
Jurnal Teknik Informatika (JUTIF) DOI: https://doi.org/10.52436/1.jutif.2024.5.6.2557
Vol. 5, No. 6, December 2024, pp. 1759-1767 p-ISSN: 2723-3863
 e-ISSN: 2723-3871

1759

HATE SPEECH DETECTION USING GLOVE WORD EMBEDDING AND GATED

RECURRENT UNIT

Aulia Riefqi Ardana*1, Yuliant Sibaroni2

1,2Informatics, Informatics Faculty, Telkom University, Indonesia

Email: 1auliardana@student.telkomuniversity.ac.id, 2yuliant@telkomuniversity.ac.id

(Article received: July 23, 2024; Revision: August 11, 2024; published: December 29, 2024)

Abstract

Social media has become a tool that makes it easier for people to exchange information. The freedom to share

information has opened the door for increased incidents of hate speech on social media. Hate speech detection is

an interesting topic because with the increasing use of social media, hate speech can quickly spread and trigger

significant negative impacts, discrimination, and social conflict. This research aims to see the effect of GRU

method, GloVe word embedding and word modifier algorithm in detecting hate speech. GRU and GloVe are

used in this research for the hate speech detection system, where deep learning with a Gated Recurrent Unit

(GRU) and Word Embedding with the Global Vector model (GloVe) converts words in text into numerical

vectors that represent the meaning and context of the words. GRU is chosen due to its ability to capture long-

term dependencies in textual data with higher computational efficiency compared to Long Short-Term Memory

(LSTM). Gated Recurrent Unit (GRU) model processes the sequence of words to understand the sentence

structure. GRU model processes the sequence of words to understand the sentence structure. The evaluation

results for the classification of hate speech using GRU and GloVe are 90.7% accuracy and 91% F1 score. With

the combination of informal word modifier algorithms there is an increase with a value of 92.8% F1 and 92.4%

accuracy. in conclusion, the use of informal word modifier algorithms can increase the evaluation value in

detecting hate speech.

Keywords: classification, GloVe, gated recurrent unit, hatespeech.

1. INTRODUCTION

Hate speech is a phenomenon that often occurs

on various social media platforms. Hate speech can

trigger divisions, misunderstandings, and even acts

of violence between individuals or groups, especially

because of the prejudice it causes. Social media

allows users to share opinions and information

freely. [1]. Social media is also useful for obtaining

data to see people's perceptions of a topic that is

circulating. For example, a topic that is quite popular

on twitter regarding the Russian and Ukrainian wars,

then covid-19 which spread throughout the world.

During the Covid-19 pandemic, social media has

been helpful for policymakers to strategize by

understanding the responses given by the public. [2],

[3]. Social media can also illustrate the rating of a

product or service. This is useful for companies to

evaluate their products based on public opinion[4],

[5], [6]. However, this freedom of speech and lax

regulations have increased the spread of hate speech

[7], which can have a significant negative impact on

certain individuals and groups of people

The research adopts BiLSTM and Word2Vec

models with continuous bag of words (CBOW)

architecture. There are also studies that combine

global vector algorithm with deep belief network.

The use of GloVe in previous studies showed good

accuracy; this study combined long short-term

memory (LSTM) with GloVe word embedding for

hate speech classifier, with accuracy reaching 81.5%

in one-layer LSTM and 80.9% in two-layer LSTM.

However, there are difficulties in identifying slang

words and local languages. In addition, the model

also misinterpreted some words in the context of

animal names, rather than as hateful statements.

Another study that combined fastText with GRU in

classifying offensive and inoffensive texts showed a

fairly good accuracy of 84%. The drawback of this

model is that it does not fully capture the context of

the sentence, and its performance is highly

dependent on proper hyperparameter tuning, which

can take significant time and computational

resources. [8], [9], [10], [11], [12].

 Although many studies have been conducted,

there is still room for improvement in hate speech

detection. In this study, the use of gated recurrent

unit (GRU) and word embedding global vector

(GloVe) methods is expected to provide good

accuracy in hate speech detection. GRU is a type of

recurrent neural network architecture designed to

overcome several problems in traditional recurrent

neural networks, especially problems related to

vanishing gradient and exploding gradient. GRU

introduces a “gate” structure to control the flow of

information in and out of the hidden units which

1760 Jurnal Teknik Informatika (JUTIF), Vol. 5, No. 6, December 2024, pp. 1759-1767

allows the model to better retain which relevant

information to retain or ignore[13], [14]. And GloVe

is a word representation learning model that

combines the strengths of count-based and predictive

methods. It uses global word co-occurrence statistics

to generate word vectors that capture meaning and

semantic relationships. [15].

Based on previous research with the

combination of fasttext-GRU and GloVe-LSTM,

This research focuses on the use of deep learning

methods GRU, GloVe as word embedding and

implementing an informal word converter into a

formal word that is expected to have better

performance in detecting hate speech.

2. RESEARCH METHOD

Figure 1. System Flow.

The system built for hate speech detection as

shown in Figure 1, starting from dataset collection to

evaluation is as follows.

2.1. Dataset

 This research uses a dataset that has been

labeled with 10291 lines of data. Of these, 5388

records contain hate speech and 4903 records do not

contain hate speech. This research detects hate

speech in English, so the dataset uses English. This

dataset combines two data sources, there are [16]

and [17], to increasing variation and reducing data

imbalance.

2.2. Preprocessing

The dataset that has been collected is subjected

to data cleaning, aiming to improve quality, reduce

noise and data relevance [18]. These are several

stages in the preprocessing technique.

1. Case Folding, this process converts all

existing capital letters into lowercase

letters [19].

2. Data Cleaning, this process of deleting

unnecessary data [20].

3. Lemmatization, this process converts

words into root words using WordNet.

4. Spell Correction, this process converts

words that have unnatural reduplication of

letters into their root word.[21]

5. Informal to Formal Words, This process

converts informal words into standardized

words.

6. Tokenizing, this process breaks down text

into words or what are called tokens.

2.3. Word Embedding

 This stage converts each word into a number

vector using the global vector (GloVe) method.

GloVe is a model developed to improve the learning

of word representation in vector space. This model

aims to capture patterns of relationships between

words. This allows the model to work very well in

word analogy and similarity between words[15].

This step converts each word in the dataset into

a number vector. This number vector contains the

semantic and syntactic information of the words.

This research uses pretrained GloVe with a

combined corpus from wikipedia and gigaword. This

pretrained GloVe has 42 billion tokens and has 50

dimensions[22]. This dimension serves to determine

how detailed information can be captured by a word

vector.

2.4. Data Splitting

 Divides the dataset for training and testing with

a ratio of 80:20. Training data is utilized to train the

model, whereas testing data is employed to evaluate

the performance of the developed model.

2.5. Gated Recurrent Unit

Gated Recurrent Unit (GRU) is a type of deep

learning used to process sequence data. GRU is a

simpler variant of LSTM. GRU employs two types

of gates: reset gates and update gates. These gates

manage the flow of information and preserve

essential context, achieving this without the need for

the more complex structure found in LSTM.[23].

Using a Gated Recurrent Unit (GRU)

architecture to detect hate speech works by receiving

text that has been converted into a vector of

numbers. This text then passes through a series of

GRU layers to capture temporal and context

information from the word sequence. The GRU uses

two main gates, reset gate and update gate, to

regulate the flow of information and retain or forget

relevant information from the previous hidden state.

After going through the GRU layers, the result is a

Aulia Riefqi Ardana, et all, HATE SPEECH DETECTION … 1761

comprehensive contextual representation of the

text[24].

2.6. Evaluation

Figure 2. 5-Fold cross validation[25]

The model is evaluated using k-Fold Cross

Validation and a confusion matrix to calculate

accuracy, precision, recall, and F1-score values. In

the k-Fold Cross Validation method, the dataset is

split into k equally-sized subsets or folds as shown in

Figure 2. During each of the k iterations, the model

is trained on k-1 folds and tested on the remaining

fold. This process ensures that each fold is used as a

test set exactly once. Common values for k are 5 and

10. When k is very small, the results can be sensitive

to the choice of folds, whereas a very large k

increases computational costs. The overall model

accuracy is then determined by averaging the

accuracy scores from each iteration.[26]

Model performance is measured using

accuracy, precision, recall, and F1-score calculated

from the confusion matrix. Accuracy as shown in

equation 1 aims to measure the correct predictions

out of all predictions made by the model. Precision

measures how much of what is classified as positive

is actually positive as shown in equation 2. Recall

assesses how effectively the model identifies all

positive instances , the calculation formula is shown

in equation 3. The F1 score as shown in equation 4 is

a metric that merges precision and recall to provide a

comprehensive evaluation of the classification

model's performance. The following is the

calculation of the evaluation value[27].

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 (1)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (2)

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (3)

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =
2 𝑥 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑥 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
 (4)

3. RESULT AND DISCUSSION

3.1. Dataset

Figure 3. Data distribution

The dataset consists of 10291 rows that have 2

columns, namely the text column and the label

column. The data consists of 5388 non- hate speech

and 5388 hate speech as shown in Figure 3. The

label column only contains between 2 values,

namely 0 and 1. Label 1 means that the text contains

hate speech, while 0 indicates that the text does not

contain hate speech. An example dataset will be

shown in the table below.

Table 1. Sample dataset

Label Text

1 ”man you are such a

dickhead you half caste piece

of shit”

1 ” baby boomers are wankers

and ruined everything”

1 ”@user black professor

makes assumptions about an

entire race whilst speaking

for entire race. next week the

jews! #nazi”

0 ” to all of the dad's out

there...happy father's day!

#fathersday #dads #thankyou

”

0 ”The weather is so nice

today, hope everyone has a

great day!”

0 ” So happy to spend the

weekend with family and

friends”

3.2. Preprocessing

This stage is done to reduce noise and improve

model performance. There are several stages in

preparing data before it is used for training. In the

table 2 are the stages in data preprocessing.

1762 Jurnal Teknik Informatika (JUTIF), Vol. 5, No. 6, December 2024, pp. 1759-1767

Table 2. Preprocessing data

Proses Text

Original Text RT @user123: This is the

worst thing i have ever read.

People like youuu should go

back where u came from!

#disgusted #hatespeech

Case Folding rt @user123: this is the worst

thing i have ever read. people

like youuu should go back

where u came from! #disgusted

#hatespeech

Data Cleaning rt this is the worst thing i have

ever read people like youuu

should go back where u came

from disgusted hatespeech

Lemmatization rt this be the bad thing i have

ever read people like youuu

should go back where u come

from disgust hatespeech

Word Normalization rt this be the bad thing i have

ever read people like you

should go back where u come

from disgust hatespeech

Informal word converter rt this be the bad thing i have

ever read people like you

should go back where you

come from disgust hatespeech

Tokenizing ['rt', 'this', 'be', 'the', 'bad',

'thing', 'i', 'have', 'ever', 'read',

'people', 'like', 'you', 'should',

'go', 'back', 'where', 'you',

'come', 'from', 'disgust',

'hatespeech']

Figure 4. Preprocessing phase

Figure 4 shows the data preprocessing stage for

hate speech detection, several libraries are used to

prepare the text to be cleaner and more structured.

Library re is used for data cleaning, removing certain

characters or patterns, and normalizing words by

removing repeated characters. The lemmatization

process is done using nltk to convert words into their

basic form, while nltk is also used for text

tokenization. All these stages aim to reduce noise

and improve the performance of the model while

training.

3.2.1. Informal Word Converter

This step converts informal words into formal

words or words that are more common, usually

called text normalization. The first step is to create a

dictionary that contains two columns, namely

informal and formal columns, in this dictionary there

are 4556 rows of data with examples as in table 3

below.

Table 3. informal words dictionary

Informal formal

u you

y’all you all

acab all cops are bastard

bro brother

gimme give me

The informal converter is used when a word

token cannot be found in the pretrained glove

dictionary. In such cases, the word is first converted

using the word converter dictionary before being

processed further. The stages of converting informal

words into formal words use a simple algorithm,

which loops each word that has been preprocessed

then checks the informal words in the dataset and

dictionary, then converts them into formal words.

Figure 5. Informal words converter algorithm

Natural Language Processing (NLP) techniques

for converting informal words into formal ones are

important in handling text from platforms that often

use nonstandard language, such as social media or

online forums. Embedding models such as GloVe,

which represent words as vectors with fixed

dimensions, are often trained on formal text corpus,

thus failing to cover informal words. To overcome

this limitation, a common approach is to use a

dictionary or mapping from informal words to

formal words. The given code as shown in Figure 5

implements this approach by checking each

normalized text token against the list of words

available in the GloVe embedding.. If the token is

not found, the code looks for its formal equivalent in

the informal_to_formal dictionary and replaces it if

it exists. This approach is effective for increasing the

coverage of the embedding and allowing NLP

models to better understand the text, especially in

informal language contexts.

3.3. GloVe Word Embedding

Converting each word that has been previously

converted into a token into a vector using the global

vector method. The process of converting tokens

into vectors is carried out based on the existing

pretrained glove model. The contents of the

pretrained glove can be seen in the table below.

Aulia Riefqi Ardana, et all, HATE SPEECH DETECTION … 1763

Table 4. Pretrained GloVe

Word
Dimension

1

Dimension

2

Dimension

3

Dimension

4

the 0.418 0.249 -0.412 0.121

, 0.013 0.236 -0.168 0.409

. 0.151 0.301 -0.167 0.176

of 0.708 0.570 -0.471 0.180

to 0.680 -0.039 0.301 -0.177

the 0.013 0.236 -0.168 0.409

Each dimension of the embedding vector

represents a particular feature or aspect of the word

meaning, although the specific interpretation of each

dimension is not always immediately obvious. These

dimensions capture various semantic relationships

between words and are the result of a complex

process of learning from text data. For example,

certain dimensions may relate to word types (nouns,

verbs) or contextual concepts . Vector embedding

enables comparisons between words through vector

operations, so that words that appear frequently in

the same context will have vectors that are more

similar to each other. Vector embedding helps

natural language processing models capture the

meaning and semantic relationships between words

more effectively.

Datasets that have been preprocessed in the

previous stage are then weighted using pretrained

glove. An example of text that is weighted using

GloVe can be seen in the table below.

Table 5. GloVe word embedding

Text Word Vector

i hate fucking

tosser faggot

i 0.118 0.152 -0.082 -0.741

0.759 -0.483 -0.310 0.514 -

0.987 0.0006 -0.150 0.837 -

1.079 -0.514 1.318 0.620

0.137 0.471 -0.072 -0.726 -

0.741 0.752 0.881 0.295

1.354 -2.570 -1.352 0.458

1.006 -1.185 3.473 0.778 -

0.729 0.251 -0.261 -0.346

0.558 0.750 0.498 -0.268 -

0.002 -0.018 -0.280 0.553

0.037 0.185 -0.150 -0.575 -

0.266 0.921

hate -0.852 -0.147 0.049 -0.787

0.194 0.489 0.343 -0.615 -

0.372 0.771 -0.719 -0.129 -

0.409 -0.653 0.949 -0.498

0.254 0.049 0.189 -0.149 -

0.276 0.320 0.858 1.017

0.222 -1.823 -0.693 -0.018

1.454 -1.103 1.526 0.698 -

0.590 -1.047 -1.2981 -0.472

-0.319 -1.348 -0.193 0.182

0.043 -0.172 0.167 0.661

0.716 0.169 -0.347 -0.151 -

0.051 0.297

fucking

-0.682 -0.703 0.069 -1.056

0.134 -0.341 0.134 0.121 -

0.160 0.593 -0.439 0.262 -

0.113 0.232 0.588 -0.191

0.893 0.778 0.033 0.270 -

0.687 -0.060 0.282 0.664

0.801 -0.142 -1.757 0.529

1.130 -0.975 -0.071 0.299

0.175 1.156 -1.099 0.451

0.706 -0.741 0.327 -0.273

0.122 -0.650 -0.732 0.898

0.086 -0.379 -0.297 -0.269

0.443 0.191

tosser

-0.949 -0.518 0.133 -0.234 -

0.099 0.012 1.004 -0.415

0.548 0.635 -0.026 -0.172 -

0.141 0.777 -0.621 -0.008

0.441 0.273 -0.043 -0.159 -

0.282 -0.338 0.009 -0.340 -

0.246 -0.089 -0.479 0.890

0.380 -0.409 -1.415 0.070 -

0.123 1.297 0.057 0.464

0.296 0.392 -0.602 0.139

0.456 0.262 -0.142 0.074

0.809 -0.616 0.127 0.099

0.703 -0.444

faggots

-0.060 -0.526 -0.368 -0.436 -

0.476 0.390 0.844 -0.416 -

0.147 0.337 -0.537 0.744

0.079 0.276 0.691 -0.542

0.784 0.537 0.503 -0.225

0.080 -0.131 0.446 0.540

0.084 0.841 -0.379 0.288

0.741 -0.737 -0.963 0.309 -

0.149 0.475 -0.579 0.634

0.017 -0.795 0.052 0.184 -

0.178 -0.393 0.457 0.509 -

0.174 -0.192 0.026 -0.020

0.350 -0.120

3.4. Classification Using GRU

The model architecture employs a single GRU

layer with 64 units, followed by a Dropout layer

with a probability of 0.3 to mitigate overfitting

during training. This configuration ensures that the

model generalizes well to unseen data by randomly

dropping units from the network, preventing it from

becoming too reliant on any particular neuron. The

final layer of the model is a Dense layer with a

sigmoid activation function, which outputs a

probability score that indicates the likelihood of the

text containing hate speech.

The model is trained using the Adam optimizer

combined with the binary cross-entropy loss

function. Adam is chosen for its ability to adaptively

adjust learning rates, enhancing the training process's

efficiency and stability. The binary cross-entropy

loss function measures the discrepancy between the

predicted probabilities and the actual class labels,

guiding the optimization of the model weights.

Training continues until the model achieves

satisfactory performance in detecting hate speech, as

indicated by its accuracy on the validation set.

Table 6. GRU parameter

Parameter Value

Batch Size 16

epoch 10

optimizer Adam

Loss Binary Crossentropy

As shown in Table 6, the use of batch size 16,

epoch 10, Adam optimizer, and binary crossentropy

loss in the hate speech detection program with GRU

and GloVe is based on several considerations. Batch

size 16 allows for memory efficiency and more

1764 Jurnal Teknik Informatika (JUTIF), Vol. 5, No. 6, December 2024, pp. 1759-1767

frequent gradient updates, while 10 epochs were

chosen because there is no significant improvement,

saving computing time and resources. Adam

optimizer was chosen for its ability to automatically

adjust the learning rate for each parameter during

training, combining the advantages of momentum

and RMSProp. This allows for faster and more stable

convergence, and improves model training

efficiency. Binary crossentropy loss is used because

it performs binary classification, so this loss is

suitable for measuring how well the predicted

probability distribution matches the target class

.

Figure 7. Sequential model for binary classification

The neural network model in figure 7 uses

Keras Sequential library for binary classification

tasks. The model accepts as input a sequence of data

with dimensions (57, 50), where 57 is the number of

time steps and 50 is the features per time step. The

model consists of three main layers: first, a GRU

(Gated Recurrent Unit) layer with 64 units, which

captures temporal dependencies in the data. Then, a

Dropout layer with a 30% dropout rate is used to

prevent overfitting by randomly ignoring 30% of the

units in the previous layer during training. Finally, a

Dense layer with 1 unit and sigmoid activation

produces an output that is the probability of the

target class, which is suitable for binary

3.5. Evaluation

The evaluation applies 5-fold cross-validation to

gauge the performance of the constructed model. This

method calculates accuracy, recall, precision, and F1

score to measure effectiveness. Several scenarios

were tested. The results are presented in Figure 6 for

comparison, illustrating the performance metrics of

both models.

In Figure 6, an attempt was made to change the

number of units in the GRU model as part of the

experiment. Although at this stage the model has not

implemented informal to formal word conversion, the

evaluation results provide important insights. In the

three experiments conducted, GRU with 64 units

showed the most optimal evaluation performance

compared to models using a larger number of units,

such as 128 units. Although increasing the number of

units above 64 did not show any significant difference

in the evaluation results, the use of larger units could

potentially increase the computational load

significantly. Therefore, 64 units was chosen as the

best configuration to maintain a balance between

performance and computational efficiency. This

selection is based on the consideration to optimize the

results while keeping in mind the limited

Figure 6. Comparison of GRU Model Performance Metrics with Various Units

Aulia Riefqi Ardana, et all, HATE SPEECH DETECTION … 1765

computational resources, which is crucial in the

development of efficient and scalable models..

Figure 8. Performance metrics without informal to formal

transformation

Figure 9. Performance metrics with informal to formal

transformation

Figure 8 shows the average evaluation score of

the model before applying the informal-to-formal

word conversion technique. Meanwhile, Figure 8

displays the evaluation results after the technique

was applied. The results in Figure 9 are actually

consistent with the data presented in figure 6.

However, it is important to note that the values in

figure 6 have been converted to whole numbers to

simplify the presentation of the data, thus providing

a more concise view. This rounding does not

compromise the accuracy of the results obtained, but

provides a format that is easier to understand. A

comparison between Figure 8 and Figure 9 provides

a clearer picture of the positive impact of converting

informal to formal words on the overall performance

of the model. From this, it can be seen that the

performance improvement after the modifications

were made improved the accuracy of the model.This

study evaluates the performance of the model with

two scenarios: without informal to formal word

modifiers and with informal to formal word

modifiers. In the scenario without informal to formal

word modifiers, the model showed an average

accuracy of 90.7%, which means that 90.7% of all

predictions made by the model were correct. The

average recall of 89.9% indicates that the model was

able to detect 89.9% of all true positive instances.

Precision of 92.3% indicates that out of all the

predicted positive instances, 92.3% of them were

actually positive. F1-score, which is the

harmonization of precision and recall, stands at 91%.

In scenarios where informal to formal word

modifiers were applied, the model's performance

improved. The average accuracy climbed to 92.4%,

underscoring the model's enhanced ability to predict

accurately using formal language. While recall at

93.5%, precision at 92.2%. The F1-score rose to

92.8%, demonstrating an overall improvement in the

model's performance when formal language

converter was employed.

These two scenarios shows that the use of

informal to formal word modifiers has a positive

impact on model performance. The 1.7% increase in

accuracy from 90.7% to 92.4% indicates that the

model can make more precise predictions with

formal words. The increase in precision indicates

that the model's positive predictions become more

accurate, reducing the number of false positives.

This research proves that converting informal

words into formal words can improve the

performance value of the model. With higher

accuracy and precision, the model becomes more

reliable in the detection tasks tested. This confirms

the importance of considering the use of formal

words in model development to improve prediction

accuracy and precision.

4. DISCUSSION

Table 7. Model Accuracy Results

Model Accuracy
IndoBerTweet + BiLSTM 93.7%

CNN + FastText 80%

Deep Belief Network + GloVe 84.38%

GRU + GloVe + Informal words

modifier

92.4%

As shown in table 8. IndoBERTweet combined

with BiLSTM to improve text classification

performance. The model was trained using a public

dataset from Twitter that has been labeled as hate

speech and not hate speech. The evaluation results

show an accuracy of 93.7%[8].

There are various studies that have employed

different methodologies to enhance accuracy in

classification tasks. One such study used

Convolutional Neural Network (CNN) combined

with FastText word embedding. By employing the

K-Fold Cross Validation process and determining

the optimal dropout value, this system achieved an

accuracy rate of 80%[9].

Another research took a different approach by

developing a system based on the Deep Belief

Network method, utilizing GloVe features to

improve accuracy before the classification phase.

The findings from this study showed an accuracy

rate of 84.38%, demonstrating the potential of

combining Deep Belief Networks with GloVe word

embeddings for better performance[11].

In the study being discussed, the proposed

detection system integrates Gated Recurrent Unit

(GRU) with Word Embedding using the GloVe

model. The evaluation of the classification process

using GRU and GloVe resulted in an accuracy of

90.7% and an F1 score of 91%. Furthermore, the

inclusion of an informal word modifier algorithm led

to an increase in accuracy to 92.4% and an F1 score

to 92.8%, highlighting the effectiveness of this

approach in improving detection accuracy.

1766 Jurnal Teknik Informatika (JUTIF), Vol. 5, No. 6, December 2024, pp. 1759-1767

From the comparison of previous research, it

can be seen that various deep learning methods such

as IndoBERTweet with BiLSTM, CNN with

FastText, Deep Belief Network with GloVe, and

GRU with GloVe as well as informal word modifier

algorithms are used to detect hate speech on social

media. Each method has advantages and varying

accuracy results, showing that there are various

effective approaches to address the problem of hate

speech on social media. This comparison also shows

that using the right combination of models and

techniques can significantly improve the accuracy of

hate speech detection.

In order to improve better classification, it is

recommended to make modifications to the

dictionary that will be used to convert informal

words into formal ones. Add informal language

vocabulary to the dictionary, so that the model can

work better.

5. CONCLUSION

This research uses Gated Recurrent Unit

(GRU) and GloVe as word embedding to classify

hate speech. Datasets that have been labeled are

obtained from two different sources then put

together and taken as much as 10292 data. This

dataset has two categories, namely categories

containing hate speech with label 1 and not

containing hate speech with label 0, each category

5388 with label 1 and 4903 for label 0. The dataset is

preprocessed including case folding, data cleaning,

lemmatization, word normalization, informal to

formal words, tokenization. Then the confusion

matrix calculation is used to test the model that has

been built. There are two scenarios in this study,

namely the effect of using the informal to formal

word converter algorithm which shows value of

92.4% accuracy, 93.5% recall, 92.2% precision and

92.8% F1. In scenarios that have not used informal

to formal word modifiers show a value of 90.7%

accuracy, 89.9% recall, 92.3% precision and 91%

F1. By using informal to formal word modifiers, it

can improve the performance of the model that has

been created.

REFERENCES

[1] J. S. Malik, H. Qiao, G. Pang, and A. van

den Hengel, “Deep Learning for Hate

Speech Detection: A Comparative Study,”

Feb. 2022, [Online]. Available:

http://arxiv.org/abs/2202.09517

[2] B. Breve, L. Caruccio, S. Cirillo, V.

Deufemia, and G. Polese, “Analyzing the

worldwide perception of the Russia-Ukraine

conflict through Twitter,” J Big Data, vol.

11, no. 1, Dec. 2024, doi: 10.1186/s40537-

024-00921-w.

[3] C. Liu, Y. Tian, Y. Shi, Z. Huang, and Y.

Shao, “An analysis of public topics and

sentiments based on social media during the

COVID-19 Omicron Variant outbreak in

Shanghai 2022,” Computational Urban

Science, vol. 4, no. 1, Dec. 2024, doi:

10.1007/s43762-024-00128-y.

[4] I. Oluwasegun Adeniyi, N. A. Sande, A.

Akinkunmi Author, and I. Oluwasegun,

“Social Media Sentiment Analysis: A

Comprehensive Analysis”, doi:

10.13140/RG.2.2.31094.37441.

[5] Nasrabadi N, Wicaksono H, and Valilai O,

“Shopping marketplace analysis based on

customer insights using social media

analytics,” MethodsX, vol. 9, Jan. 2022, doi:

10.1016/j.mex.2022.101932.

[6] Q. A. B. K. Zaman, W. N. S. B. W. Yusoff,

and Q. B. B. A. Shah, “Sentiment Analysis

on The Place of Interest in Malaysia,”

Journal of Advanced Research in Applied

Sciences and Engineering Technology, vol.

43, no. 1, pp. 54–65, Jan. 2025, doi:

10.37934/araset.43.1.5465.

[7] A. Müller and M. Lopez-Sanchez,

“Countering Negative Effects of Hate

Speech in a Multi-Agent Society,” in

Frontiers in Artificial Intelligence and

Applications, IOS Press BV, Oct. 2021, pp.

103–112. doi: 10.3233/FAIA210122.

[8] J. Forry Kusuma and A. Chowanda,

“Indonesian Hate Speech Detection Using

IndoBERTweet and BiLSTM on Twitter,”

2020. [Online]. Available:

www.joiv.org/index.php/joiv

[9] F. Nadia Puteri and Y. Sibaroni, “Hate

Speech Detection in Indonesia Twitter

Comments Using Convolutional Neural

Network (CNN) and FastText Word

Embedding,” vol. 7, no. 3, pp. 1154–1161,

2023, doi: 10.30865/mib.v7i3.6401.

[10] M. Hayaty, A. D. Laksito, and S. Adi, “Hate

speech detection on Indonesian text using

word embedding method-global vector,”

IAES International Journal of Artificial

Intelligence, vol. 12, no. 4, pp. 1928–1937,

Dec. 2023, doi: 10.11591/ijai.v12.i4.pp1928-

1937.

[11] I. Zulfikar, M. Nasrun, S. Si, and C.

Setianingsih, “Deteksi Ujaran Kebencian

Menggunakan Algoritma Glove Dan Deep

Belief Network (Dbn).” Universitas Telkom,

2019.

[12] N. Badri, F. Kboubi, and A. H. Chaibi,

“Combining FastText and Glove Word

Embedding for Offensive and Hate speech

Text Detection,” in Procedia Computer

Science, Elsevier B.V., 2022, pp. 769–778.

doi: 10.1016/j.procs.2022.09.132.

[13] R. Rana, “Gated Recurrent Unit (GRU) for

Emotion Classification from Noisy Speech,”

Dec. 2016, [Online]. Available:

http://arxiv.org/abs/1612.07778

Aulia Riefqi Ardana, et all, HATE SPEECH DETECTION … 1767

[14] M. Zulqarnain, R. Ghazali, Y. M. M.

Hassim, and M. Rehan, “Text classification

based on gated recurrent unit combines with

support vector machine,” International

Journal of Electrical and Computer

Engineering, vol. 10, no. 4, pp. 3734–3742,

2020, doi: 10.11591/ijece.v10i4.pp3734-

3742.

[15] J. Pennington, R. Socher, and C. D.

Manning, “GloVe: Global Vectors for Word

Representation.”https://nlp.stanford.edu/proj

ects/glove (accessed: Apr. 01, 2024).

[16] M. Devansh, H. YiDong, Alves de Oliveira,

and Thiago Eustaquio, “A Curated Hate

Speech Dataset,” 2022.

[17] A. Toosi, “Twitter Sentiment Analysis.”

Accessed: Apr. 25, 2024. [Online].

Available:

https://www.kaggle.com/datasets/arkhoshgh

alb/twitter-sentiment-analysis-hatred-speech/

[18] D. Putri et al., “Hate Speech Detection on

Twitter Approaching The Indonesian

Election Using Machine Learning,”

Universitas Indonesia, 2018.

[19] J. Patihullah and E. Winarko, “Hate Speech

Detection for Indonesia Tweets Using Word

Embedding And Gated Recurrent Unit,”

IJCCS (Indonesian Journal of Computing

and Cybernetics Systems), vol. 13, no. 1, p.

43, Jan. 2019, doi: 10.22146/ijccs.40125.

[20] H. Imaduddin, L. A. Kusumaningtias, and F.

Y. A’la, “Application of LSTM and GloVe

Word Embedding for Hate Speech Detection

in Indonesian Twitter Data,” Ingénierie des

systèmes d information, vol. 28, no. 4, pp.

1107–1112, Aug. 2023, doi:

10.18280/isi.280430.

[21] A. Ahmad Aliero, B. Sulaimon Adebayo, H.

Olanrewaju Aliyu, A. Gogo Tafida, B. Umar

Kangiwa, and N. Muhammad Dankolo,

“Systematic Review on Text Normalization

Techniques and its Approach to Non-

Standard Words,” 2023.

[22] J. Pennington, R. Socher, and C. D.

Manning, “GloVe: Global Vectors for Word

Representation.”https://nlp.stanford.edu/data

/glove.6B.zip(accessed: Apr. 01, 2024)

[23] A. Rahmadeyan and Mustakim, “Long

Short-Term Memory and Gated Recurrent

Unit for Stock Price Prediction,” in Procedia

Computer Science, Elsevier B.V., 2024, pp.

204–212. doi: 10.1016/j.procs.2024.02.167.

[24] R. Achmad, Y. Tokoro, J. Haurissa, and A.

Wijanarko, “Recurrent Neural Network-

Gated Recurrent Unit for Indonesia-Sentani

Papua Machine Translation,” Journal of

Information Systems and Informatics, vol. 5,

no. 4, pp. 1449–1460, Dec. 2023, doi:

10.51519/journalisi.v5i4.597.

[25] S. Manna, “K-Fold Cross Validation for

Deep Learning Models using Keras.”

Accessed: Jul. 11, 2024. [Online]. Available:

https://medium.com/the-owl/k-fold-cross-

validation-in-keras-3ec4a3a00538

[26] A. M. Peco Chacón, I. Segovia Ramírez, and

F. P. García Márquez, “K-nearest neighbour

and K-fold cross-validation used in wind

turbines for false alarm detection,”

Sustainable Futures, vol. 6, Dec. 2023, doi:

10.1016/j.sftr.2023.100132.

[27] M. Hasnain, M. F. Pasha, I. Ghani, M.

Imran, M. Y. Alzahrani, and R. Budiarto,

“Evaluating Trust Prediction and Confusion

Matrix Measures for Web Services

Ranking,” IEEE Access, vol. 8, pp. 90847–

90861, 2020, doi:

10.1109/ACCESS.2020.2994222.

https://nlp.stanford.edu/data/glove.6B.zip
https://nlp.stanford.edu/data/glove.6B.zip

