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Abstract  

 

Social media has become a tool that makes it easier for people to exchange information. The freedom to share 

information has opened the door for increased incidents of hate speech on social media. Hate speech detection is 

an interesting topic because with the increasing use of social media, hate speech can quickly spread and trigger 

significant negative impacts, discrimination, and social conflict. This research aims to see the effect of GRU 

method, GloVe word embedding and word modifier algorithm in detecting hate speech. GRU and GloVe are 

used in this research for the hate speech detection system, where deep learning with a Gated Recurrent Unit 

(GRU) and Word Embedding with the Global Vector model (GloVe) converts words in text into numerical 

vectors that represent the meaning and context of the words. GRU is chosen due to its ability to capture long-

term dependencies in textual data with higher computational efficiency compared to Long Short-Term Memory 

(LSTM). Gated Recurrent Unit (GRU) model processes the sequence of words to understand the sentence 

structure. GRU model processes the sequence of words to understand the sentence structure. The evaluation 

results for the classification of hate speech using GRU and GloVe are 90.7% accuracy and 91% F1 score. With 

the combination of informal word modifier algorithms there is an increase with a value of 92.8% F1 and 92.4% 

accuracy. in conclusion, the use of informal word modifier algorithms can increase the evaluation value in 

detecting hate speech. 
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1. INTRODUCTION 

Hate speech is a phenomenon that often occurs 

on various social media platforms. Hate speech can 

trigger divisions, misunderstandings, and even acts 

of violence between individuals or groups, especially 

because of the prejudice it causes. Social media 

allows users to share opinions and information 

freely. [1]. Social media is also useful for obtaining 

data to see people's perceptions of a topic that is 

circulating. For example, a topic that is quite popular 

on twitter regarding the Russian and Ukrainian wars, 

then covid-19 which spread throughout the world. 

During the Covid-19 pandemic, social media has 

been helpful for policymakers to strategize by 

understanding the responses given by the public. [2], 

[3]. Social media can also illustrate the rating of a 

product or service. This is useful for companies to 

evaluate their products based on public opinion[4], 

[5], [6]. However, this freedom of speech and lax 

regulations have increased the spread of hate speech 

[7], which can have a significant negative impact on 

certain individuals and groups of people  

The research adopts BiLSTM and Word2Vec 

models with continuous bag of words (CBOW) 

architecture. There are also studies that combine 

global vector algorithm with deep belief network. 

The use of GloVe in previous studies showed good 

accuracy; this study combined long short-term 

memory (LSTM) with GloVe word embedding for 

hate speech classifier, with accuracy reaching 81.5% 

in one-layer LSTM and 80.9% in two-layer LSTM. 

However, there are difficulties in identifying slang 

words and local languages. In addition, the model 

also misinterpreted some words in the context of 

animal names, rather than as hateful statements. 

Another study that combined fastText with GRU in 

classifying offensive and inoffensive texts showed a 

fairly good accuracy of 84%. The drawback of this 

model is that it does not fully capture the context of 

the sentence, and its performance is highly 

dependent on proper hyperparameter tuning, which 

can take significant time and computational 

resources. [8], [9], [10], [11], [12]. 

 Although many studies have been conducted, 

there is still room for improvement in hate speech 

detection. In this study, the use of gated recurrent 

unit (GRU) and word embedding global vector 

(GloVe) methods is expected to provide good 

accuracy in hate speech detection. GRU is a type of 

recurrent neural network architecture designed to 

overcome several problems in traditional recurrent 

neural networks, especially problems related to 

vanishing gradient and exploding gradient. GRU 

introduces a “gate” structure to control the flow of 

information in and out of the hidden units which 
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allows the model to better retain which relevant 

information to retain or ignore[13], [14]. And GloVe 

is a word representation learning model that 

combines the strengths of count-based and predictive 

methods. It uses global word co-occurrence statistics 

to generate word vectors that capture meaning and 

semantic relationships. [15].  

Based on previous research with the 

combination of fasttext-GRU and GloVe-LSTM, 

This research focuses on the use of deep learning 

methods GRU, GloVe as word embedding and 

implementing an informal word converter into a 

formal word that is expected to have better 

performance in detecting hate speech. 

 

2. RESEARCH  METHOD 

 

Figure 1. System Flow. 

The system built for hate speech detection as 

shown in Figure 1, starting from dataset collection to 

evaluation is as follows. 

 

2.1. Dataset 

 This research uses a dataset that has been 

labeled with 10291 lines of data. Of these, 5388 

records contain hate speech and 4903 records do not 

contain hate speech. This research detects hate 

speech in English, so the dataset uses English. This 

dataset combines two data sources, there are [16]  

and [17], to increasing variation and reducing data 

imbalance. 

 

2.2. Preprocessing 

The dataset that has been collected is subjected 

to data cleaning, aiming to improve quality, reduce 

noise and data relevance [18].  These are several 

stages in the preprocessing technique. 

1. Case Folding, this process converts all 

existing capital letters into lowercase 

letters [19]. 

2. Data Cleaning,  this process of deleting 

unnecessary data [20]. 

3. Lemmatization, this process converts 

words into root words using WordNet. 

4. Spell Correction, this process converts 

words that have unnatural reduplication of 

letters into their root word.[21] 

5. Informal to Formal Words, This process 

converts informal words into standardized 

words. 

6. Tokenizing, this process breaks down text 

into words or what are called tokens. 

2.3. Word Embedding 

         This stage converts each word into a number 

vector using the global vector (GloVe) method. 

GloVe is a model developed to improve the learning 

of word representation in vector space. This model 

aims to capture patterns of relationships between 

words. This allows the model to work very well in 

word analogy and similarity between words[15]. 

This step converts each word in the dataset into 

a number vector. This number vector contains the 

semantic and syntactic information of the words. 

This research uses pretrained GloVe with a 

combined corpus from wikipedia and gigaword. This 

pretrained GloVe has 42 billion tokens and has 50 

dimensions[22]. This dimension serves to determine 

how detailed information can be captured by a word 

vector. 

2.4. Data Splitting 

         Divides the dataset for training and testing with 

a ratio of 80:20. Training data is utilized to train the 

model, whereas testing data is employed to evaluate 

the performance of the developed model. 

2.5. Gated Recurrent Unit 

Gated Recurrent Unit (GRU) is a type of deep 

learning used to process sequence data. GRU is a 

simpler variant of LSTM. GRU employs two types 

of gates: reset gates and update gates. These gates 

manage the flow of information and preserve 

essential context, achieving this without the need for 

the more complex structure found in LSTM.[23].   

Using a Gated Recurrent Unit (GRU) 

architecture to detect hate speech works by receiving 

text that has been converted into a vector of 

numbers. This text then passes through a series of 

GRU layers to capture temporal and context 

information from the word sequence. The GRU uses 

two main gates, reset gate and update gate, to 

regulate the flow of information and retain or forget 

relevant information from the previous hidden state. 

After going through the GRU layers, the result is a 
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comprehensive contextual representation of the 

text[24]. 

2.6. Evaluation 

 

Figure 2. 5-Fold cross validation[25] 

The model is evaluated using k-Fold Cross 

Validation and a confusion matrix to calculate 

accuracy, precision, recall, and F1-score values. In 

the k-Fold Cross Validation method, the dataset is 

split into k equally-sized subsets or folds as shown in 

Figure 2. During each of the k iterations, the model 

is trained on k-1 folds and tested on the remaining 

fold. This process ensures that each fold is used as a 

test set exactly once. Common values for k are 5 and 

10. When k is very small, the results can be sensitive 

to the choice of folds, whereas a very large k 

increases computational costs. The overall model 

accuracy is then determined by averaging the 

accuracy scores from each iteration.[26] 

Model performance is measured using 

accuracy, precision, recall, and F1-score calculated 

from the confusion matrix. Accuracy as shown in 

equation 1 aims to measure the correct predictions 

out of all predictions made by the model. Precision 

measures how much of what is classified as positive 

is actually positive as shown in equation 2. Recall 

assesses how effectively the model identifies all 

positive instances , the calculation formula is shown 

in equation 3. The F1 score as shown in equation 4 is 

a metric that merges precision and recall to provide a 

comprehensive evaluation of the classification 

model's performance. The following is the 

calculation of the evaluation value[27]. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
  (1) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
    (2) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
      (3) 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =
2 𝑥 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑥 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
    (4) 

 

3. RESULT AND DISCUSSION 

3.1. Dataset 

 
Figure 3. Data distribution 

The dataset consists of 10291 rows that have 2 

columns, namely the text column and the label 

column. The data consists of 5388 non- hate speech 

and 5388 hate speech as shown in Figure 3. The 

label column only contains between 2 values, 

namely 0 and 1. Label 1 means that the text contains 

hate speech, while 0 indicates that the text does not 

contain hate speech. An example dataset will be 

shown in the table below. 

 
Table 1. Sample dataset 

Label Text 

1 ”man you are such a 

dickhead you half caste piece 

of shit” 

1 ” baby boomers are wankers 

and ruined everything” 

1 ”@user black professor 

makes assumptions about an 

entire race whilst speaking 

for entire race. next week the 

jews!  #nazi” 

0 ” to all of the dad's out 

there...happy father's day!    

#fathersday #dads #thankyou  

” 

0 ”The weather is so nice 

today, hope everyone has a 

great day!” 

0 ” So happy to spend the 

weekend with family and 

friends” 

3.2. Preprocessing 

This stage is done to reduce noise and improve 

model performance. There are several stages in 

preparing data before it is used for training. In the 

table 2 are the stages in data preprocessing.  
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Table 2. Preprocessing data 

Proses Text 

Original Text  RT @user123: This is the 

worst thing i have ever read. 

People like youuu should go 

back where u came from! 

#disgusted #hatespeech 

Case Folding rt @user123: this is the worst 

thing i have ever read. people 

like youuu should go back 

where u came from! #disgusted 

#hatespeech 

Data Cleaning rt this is the worst thing i have 

ever read people like youuu 

should go back where u came 

from disgusted hatespeech 

Lemmatization rt this be the bad thing i have 

ever read people like youuu 

should go back where u come 

from disgust hatespeech 

Word Normalization rt this be the bad thing i have 

ever read people like you 

should go back where u come 

from disgust hatespeech 

Informal word converter rt this be the bad thing i have 

ever read people like you 

should go back where you 

come from disgust hatespeech 

Tokenizing ['rt', 'this', 'be', 'the', 'bad', 

'thing', 'i', 'have', 'ever', 'read', 

'people', 'like', 'you', 'should', 

'go', 'back', 'where', 'you', 

'come', 'from', 'disgust', 

'hatespeech'] 

 
Figure 4. Preprocessing phase 

Figure 4 shows the data preprocessing stage for 

hate speech detection, several libraries are used to 

prepare the text to be cleaner and more structured. 

Library re is used for data cleaning, removing certain 

characters or patterns, and normalizing words by 

removing repeated characters. The lemmatization 

process is done using nltk to convert words into their 

basic form, while nltk is also used for text 

tokenization. All these stages aim to reduce noise 

and improve the performance of the model while 

training. 

3.2.1. Informal Word Converter 

This step converts informal words into formal 

words or words that are more common, usually 

called text normalization. The first step is to create a 

dictionary that contains two columns, namely 

informal and formal columns, in this dictionary there 

are 4556 rows of data with examples as in table 3 

below. 

 
 

Table 3. informal words dictionary 

Informal formal 

u you 

y’all you all 

acab all cops are bastard 

bro  brother 

gimme  give me 

The informal converter is used when a word 

token cannot be found in the pretrained glove 

dictionary. In such cases, the word is first converted 

using the word converter dictionary before being 

processed further. The stages of converting informal 

words into formal words use a simple algorithm, 

which loops each word that has been preprocessed 

then checks the informal words in the dataset and 

dictionary, then converts them into formal words.  

 

Figure 5. Informal words converter algorithm 

Natural Language Processing (NLP) techniques 

for converting informal words into formal ones are 

important in handling text from platforms that often 

use nonstandard language, such as social media or 

online forums. Embedding models such as GloVe, 

which represent words as vectors with fixed 

dimensions, are often trained on formal text corpus, 

thus failing to cover informal words. To overcome 

this limitation, a common approach is to use a 

dictionary or mapping from informal words to 

formal words. The given code as shown in Figure 5 

implements this approach by checking each 

normalized text token against the list of words 

available in the GloVe embedding.. If the token is 

not found, the code looks for its formal equivalent in 

the informal_to_formal dictionary and replaces it if 

it exists. This approach is effective for increasing the 

coverage of the embedding and allowing NLP 

models to better understand the text, especially in 

informal language contexts. 

3.3. GloVe Word Embedding 

Converting each word that has been previously 

converted into a token into a vector using the global 

vector method. The process of converting tokens 

into vectors is carried out based on the existing 

pretrained glove model. The contents of the 

pretrained glove can be seen in the table below. 
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Table 4. Pretrained GloVe 

Word 
Dimension 

1 

Dimension 

2 

Dimension 

3 

Dimension 

4 

the 0.418 0.249 -0.412 0.121 

, 0.013 0.236 -0.168 0.409 

. 0.151 0.301 -0.167 0.176 

of 0.708 0.570 -0.471 0.180 

to 0.680 -0.039 0.301 -0.177 

the 0.013 0.236 -0.168 0.409 

Each dimension of the embedding vector 

represents a particular feature or aspect of the word 

meaning, although the specific interpretation of each 

dimension is not always immediately obvious. These 

dimensions capture various semantic relationships 

between words and are the result of a complex 

process of learning from text data. For example, 

certain dimensions may relate to word types (nouns, 

verbs) or contextual concepts . Vector embedding 

enables comparisons between words through vector 

operations, so that words that appear frequently in 

the same context will have vectors that are more 

similar to each other. Vector embedding helps 

natural language processing models capture the 

meaning and semantic relationships between words 

more effectively. 

Datasets that have been preprocessed in the 

previous stage are then weighted using pretrained 

glove. An example of text that is weighted using 

GloVe can be seen in the table below. 

Table 5. GloVe word embedding 

Text Word  Vector 

i hate fucking 

tosser faggot  

i 0.118 0.152 -0.082 -0.741 

0.759 -0.483 -0.310 0.514 -

0.987 0.0006 -0.150 0.837 -

1.079 -0.514 1.318 0.620 

0.137 0.471 -0.072 -0.726 -

0.741 0.752 0.881 0.295 

1.354 -2.570 -1.352 0.458 

1.006 -1.185 3.473 0.778 -

0.729 0.251 -0.261 -0.346 

0.558 0.750 0.498 -0.268 -

0.002 -0.018 -0.280 0.553 

0.037 0.185 -0.150 -0.575 -

0.266 0.921 

hate -0.852 -0.147 0.049 -0.787 

0.194 0.489 0.343 -0.615 -

0.372 0.771 -0.719 -0.129 -

0.409 -0.653 0.949 -0.498 

0.254 0.049 0.189 -0.149 -

0.276 0.320 0.858 1.017 

0.222 -1.823 -0.693 -0.018 

1.454 -1.103 1.526 0.698 -

0.590 -1.047 -1.2981 -0.472 

-0.319 -1.348 -0.193 0.182 

0.043 -0.172 0.167 0.661 

0.716 0.169 -0.347 -0.151 -

0.051 0.297 

fucking 

-0.682 -0.703 0.069 -1.056 

0.134 -0.341 0.134 0.121 -

0.160 0.593 -0.439 0.262 -

0.113 0.232 0.588 -0.191 

0.893 0.778 0.033 0.270 -

0.687 -0.060 0.282 0.664 

0.801 -0.142 -1.757 0.529 

1.130 -0.975 -0.071 0.299 

0.175 1.156 -1.099 0.451 

0.706 -0.741 0.327 -0.273 

0.122 -0.650 -0.732 0.898 

0.086 -0.379 -0.297 -0.269 

0.443 0.191 

tosser 

-0.949 -0.518 0.133 -0.234 -

0.099 0.012 1.004 -0.415 

0.548 0.635 -0.026 -0.172 -

0.141 0.777 -0.621 -0.008 

0.441 0.273 -0.043 -0.159 -

0.282 -0.338 0.009 -0.340 -

0.246 -0.089 -0.479 0.890 

0.380 -0.409 -1.415 0.070 -

0.123 1.297 0.057 0.464 

0.296 0.392 -0.602 0.139 

0.456 0.262 -0.142 0.074 

0.809 -0.616 0.127 0.099 

0.703 -0.444 

faggots 

-0.060 -0.526 -0.368 -0.436 -

0.476 0.390 0.844 -0.416 -

0.147 0.337 -0.537 0.744 

0.079 0.276 0.691 -0.542 

0.784 0.537 0.503 -0.225 

0.080 -0.131 0.446 0.540 

0.084 0.841 -0.379 0.288 

0.741 -0.737 -0.963 0.309 -

0.149 0.475 -0.579 0.634 

0.017 -0.795 0.052 0.184 -

0.178 -0.393 0.457 0.509 -

0.174 -0.192 0.026 -0.020 

0.350 -0.120 

3.4. Classification Using GRU 

The model architecture employs a single GRU 

layer with 64 units, followed by a Dropout layer 

with a probability of 0.3 to mitigate overfitting 

during training. This configuration ensures that the 

model generalizes well to unseen data by randomly 

dropping units from the network, preventing it from 

becoming too reliant on any particular neuron. The 

final layer of the model is a Dense layer with a 

sigmoid activation function, which outputs a 

probability score that indicates the likelihood of the 

text containing hate speech. 

The model is trained using the Adam optimizer 

combined with the binary cross-entropy loss 

function. Adam is chosen for its ability to adaptively 

adjust learning rates, enhancing the training process's 

efficiency and stability. The binary cross-entropy 

loss function measures the discrepancy between the 

predicted probabilities and the actual class labels, 

guiding the optimization of the model weights. 

Training continues until the model achieves 

satisfactory performance in detecting hate speech, as 

indicated by its accuracy on the validation set. 

Table 6. GRU parameter 

Parameter Value 

Batch Size 16 

epoch 10 

optimizer Adam 

Loss Binary Crossentropy 

As shown in Table 6, the use of batch size 16, 

epoch 10, Adam optimizer, and binary crossentropy 

loss in the hate speech detection program with GRU 

and GloVe is based on several considerations. Batch 

size 16 allows for memory efficiency and more 
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frequent gradient updates, while 10 epochs were 

chosen because there is no significant improvement, 

saving computing time and resources. Adam 

optimizer was chosen for its ability to automatically 

adjust the learning rate for each parameter during 

training, combining the advantages of momentum 

and RMSProp. This allows for faster and more stable 

convergence, and improves model training 

efficiency. Binary crossentropy loss is used because 

it performs binary classification, so this loss is 

suitable for measuring how well the predicted 

probability distribution matches the target class 

.  

 

Figure 7. Sequential model for binary classification 

The neural network model in figure 7 uses 

Keras Sequential library for binary classification 

tasks. The model accepts as input a sequence of data 

with dimensions (57, 50), where 57 is the number of 

time steps and 50 is the features per time step. The 

model consists of three main layers: first, a GRU 

(Gated Recurrent Unit) layer with 64 units, which 

captures temporal dependencies in the data. Then, a 

Dropout layer with a 30% dropout rate is used to 

prevent overfitting by randomly ignoring 30% of the 

units in the previous layer during training. Finally, a 

Dense layer with 1 unit and sigmoid activation 

produces an output that is the probability of the 

target class, which is suitable for binary 

3.5. Evaluation 

The evaluation applies 5-fold cross-validation to 

gauge the performance of the constructed model. This 

method calculates accuracy, recall, precision, and F1 

score to measure effectiveness. Several scenarios 

were tested. The results are presented in Figure 6 for 

comparison, illustrating the performance metrics of 

both models. 

In Figure 6, an attempt was made to change the 

number of units in the GRU model as part of the 

experiment. Although at this stage the model has not 

implemented informal to formal word conversion, the 

evaluation results provide important insights. In the 

three experiments conducted, GRU with 64 units 

showed the most optimal evaluation performance 

compared to models using a larger number of units, 

such as 128 units. Although increasing the number of 

units above 64 did not show any significant difference 

in the evaluation results, the use of larger units could 

potentially increase the computational load 

significantly. Therefore, 64 units was chosen as the 

best configuration to maintain a balance between 

performance and computational efficiency. This 

selection is based on the consideration to optimize the 

results while keeping in mind the limited 

Figure 6. Comparison of GRU Model Performance Metrics with Various Units 
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computational resources, which is crucial in the 

development of efficient and scalable models.. 

 
Figure 8. Performance metrics without informal to formal 

transformation 

 
Figure 9. Performance metrics with informal to formal 

transformation 

Figure 8 shows the average evaluation score of 

the model before applying the informal-to-formal 

word conversion technique. Meanwhile, Figure 8 

displays the evaluation results after the technique 

was applied. The results in Figure 9 are actually 

consistent with the data presented in figure 6. 

However, it is important to note that the values in 

figure 6 have been converted to whole numbers to 

simplify the presentation of the data, thus providing 

a more concise view. This rounding does not 

compromise the accuracy of the results obtained, but 

provides a format that is easier to understand. A 

comparison between Figure 8 and Figure 9 provides 

a clearer picture of the positive impact of converting 

informal to formal words on the overall performance 

of the model. From this, it can be seen that the 

performance improvement after the modifications 

were made improved the accuracy of the model.This 

study evaluates the performance of the model with 

two scenarios: without informal to formal word 

modifiers and with informal to formal word 

modifiers. In the scenario without informal to formal 

word modifiers, the model showed an average 

accuracy of 90.7%, which means that 90.7% of all 

predictions made by the model were correct. The 

average recall of 89.9% indicates that the model was 

able to detect 89.9% of all true positive instances. 

Precision of 92.3% indicates that out of all the 

predicted positive instances, 92.3% of them were 

actually positive. F1-score, which is the 

harmonization of precision and recall, stands at 91%. 

In scenarios where informal to formal word 

modifiers were applied, the model's performance 

improved. The average accuracy climbed to 92.4%, 

underscoring the model's enhanced ability to predict 

accurately using formal language. While recall at 

93.5%, precision at 92.2%. The F1-score rose to 

92.8%, demonstrating an overall improvement in the 

model's performance when formal language 

converter was employed. 

These two scenarios shows that the use of 

informal to formal word modifiers has a positive 

impact on model performance. The 1.7% increase in 

accuracy from 90.7% to 92.4% indicates that the 

model can make more precise predictions with 

formal words. The increase in precision indicates 

that the model's positive predictions become more 

accurate, reducing the number of false positives. 

This research proves that converting informal 

words into formal words can improve the 

performance value of the model. With higher 

accuracy and precision, the model becomes more 

reliable in the detection tasks tested. This confirms 

the importance of considering the use of formal 

words in model development to improve prediction 

accuracy and precision. 

4. DISCUSSION 

Table 7. Model Accuracy Results 

Model Accuracy 
IndoBerTweet + BiLSTM 93.7% 

CNN + FastText 80% 

Deep Belief Network + GloVe 84.38% 

GRU + GloVe + Informal words 

modifier 

92.4% 

 
As shown in table 8. IndoBERTweet combined 

with BiLSTM to improve text classification 

performance. The model was trained using a public 

dataset from Twitter that has been labeled as hate 

speech and not hate speech. The evaluation results 

show an accuracy of 93.7%[8]. 

There are various studies that have employed 

different methodologies to enhance accuracy in 

classification tasks. One such study used 

Convolutional Neural Network (CNN) combined 

with FastText word embedding. By employing the 

K-Fold Cross Validation process and determining 

the optimal dropout value, this system achieved an 

accuracy rate of 80%[9]. 

Another research took a different approach by 

developing a system based on the Deep Belief 

Network method, utilizing GloVe features to 

improve accuracy before the classification phase. 

The findings from this study showed an accuracy 

rate of 84.38%, demonstrating the potential of 

combining Deep Belief Networks with GloVe word 

embeddings for better performance[11]. 

In the study being discussed, the proposed 

detection system integrates Gated Recurrent Unit 

(GRU) with Word Embedding using the GloVe 

model. The evaluation of the classification process 

using GRU and GloVe resulted in an accuracy of 

90.7% and an F1 score of 91%. Furthermore, the 

inclusion of an informal word modifier algorithm led 

to an increase in accuracy to 92.4% and an F1 score 

to 92.8%, highlighting the effectiveness of this 

approach in improving detection accuracy. 
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From the comparison of previous research, it 

can be seen that various deep learning methods such 

as IndoBERTweet with BiLSTM, CNN with 

FastText, Deep Belief Network with GloVe, and 

GRU with GloVe as well as informal word modifier 

algorithms are used to detect hate speech on social 

media. Each method has advantages and varying 

accuracy results, showing that there are various 

effective approaches to address the problem of hate 

speech on social media. This comparison also shows 

that using the right combination of models and 

techniques can significantly improve the accuracy of 

hate speech detection.  

In order to improve better classification, it is 

recommended to make modifications to the 

dictionary that will be used to convert informal 

words into formal ones. Add informal language 

vocabulary to the dictionary, so that the model can 

work better. 

5. CONCLUSION 

This research uses Gated Recurrent Unit 

(GRU) and GloVe as word embedding to classify 

hate speech. Datasets that have been labeled are 

obtained from two different sources then put 

together and taken as much as 10292 data. This 

dataset has two categories, namely categories 

containing hate speech with label 1 and not 

containing hate speech with label 0, each category 

5388 with label 1 and 4903 for label 0. The dataset is 

preprocessed including case folding, data cleaning, 

lemmatization, word normalization, informal to 

formal words, tokenization. Then the confusion 

matrix calculation is used to test the model that has 

been built. There are two scenarios in this study, 

namely the effect of using the informal to formal 

word converter algorithm which shows value of 

92.4% accuracy, 93.5% recall, 92.2% precision and 

92.8% F1. In scenarios that have not used informal 

to formal word modifiers show a value of 90.7% 

accuracy, 89.9% recall, 92.3% precision and 91% 

F1. By using informal to formal word modifiers, it 

can improve the performance of the model that has 

been created. 
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