ ├── reducers/

│ │ │ └── ...

│ │ └── ...

│ ├── style/

│ │ └── ...

│ ├── app.js

│ └── index.js

└── package*.json

The refactoring process begins with the

researcher duplicating the code from the monolithic

application into each repository according to the

results of the previous decomposition. The researcher

also prepares the database and sets up image storage

services in Cloudinary to support separate file

storage.

Next, the researcher makes adjustments to

several functions that were identified as having

duplicated code based on the SonarQube scan results.

Functions that have dependencies on other functions

outside their API domain are modified to call

functions from other APIs, in accordance with the

principle of loose coupling [4]. After these

adjustments are completed, the researcher conducts

light testing to ensure that all services are functioning

properly and as expected. This testing includes

checking each API endpoint to verify the integrity

and overall functionality of the application.

2.4. Containerization of Monolithic and

Microservices Applications

After the refactoring process is completed, the

services need to be placed into Docker containers to

facilitate communication between services.

Containerization begins with the creation of images

for both the application and the database used. The

image creation process also takes into account the

ports used by each API to avoid conflicts when the

application is run. Containerization is not only

applied to the microservices application but also to

the monolithic application to place both applications

in the same environment.

Figure 4 Docker Microservices Architecture

1866 Jurnal Teknik Informatika (JUTIF), Vol. 5, No. 6, December 2024, pp. 1861-1872

Figure 5 Dockerfile Configuration for API Microservices

Figure 6 Dockerfile Configuration for Views Microservices

Referring to Figure 4 , a Dockerfile is needed to

create images for each API and Views for the

Frontend. All APIs will run in a Node environment

with version 16, and the code will be copied into the

directory specified in WORKDIR. The duplication

process starts with the package*.json files, as these

files will be used first to install the library

dependencies required by the API, followed by the

RUN npm install command. Once this is completed,

the code can be copied, with the port being exposed

using EXPOSE command, and the image will be run

using the command CMD ["npm", "run", "start"].

However, there is a difference between the

Dockerfile for the API and the Views. For the Views,

the application will be built first, and then the build

output will be copied into a new environment running

on nginx:alpine. The researcher also creates an Nginx

configuration for server settings and for directing

client requests to the backend API.

After all the Dockerfiles have been created, the

next step is to build the Dockerfiles into containers.

Building images can be done one by one, but this

process can be quite time-consuming [5]. Therefore,

a docker-compose file is needed to consolidate all the

Dockerfiles into a single configuration and build them

simultaneously. Below is an example of the docker-

compose file used.

In docker-compose, each image is configured

according to the requirements of each API, such as

the source image to be built, container name, port, and

environment variables. The docker-compose file also

includes the MongoDB image to integrate it into the

container. This way, the researcher can deploy all the

created images into their respective containers with a

single command.

Figure 7 Docker-Compose Configuration for Microservices

Figure 8 Dockerfile Configuration for Monolithic Application

Unlike the microservices application, the

monolithic application uses only one Dockerfile. The

monolithic application is run in an environment using

FROM node:16

WORKDIR /usr/src/app

COPY package*.json ./

RUN npm install

COPY . .

EXPOSE 8081

CMD ["npm", "run", "start"]

FROM node:16 as build

WORKDIR /usr/src/app

COPY package*.json ./

RUN npm install

COPY . .

RUN npm run build

FROM nginx:alpine

COPY --from=build /usr/src/app/build /usr/share/nginx/html

COPY nginx.conf /etc/nginx/nginx.conf

EXPOSE 3000

CMD ["nginx", "-g", "daemon off;"]

version: '3.8'

services:

 mongodb:

 image: mongo:latest

 container_name: mongodb

 ports:

 - "27017:27017"

 volumes:

 - mongo-data:/data/db

 account-services:

 build:

 context: ./AccountService

 container_name: account-services

 ports:

 - "8080:8080"

 environment:

 -

 order-services:

 build:

 context: ./OrderService

 container_name: order-services

 ports:

 - "8082:8082"

 environment:

 -

 product-services:

 build:

 context: ./ProductService

 container_name: product-services

 ports:

 - "8081:8081"

 environment:

 -

 frontend:

 build:

 context: ./views

 container_name: frontend

 ports:

 - "3000:3000"

 environment:

 -

FROM node:14 AS build

WORKDIR /app

COPY package*.json ./

RUN npm install

COPY . .

COPY .env ./views

RUN npm install --prefix views

RUN npm run build --prefix views

FROM nginx:alpine

COPY --from=build /app/views/build /usr/share/nginx/html

COPY --from=build /app /app

COPY nginx.conf /etc/nginx/conf.d/default.conf

WORKDIR /app

RUN apk add --no-cache nodejs npm

COPY start.sh /start.sh

RUN chmod +x /start.sh

EXPOSE 2024

EXPOSE 5000

ENV PORT=5000

CMD ["/start.sh"]

Shidqi Fadhlurrahman Yusri, et al., ANALYSIS THE IMPACT OF REFACTORING … 1867

Node.js version 14. This is done to match the version

of the library dependencies present in the application.

The configuration of the Dockerfile for the

monolithic application is identical to the Dockerfile

used for the microservices application. However, in

the Dockerfile for the monolithic application, it is

necessary to add Node.js and npm to the nginx:alpine

environment to run the backend program with the

command RUN apk add --no-cache nodejs npm. The

image is then run with the command CMD

["/start.sh"].

Figure 9 start.sh file configuration

Figure 10 Docker-Compose Configuration for Monolithic

After creating the Dockerfile, the researcher

then creates a docker-compose file to deploy the

images into containers. The images configured in the

docker-compose file include only the monolithic

application and MongoDB.

2.5. Testing

Testing is required to assess the impact of the

refactoring to understand the performance differences

before and after refactoring. The testing will be

conducted through load testing using JMeter to

observe the response time of the application. This

testing will involve two stages: the first is the creation

of test functions, and the second is testing the

application itself.

In the creation of the test plan, the researcher

tests in two scenarios: Single Request and Group

Request. Single Request involves testing only one

request per test, using the Login and Add To Cart

functions. Meanwhile, Group Request is conducted

by recording user activities within the application, so

the sequence of requests made during user activities

will be recorded. There are two types of users tested

in Group Request: customers and sellers. The flow of

activities performed can be seen in Figure 11 and

Figure 12 .

Table 2 Testing Cases

Testing Cases Function

Single Request Login

Add To Cart

Group Request Customer

Seller

Figure 11 Customer Scenario Testing Flow

Figure 12 Seller Scenario Testing Flow

The configuration used in JMeter involves 300

thread users, a ramp-up period of 6 seconds, and a

loop count of 1. This test aims to simulate the load of

300 users accessing the application simultaneously

during a short ramp-up period to evaluate the

application's capability to handle high loads. The

results of this test provide insights into the differences

in load experienced by the monolithic and

microservices architectures, indicated by response

time values. The response time data collected will

only use the average response time for every 50 users

and the overall test for each test case.

3. RESULTS

After conducting the research process, which

included project search, monolithic decomposition,

microservices implementation, application

containerization, and testing, the following results

were obtained:

3.1. Project Search Results

From the GitHub project search, the researchers

successfully identified a repository that met the

research criteria, namely the inventory-application

developed by Mohamed Eleshmawy. This project

uses JavaScript as its programming language and

includes documentation artifacts such as the Entity

Relationship Diagram (ERD) and Functional

npm run start &

nginx -g 'daemon off;'

version: '3.8'

services:

 app:

 build: .

 ports:

 - "2024:2024"

 - "5000:5000"

 environment:

 -

 volumes:

 - .:/app

 depends_on:

 - db

 db:

 image: mongo:latest

 ports:

 - "27019:27017"

 volumes:

 - mongo-data:/data/db

1868 Jurnal Teknik Informatika (JUTIF), Vol. 5, No. 6, December 2024, pp. 1861-1872

Requirements. These documents serve as the

foundation for the monolithic decomposition process

to be carried out.

3.2. Results of Monolithic Decomposition

3.2.1. Results of the MDA Approach

The Meta-Data Aided (MDA) approach was

conducted by analyzing the available artifact

documents. The analysis of the Entity Relationship

Diagram (ERD) and Use Case Diagram identified the

separation of functions based on user roles, as shown

in

Table 3 .

Table 3 The separation of functions and services based on MDA

Role Use Case

Account Login, SignUp, Edit Account, Add/Edit/Delete

Address, Switch Roles

Admin Add/Edit/Delete Categories, Add/Edit/Delete

Products, Create Admin, Create Shipper, Assign

Area for Shipper, Restrict User

Customer Search Product, Wishlist Product, Purchase

Order, Tracking Order, Return Order, Review

Seller Add/Edit Products, Receive Notification from

Customer, Change Status to Shipped

Shipper Receive Notification from Seller, Change status

to delivered

 The separation of functions and services

facilitates the development of services in the

microservices architecture.

3.2.2. Results of the MDA Approach

The Static Code Analysis (SCA) approach was

conducted using SonarQube, which resulted in the

detection of issues as shown in

Table 4 .

Table 4 The results of the SonarQube scan

Category Result

Bugs 4

Vulnerabilities 0

Security Hotspots 7

Code Smells 142

Duplication 12.2%

This analysis shows that code duplication is

most prevalent in the Validation and controller

folders. Significant code duplication was identified in

the cartController.js and userController.js files. To

address this issue, functions with duplicated code,

such as updateTotalCartPrice() and

genHashedPassword(), were developed to reduce

redundancy and improve efficiency.

3.2.3. Function Decomposition

Based on the results of MDA and SCA, the

function separation was carried out with separation as

shown in Error! Reference source not found..

Table 5 Function and Service Separation

Service Name Method Description Controller Table

AccountService GET/PUT/POST Account

Management

User, Address, Wishlist,

Permission

User, Address, Wishlist

OrderService GET/PUT Order Management Order, Cart Order, Cart, Payment,

Shipper

ProductService GET/PUT/POST/DELETE Product

Management

Product, Category Product, Category,

Comment

Views Views FrontEnd

This separation separate each function based on

its domain and responsibility, supporting the

principle of loose coupling and facilitating the

development and maintenance of the application.

3.3. Results of Microservices Implementation

The implementation of microservices involved

duplicating code from the monolithic application into

individual service repositories. Code adjustments

were made to address duplication issues detected by

SonarQube. Functions that were interrelated were

modified to utilize other APIs in accordance with the

principle of loose coupling. Initial testing ensured that

all services functioned correctly and met

expectations.

3.4. Results of Containerization

Containerization was carried out for both

application architectures microservices and

monolithic.

.

3.4.1. Containerization of Microservices

Applications

The containerization process for microservices

applications involves creating Docker images for

each API and frontend component. The Dockerfile

for the APIs configures the application's ports and

dependencies, while the Dockerfile for the frontend

builds the application and sets up Nginx. Docker

Compose is used to manage and build all images

simultaneously, including MongoDB. This setup

ensures that all components are containerized and can

interact seamlessly within a unified environment.

3.4.2. Containerization of Monolithic

Applications

For the monolithic application, the Dockerfile is

tailored to match the Node.js version used in the

previous application. Docker Compose manages the

containers for both the monolithic application and

Shidqi Fadhlurrahman Yusri, et al., ANALYSIS THE IMPACT OF REFACTORING … 1869

MongoDB, ensuring a consistent development

environment that aligns with the microservices setup.

3.5. Results of Single Request Testing

The single request testing was conducted to

evaluate whether the refactoring process significantly

impacted individual processes. The requests tested

were for the Login and Add to Cart functions. The

Login function is frequently used by users when

accessing the application but does not interact with

other APIs during its process. In contrast, the Add to

Cart function calls another API, namely

ProductServices, to check the availability of items in

the database. This setup was expected to reveal

different results when the tests were executed. The

results of the single request testing are detailed in the

following figures and tables.

Figure 13 Comparison of Average Response Time for the Login Function

Figure 14 Comparison of Average Response Time for the Add to Cart Function

Referring to Figure 13 and Figure 14 , it is

evident that the microservices architecture

application has a lower average response time

compared to the monolithic application. However, the

difference in average response time between the login

and add-to-cart scenarios varies. As previously

explained, the add-to-cart function in the

microservices architecture involves calling another

API, which results in a smaller load on the API

handling the add-to-cart function compared to the

monolithic application. In contrast, the login function

does not involve calls to other APIs. This results in a

more significant difference in average response time

for the add-to-cart scenario compared to the login

scenario.

Table 6 Overall Average Data for Login Function

Request Login Monolithic Microservices

Average Response Time

(ms)

9791.89 8432.576

Min. Response Time (ms) 81 78

Max. Response Time (ms) 18870 15843

Table 7 Overall Average Data for Add To Cart Function

Request Add To Cart Monolithic Microservices

Average Response Time

(ms)

174.013 57.883

Min. Response Time (ms) 24 20

Max. Response Time (ms) 358 108

Table 8 Comparison of Average Response Time for Single

Request

Function Monolithic Microservices %

Login 9791.89 8432.576 16.12%

Add To Cart 174.013 57.883 200.63%

Data from Table 6 and Table 7 also show a

significant difference between the monolithic and

microservices applications, and Table 8 reinforces

1870 Jurnal Teknik Informatika (JUTIF), Vol. 5, No. 6, December 2024, pp. 1861-1872

that inter-API communication greatly affects

response time.

3.6. Results of Group Request Testing

Group request testing aims to evaluate the

impact of application architecture differences on user

experience during application use. Therefore, this test

examines multiple requests simultaneously,

representing user activities within the application.

The results of the group request testing are detailed in

the following figures and tables.

Figure 15 Comparison of Average Response Time for Customer Scenario

Figure 16 Comparison of Average Response Time for Seller Scenario

As seen in Figure 15 and Figure 16, the

microservices architecture demonstrates a significant

difference in response time. In the customer scenario,

the average response time appears to remain

relatively stable for both architectures. However, in

the seller scenario, the average response time tends to

increase as the number of users grows.

Table 9 Overall Average Data for the Customer Scenario

Request User Case Monolithic Microservices

Average Response Time

(ms)

33285.577 22182.86

Min. Response Time (ms) 20257 6362

Max. Response Time (ms) 34492 24034

Table 10 Overall Average Data for the Seller Scenario

Request Add To Cart Monolithic Microservices

Average Response Time

(ms)

29395.44 12091.293

Min. Response Time (ms) 10631 2290

Max. Response Time (ms) 46081 32150

Table 11 Comparison of Average Response Time for Group

Requests

Scenario Monolithic Microservices %

Customer 33285.577 22182.86 50.05 %

Seller 29395.44 12091.293 143.11%

The data in Table 9 and Table 10 show that the

average response time for applications with a

microservices architecture still has a significant

advantage when running scenarios that are common

to various types of users. Additionally, Table 11

reveals that the difference in response time for the

seller scenario is higher, approximately 143.11%,

between the monolithic and microservices

architectures, while in the customer scenario, the

difference is around 50.05%.

Shidqi Fadhlurrahman Yusri, et al., ANALYSIS THE IMPACT OF REFACTORING … 1871

4. DISCUSSION

Testing of applications with both monolithic and

microservices architectures shows that the

microservices architecture consistently provides

lower response times compared to the monolithic

architecture, both in single request and group request

scenarios. In single request testing, the login and add

to cart functions reveal the tangible impact of inter-

API calls on system performance. The add to cart

function, which involves interaction between the

OrderServices and ProductServices APIs,

demonstrates improved efficiency in the

microservices architecture compared to the

monolithic architecture. This is due to the

microservices' ability to distribute the workload

across separate services.

In the group request testing, the results show

that the microservices architecture is more effective

at handling complex and large-scale loads, especially

during spikes in demand. The more stable average

response times indicate the architecture's ability to

manage diverse user requests more efficiently.

Previous research has shown that microservices

architecture can optimize workflows by dividing

tasks into smaller, interconnected services, resulting

in improved performance [6]. Additionally, analysis

of seller activities reveals that microservices are more

efficient in processing computationally intensive

operations. The methodology used in this research

employs MDA and SCA approaches, which enable

the identification of modules that can be decomposed

and optimized. However, a limitation of these

methods is that they do not allow developers to

refactor with their own designed program logic,

preventing optimization of execution time

complexity through changes in program logic [20].

The implementation of microservices through

containerization further enhances service isolation

and management.

Overall, the results of this research indicate that

transitioning from a monolithic to a microservices

architecture has a significant positive impact on

application performance. This study contributes to a

deeper understanding of how microservices

architecture can be applied to enhance system

efficiency and responsiveness, and provides practical

guidance for developers considering refactoring their

applications. However, it is important to note that

implementing microservices also requires careful

consideration of the management of inter-service

complexity and the maintenance of a more distributed

infrastructure.

5. CONCLUSION

This study successfully demonstrates that

transitioning from a monolithic architecture to

microservices has a significant positive impact on

application performance, particularly in terms of

response time. The testing results indicate that the

microservices architecture consistently provides

lower response times compared to the monolithic

architecture, both in single request and group request

scenarios.

The advantages of microservices in distributing

workload and managing inter-service communication

enable it to address bottlenecks that are often

encountered in monolithic systems. These findings

align with existing literature, which indicates that

microservices can enhance system scalability and

flexibility, as well as provide benefits in terms of

software management and maintenance over the long

term [5], [15].

The implementation of refactoring using the

Meta-Data Aided (MDA) and Static Code Analysis

(SCA) approaches enables the identification and

separation of appropriate modules, which in practice

enhances operational efficiency and application

performance. However, these methods do not address

the optimization of execution time complexity within

their approach. Containerizing services with Docker

further support better isolation and management of

services, aligning with the loose coupling design

principles underlying microservices architecture.

Although microservices offer many advantages,

their implementation requires careful consideration

of service coordination and the maintenance of more

complex infrastructure. Therefore, it is crucial for

developers to consider the specific needs and context

of their application before deciding to transition to

this architecture.

Overall, this research provides valuable insights

for developers considering a transition to a

microservices architecture and offers practical

guidance for effective refactoring. These results are

expected to encourage further research in the future

to explore the best strategies for addressing the

challenges associated with implementing

microservices and to enhance system performance

and efficiency.

REFERENCES

[1] Y. Wei, Y. Yu, M. Pan, and T. Zhang, “A

Feature Table approach to decomposing

monolithic applications into microservices,”

in ACM International Conference

Proceeding Series, Association for

Computing Machinery, Nov. 2020, pp. 21–

30. doi: 10.1145/3457913.3457939.

[2] F. Ponce, G. Márquez, and H. Astudillo,

“Migrating from monolithic architecture to

microservices: A Rapid Review,” 2019 38th

International Conference of the Chilean

Computer Science Society (SCCC), pp. 1–7,

2019, doi:

10.1109/SCCC49216.2019.8966423.

[3] B. J. Široký, “From Monolith to

Microservices: Refactoring Patterns,” 2021.

[4] J. Fritzsch, J. Bogner, A. Zimmermann, and

1872 Jurnal Teknik Informatika (JUTIF), Vol. 5, No. 6, December 2024, pp. 1861-1872

S. Wagner, “From monolith to microservices:

A classification of refactoring approaches,”

in Lecture Notes in Computer Science

(including subseries Lecture Notes in

Artificial Intelligence and Lecture Notes in

Bioinformatics), Springer Verlag, 2019, pp.

128–141. doi: 10.1007/978-3-030-06019-

0_10.

[5] Q. Ren and S. Li, “Method of Refactoring a

Monolith into Micro-services,” Journal of

Software, vol. 13, no. 12, pp. 646–653, Dec.

2018, doi: 10.17706/jsw.13.12.646-653.

[6] P. Zaragoza, A. D. Seriai, A. Seriai, H. L.

Bouziane, A. Shatnawi, and M. Derras,

“Refactoring monolithic object-oriented

source code to materialize microservice-

oriented architecture,” in Proceedings of the

16th International Conference on Software

Technologies, ICSOFT 2021, SciTePress,

2021, pp. 78–89. doi:

10.5220/0010557800780089.

[7] M. Kalske, N. Mäkitalo, and T. Mikkonen,

“Challenges When Moving from Monolith to

Microservice Architecture,” in Lecture Notes

in Computer Science (including subseries

Lecture Notes in Artificial Intelligence and

Lecture Notes in Bioinformatics), Springer

Verlag, 2018, pp. 32–47. doi: 10.1007/978-3-

319-74433-9_3.

[8] L. Traini et al., “How Software Refactoring

Impacts Execution Time,” ACM

Transactions on Software Engineering and

Methodology, vol. 31, no. 2, Apr. 2022, doi:

10.1145/3485136.

[9] A. Almogahed, M. Omar, and N. H. Zakaria,

“Impact of Software Refactoring on Software

Quality in the Industrial Environment: A

Review of Empirical Studies,” 2018.

[Online]. Available:

http://www.kmice.cms.net.my/

[10] ISO/IEC 25010, “ISO/IEC 25010:2011

Systems and software engineering —

Systems and software Quality Requirements

and Evaluation (SQuaRE) — System and

software quality models.,” 2011

[11] R. B. Khan, “Comparative Study of

Performance Testing Tools: Apache JMeter

and HP LoadRunner,” 2016, [Online].

Available: www.bth.se

[12] D. Al Fansha, M. Yusril, H. Setyawan, and

M. N. Fauzan, “Load Test pada Microservice

yang menerapkan CQRS dan Event

Sourcing,” Jurnal Buana Informatika, vol.

12, no. 2, pp. 126–134, 2021, doi:

https://doi.org/10.24002/jbi.v12i2.4749.

[13] Q. Gu, S. Wagner, and J. Fritzsch, “A Meta-

Approach to Guide Architectural Refactoring

from Monolithic Applications to

Microservices,” 2020, doi:

http://dx.doi.org/10.18419/opus-11501.

[14] J. Zhao and K. Zhao, “Applying Microservice

Refactoring to Object-2riented Legacy

System,” in Proceedings - 2021 8th

International Conference on Dependable

Systems and Their Applications, DSA 2021,

Institute of Electrical and Electronics

Engineers Inc., 2021, pp. 467–473. doi:

10.1109/DSA52907.2021.00070.

[15] N. Goncalves, D. Faustino, A. R. Silva, and

M. Portela, “Monolith Modularization

towards Microservices: Refactoring and

Performance Trade-offs,” in Proceedings -

2021 IEEE 18th International Conference on

Software Architecture Companion, ICSA-C

2021, Institute of Electrical and Electronics

Engineers Inc., Mar. 2021, pp. 54–61. doi:

10.1109/ICSA-C52384.2021.00015.

[16] J. Han, S. Deng, X. Xia, D. Wang, and J. Yin,

“Characterization and prediction of popular

projects on gitHub,” in Proceedings -

International Computer Software and

Applications Conference, IEEE Computer

Society, Jul. 2019, pp. 21–26. doi:

10.1109/COMPSAC.2019.00013.

[17] L. Baresi and M. Garriga, “Microservices:

The evolution and extinction of web

services?,” in Microservices: Science and

Engineering, Springer International

Publishing, 2019, pp. 3–28. doi:

10.1007/978-3-030-31646-4_1.

[18] Mohamed Eleshmawy, “inventory-

application.” Accessed: Mar. 19, 2024.

[Online]. Available:

https://github.com/moelashmawy/inventory-

application

[19] D. Marcilio, R. Bonifacio, E. Monteiro, E.

Canedo, W. Luz, and G. Pinto, “Are static

analysis violations really fixed? a closer look

at realistic usage of sonarqube,” in IEEE

International Conference on Program

Comprehension, IEEE Computer Society,

May 2019, pp. 209–219. doi:

10.1109/ICPC.2019.00040.

[20] Dr. D. De Silva, P. Samarasekera, and H.

Ridmi, “A Comparative Analysis of Static

and Dynamic Code Analysis Techniques

Techniques,” 2023, doi:

10.36227/techrxiv.22810664.v1.

