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Abstract 
 

Telkomsel is one of the internet service provider companies that has a mobile-based application called 

MyTelkomsel which functions to facilitate users in conducting online services independently. Users of the 

application certainly have their own responses about the application, so that users can provide responses to the 

application. Therefore, sentiment analysis can be one of the solutions to find out public sentiment towards the 

application. In this research, the author builds a system for sentiment analysis using word embedding Word2vec, 

GloVe, FastText to get word representation in vector form with classification using Long Short-Term Memory 

(LSTM) combined with Synthetic Minority Over-sampling Technique (SMOTE) which can handle data imbalance. 

The data used comes from user reviews of the MyTelkomsel application found on the Google Play Store. This study 

compares the performance of several word embedding in LSTM and LSTM-SMOTE classifiers. The results showed 

the results show that the performance of three-word embedding on the LSTM model is superior compared to the 

LSTM-SMOTE model. Overall, it was found that the combination of FastText and LSTM gave the best performance 

compared to the other five combinations with an accuracy value of 89.11%. 

 

Keywords: FastText, GloVe, LSTM-SMOTE, Sentiment analysis, Word Embedding, Word2vec. 

 

 

1. INTRODUCTION 

Telkomsel is one of the leading internet service 

provider telecommunications companies in Indonesia 

that created a mobile-based application called 

MyTelkomsel. The Mytelkomsel application was 

launched by Telkomsel commercially as a digital 

channel with the aim of providing convenience for 

customers in conducting online self-service and it is 

hoped that users will freely interact with the 

application [1][2]. Along with the development of the 

MyTelkomsel application, which is widely used by 

the community, it has resulted in the emergence of 

reviews from its users. Therefore, an approach using 

sentiment analysis is needed. Where the main purpose 

of sentiment analysis is to determine the point of view 

and categorize the emotions or opinions of users 

about something [3], [4], [5]. This can help to 

measure user sentiment towards the application. 

Research on the sentiment of MyTelkomsel 

application users has been conducted by R. Indra 

Kurnia and A. Suganda Girsang in [6]. The research 

used Word2vec word embedding and LSTM. The 

amount of data used was 16,359 data divided into 

80:20 for training data and test data. The best f1-score 

and precision results were obtained in 5 classes using 

LSTM-SMOTE, namely 0.62 and 0.70. While the 

best f1-score and precision results in 3 classes using 

LSTM-SMOTE, namely 0.86 and 0.87. 

The addition of the SMOTE algorithm can 

affect the accuracy value because it increases the 

accuracy value in each experiment. Word2vec is one 

of the word embedding methods created by Tomas 

Mikolov from the Google team [7]. Word2Vec 

technique is made for word embedding with two 

models: Skip-Gram and Continuous Bag of Words 

(CBOW). Research [8] shows that the use of the 

CBOW algorithm gives good results on news articles 

and the Skip-Gram algorithm gives better results on 

tweets. 

There is another popular word embedding 

technique used in research, namely GloVe word 

embedding. Pennington, Socher and Manning 

introduced GloVe in 2014, where the GloVe 

technique is a new method for matching words that 

uses the probability ratio of co-occurrence between 

words [9].  Two classes of word representations are 

used in this model, namely global matrix factorization 

and Skip-Gram, which are used to extract better 

features by examining the relationship between words 

[10]. In research [11] conducted a comparison of 

word embedding methods for sentiment classification 

on product review data. The data used contains 

19,977 data and is divided into 11,986 training data 

and 7,991 test data. This research uses CNN for 

sentiment classification by comparing three word 

embedding, namely Word2vec, GloVe, FastText to 

find which one is the best word embedding in this 
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classification. The accuracy results obtained from this 

research are 92.5% on Word2vec, 95.8% on GloVe, 

97.2% on FastText. It was found that FastText word 

embedding is superior to other word embedding in 

classifying using CNN. 

Bojanowski et al. developed the FastText 

technique in 2017, a refinement of the skip-gram 

model used in the Word2vec method, where this 

FastText approach analyses word representation by 

considering subword information from the word [12]. 

In research [13], a comparison of deep learning 

methods in text classification using CNN, RNN, and 

LSTM with word embedding Word2vec and FastText 

was conducted. It was found that the combination of 

FastText and LSTM had the best accuracy value with 

a value of 97.86%. This finding indicates that the 

combination is superior in handling text classification 

tasks compared to other combinations. In [14], [15] it 

was also proven that the performance of LSTM 

models is often superior to CNN and RNN in text 

classification tasks. 

In this study, the authors compare several word 

embedding models such as Word2vec, GloVe, and 

FastText for optimizing word embeddings in 

classifiers using LSTM and LSTM combined with the 

SMOTE algorithm to address imbalance. This 

research is novel and has not been previously 

conducted. The dataset used in this study consists of 

user reviews of the MyTelkomsel application in 

Indonesian language from the Google Play Store. The 

dataset exhibits a tendency towards one category and 

other categories are less represented with an 

imbalance in the number of positive and negative 

sentiments. 

2. RESEARCH METHOD 

This research is made with a review sentiment 

analysis system on the MyTelkomsel application by 

comparing the performance of word embedding 

Word2vec, Glove, FastText on classifiers using 

LSTM and LSTM-SMOTE. The flow of the 

sentiment analysis system design can be seen in 

Figure 1. 

2.1. Scraping Data 

The data collection process in this study was 

carried out by taking data from user reviews of the 

MyTelkomsel application found on the Google Play 

Store. Data collection is done by data scraping 

method. This research uses 9000 review data as a 

dataset. The dataset from the scraping results is 

directly saved into a file in Comma Separated Values 

(CSV) format. 

2.2. Labeling Data 

During the data labeling stage, reviews were 

manually labeled by three individuals and categorized 

into two categories: positive and negative. Content 

perceived as supportive, beneficial, containing praise, 

and indicating high satisfaction were labeled as 

positive. On the other hand, content perceived as 

opposing, detrimental, containing complaints, and 

indicating low satisfaction were labeled as negative. 

The dataset consisted of 3,204 positive reviews and 

5,796 negative reviews, totaling 9,000 reviews in all. 

An example of data labeling can be seen in Table 1. 
 

Table 1. Manual Labeling Dataset 

Text Sentiment 

Sering sekali gangguan ga jelas, disaat mau beli 

paket susah sekali, makin lama makin sebel 

pakek mytelkomsel 

Negative 

aplikasi nya sungguh sungguh bikin kecewa 

saya tidak bisa buka aplikasi mytelkomsel ini 

gimna cerita nya mau ngisi paket lwt aplk kalau 

aplksinya aja tidak bisa di buka aplksinya aneh 

tolong di perbaiki segera saya pelanggan 

telkomsel sudah hampir 25 tahun. 

Negative 

Mytelkomsel merupakan produk yang memberi 

rasa puas buat Penggunanya karena banyak 

memberikankan banyak pilihan dan 

kemudahan,lebih tingkatkan kinerja dan 

pelayanan...Sukses selalu. 

Positive 

MyTelkomsel memudahkan pelanggan dlm 

melakukan prmbelian paket data/nelpon,trm 

ksh MyTelkomsel 

Positive 

 

 
Figure 1. System Design Flow 

2.3. Preprocessing Data 

This stage was conducted to facilitate the model 

processing in subsequent steps and enhance the 

dataset's quality. The research implemented several 

preprocessing steps such as data cleaning, stemming, 

data normalization, stopword removal, tokenization, 

and case folding. 

Data cleaning: At this stage, cleaning is done 

on data that contains things that are not needed or 

affect sentiment such as mentions (@), numbers, 
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operator operations, hashtags (#), URLs, special 

characters, and double spaces. 

Stemming: At this stage, the removal of 

prefixes, endings, or a combination of both in a word 

is carried out to get the base word of the word. This 

stemming process is carried out using 

"StemmerFactory" from the Sastrawi library to get 

the base word of each existing word. 

Data normalization: At this stage, cross-word 

correction or over-writing of words that are not 

standardized into words that are spelled and 

standardized according to KBBI standards. 

Stopword removal: At this stage, words that 

appear frequently and do not have significant 

information in the text are removed. This process 

includes the removal of adverbs and conjunctions. 

This research uses a stopword dictionary containing 

679 words made by Tala, F. Z. in research [16]. 

Examples of words removed in this process such as 

"me", "yg", "will", "following", "dong", "like", 

"why", "always", "general", "for example", etc.  

Tokenization: In this stage, a text or sentence is 

segmented into words that are referred to as tokens. 

This segmentation process uses separation rules such 

as spaces, punctuation, or dashes. 

Case folding: At this stage, all letters in the text 

are converted into the same format, by converting 

uppercase letters into lowercase letters. 

2.4. Optimization Word Embedding 

Data that has passed the preprocessing stage 

then enters the word embedding stage to get a 

representation of words in vector form. There are 

three word embeddings used for comparison in this 

research: Word2vec, GloVe, and FastText. 

Word2vec: Word2vec is a Natural Language 

Processing (NLP) technology that uses a text corpus 

as input and represents words as vectors. Word2vec 

uses artificial neural networks to predict the 

relationship between words and their contexts, the 

semantic or functional similarity in a given context is 

indicated by proximity in vector space [8], [17], [18]. 

Word representations of words with similar meanings 

have similar vectors, while words with different 

meanings have more varied vectors [19]. Word2vec 

has two architectural models, namely Continuous Bag 

of Words (CBOW) and Skip-gram. However, in this 

research only one model is used in Word2vec, namely 

the Skip-Gram model. 

Skip-gram uses the basic principle of predicting 

the vector of other words around a particular word. 

The projection layer in Skip-Gram predicts 

neighboring words that are close to the word in the 

input layer. The Skip-gram structure provides an 

advantage in vectorizing new words [8]. The 

architecture of the Word2vec Skip-Gram model can 

be seen in Figure 2. 
 

 
Figure 2. Architecture Skip-Gram 

 

An example of the application of the Word2vec 

Skip-Gram model can be seen in Table 2. 
 

Table 2. Word2vec+LSTM 

Input Output 

bagus mumpuni: 0.728231 

minim: 0.719939 

cocok: 0.718557 

berkesan: 0.714122 

sayangkan: 0.696667 

memuaskan: 0.693827 

menggembirakan: 0.682267 

mengagumkan: 0.680325 

impresif: 0.674129 

keren: 0.673389 

jelek menyebalkan: 0.854798 

membosankan: 0.848906 

kekanakkanakan: 0.841387 

konyol: 0.829101 

janggal: 0.825444 

malas: 0.818835 

gampang: 0.814619 

aneh: 0.810946 

muram: 0.797561 

keren: 0.792262 

 

Table 2 gives an example of the results of 

applying the Word2vec word embedding Skip-Gram 

model to find out the relationship between the words 

obtained. The first column is the input column, where 

there are two input words as an example, namely 

"bagus" and "jelek". The second column contains a 

list of words produced by the model as output and 

includes the relationship value of each word to the 

input word. The greater the relationship value of the 

word in the output column indicates that the word is 

more closely related to the word in the input column. 

GloVe: Global Vectors is a log-binary 

regression model on word representation that 

outperforms other models in terms of word analogy, 

word similarity, and named entity recognition. GloVe 

is created by drawing insights from the global 

statistics of the corpus, thus directly capturing the 

overall corpus statistics [9]. The architecture of 

GloVe can be seen in Figure 3, starting with a single 
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word representation as input. Next, in the model, the 

word insertion matrix serves as the weight matrix. 

The word insertion matrix serves as the weight matrix 

in the model, so the output of the model is the inner 

product vector of the word vectors. 
 

 
Figure 3. Architecture GloVe 

 

Figure 3 shows the GloVe word embedding 

architecture to generate a word vector representation. 

Starting with one-hot encoding (𝑒𝑖), that converts the 

word into a binary vector with only one element of 

value 1. Then the word is mapped into the embedding 

vector (𝑤𝑖) which is a representation of the word in 

vector space that captures the semantic meaning of 

the word, through an embedding matrix. (𝑊𝑒). The 

resulting vector is then multiplied by the transpose of 

the embedding matrix. (𝑊~𝑇) and produce a dot 

product (𝑊~𝑇𝑤𝑖) which is the relationship value 

between words and other words in the corpus. The 

final result is the output (𝑦𝑖) a vector that shows the 

similarity value between the input word and other 

words in the corpus and gives an overview of how 

often the words co-occur in the same context. 

FastText: FastText is a library developed by the 

Facebook team that can be used for word 

representation learning and text classification [12], 

[20]. FastText enriches the generated word vectors by 

adding substring vectors to each word, known as n-

grams. Therefore, the FastText model can generate 

vectors for every word, even for compound words and 

misspelled words [21]. FastText uses softmax 

hierarchy to reduce computational complexity and 

increase speed in finding the predicted class [22]. 

FastText utilizes the n-gram feature to describe 

the word order in a sentence, thus improving the 

accurate representation of sentences. In the hidden 

layer, FastText uses averaging to combine the n-gram 

word representations from the input layer. At the 

output layer, FastText uses hierarchical softmax to 

predict the label of the input text, with the advantage 

of reducing the training time of the model [23]. The 

purpose of predicting the label of the input text here 

is to determine the category of the text whether it is 

positive or negative based on its content. The 

FastText architecture can be seen in Figure 4. 

 

 
Figure 4. Architecture FastText 

 

Figure 4 is FastText word embedding 

architecture to generate a vector representation of the 

text. It starts by breaking the input text (comment) 

into individual words. (𝑥1, 𝑥2, … , 𝑥𝑁). Each split 

word is then transformed into an embedding vector, 

which is then combined using average pooling to 

obtain a single hidden comment representation that 

retains semantic information from the entire text. This 

representation then undergoes linear transformation 

to optimize the vector shape. The result is a comment 

vector ready for prediction of text classes using 

hierarchical softmax. 

2.5. Split Data 

At this stage, the data is divided into two parts 

with a ratio of 80% for training data and 20% for 

testing data from 9000 data. This division is done to 

ensure the model has enough data, so that the model 

can learn well and can recognize patterns effectively 

and accurately. In addition, the Cross-Validation 

method with k = 5 is also used with the aim of 

providing more accurate model performance and 

reducing the possibility of bias, so that the resulting 

model can have better performance and 

generalization. 

2.6. Long Short-Term Memory (LSTM) 

Classification 

LSTM is a development of Recurrent Neural 

Network (RNN) that can improve the ability of neural 

networks to store long-term information and 

overcome the vanishing gradient problem [24], [25]. 

LSTM overcomes this problem by replacing RNN 

nodes with LSTM cells in the hidden layer with the 

aim of retaining previous information. LSTM utilizes 

gates to organize and update information on the 

previous text by using three gates namely input gate, 

forget gate, and output gate [26]. Input gate (𝑖𝑡) 
determines whether or not a new input can be added 

into the LSTM memory, forget gate (𝑓𝑡) used to 
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remove irrelevant information from the LSTM 

memory, dan output gate (𝑂𝑡) is used to determine 

which information to output [27]. The LSTM cell 

architecture can be seen in Figure 5. 
 

 
Figure 5. LSTM Cell 

 

Forget gate uses sigmoid function, ℎ𝑡−1 and 𝑥𝑡 
are decisions, 𝑏𝑓 is the bias value, 𝑓𝑡 is the output at 

this gate with values 0 and 1. 0 is discarding the value 

and 1 is saving the value. 

In this research, there are several layers used in 

the LSTM model. The first layer is the embedding 

layer, where this layer serves to call one of the 

embedding words that have been trained to be used in 

the LSTM model. Furthermore, this model consists of 

three LSTM layers with neurons of 60, 32, and 18 in 

order. The first and second LSTM layers are 

configured with "return_sequence=True" which 

indicates that both layers return the entire output 

sequence and allow the model to capture deeper 

sequence information. There is also a dropout layer 

between the LSTM layers with values of 0.3 and 0.2 

respectively which aims to avoid overfitting by 

randomly deleting data according to a predetermined 

value. Finally, there is a "Dense" layer with one 

output unit that uses a sigmoid activation function to 

give a decision whether it is positive or negative. The 

last step is to compile all layers into a single unit by 

using the "RMSprop" optimizer and using the 

"binary_crossentropy" loss function which is ideal for 

classification with two classes. 

2.7. Synthetic Minority Over-sampling Technique 

(SMOTE) 

Over-sampling is a technique to balance the 

number of samples in the minority class with the 

number of samples in the majority class [28]. SMOTE 

is one of several over-sampling techniques. This 

technique increases the number of new minority class 

instances by using an interpolation method, where 

instances of adjacent minority classes are identified 

and used to create new minority class instances. The 

use of this technique can generate new synthetic 

samples [29]. The application of SMOTE certainly 

affects the number of data samples contained in the 

train data. Before the model was added with SMOTE, 

the number of data samples was 6019 and when the 

model was added with SMOTE, the number of data 

samples increased to 9068. This happens because the 

number of samples in the minority class increases, 

while the number of samples in the majority class 

stays the same. The distribution of samples without 

SMOTE and using SMOTE can be seen in Figure 6. 
 

 
Figure 6. Comparison of Non-SMOTE and SMOTE Sample 

Distribution 

2.8. Evaluation 

The evaluation stage in this research uses the K-

Fold Cross-Validation method with 5 iterations. This 

evaluation process assesses model performance 

through accuracy, precision, recall, and F-score 

metrics. The confusion matrix structure is represented 

by columns that represent predicted classes and rows 

that represent actual classes [30]. There are four terms 

contained in the confusion matrix table, namely True 

Positive (TP), False Negative (FN), False Positive 

(FP), and True Negative (TN) [31]. An explanation of 

the components and formulas used in the confusion 

matrix can be seen in Table 3. 

 
Table 3. Confusion Matrix 

Confusion Matrix 
Predicted Class 

Positive Negative 

Actual 

Class 

Positive 
True Positive 

(TP) 

False Negative 

(FN) 

Negative 
False Positive 

(FP) 

True Negative 

(TN) 

 

 True Positive (TP): Data that is predicted 

positive by the system and is in fact positive. 

 False Negative (FN): Data that is predicted to be 

negative by the system but is actually positive. 

 False Positive (FP): Data that the system 

predicts to be positive but in reality is negative. 

 True Negative (TN): Data that is predicted 

negative by the system and in reality the data is 

indeed negative. 

The accuracy, precision, recall, and F-score 

values are obtained using the formulas as below. 

Accuracy: A metric used to measure how often 

a method makes correct predictions, by calculating 

the number of correct predictions divided by the total 

number of predictions [31]. The formula is as follows: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 (1) 

Precision: calculation of the ratio of positive 

predictions and positive reality and divided by the 

0

5000

Non-SMOTE SMOTE

Data Distribution

Positive Negative
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total number of positive predictions [25]. The formula 

is as follows: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (2) 

Recall: calculation of the ratio of positive 

predictions and positive reality divided by the total 

number of positive actual data [25]. The formula is as 

follows: 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (3) 

F-Score: calculation by combining two metric 

values, namely precision and recall values [25]. The 

formula is as follows: 

𝐹 − 𝑠𝑐𝑜𝑟𝑒 = 2.
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛.𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑟𝑒𝑐𝑎𝑙𝑙
 (4) 

3. RESULT AND DISCUSSION 

This section will explain the results of the 

comparison of the performance of Word2vec, GloVe, 

and FastText word embedding classified using the 

LSTM model using review data from the 

MyTelkomsel app as much as 9000 data. The author 

uses two scenarios in the classification process to get 

the most optimal results in this study. The following 

are the scenarios in this study: 

1) Using each word embedding method separately 

with the LSTM classifier model.  

2) Using each word embedding method separately 

with an LSTM classifier model augmented with 

SMOTE.  

The test was conducted five times for each 

scenario. There are also hyper parameters used in 

each word embedding, namely "vocab_len" and 

"maxLen". "vocab_len" is the number of unique 

words in the vocabulary that will be considered by the 

model. In this research, "vocab_len" is set to 55, 

which means there are 55 unique words that will be 

considered by the model. "maxLen" is the maximum 

length of input sequence that can be accepted by the 

model. In this study, "maxLen" is set to 30, which 

indicates that the processed words will be truncated 

or completed until they are exactly 30 words long. 
 

Table 4. Word2vec+LSTM 

Experiment Accuraccy Precision Recall F1-Score 

Ke-1 87.25% 75.28% 72.04% 73.62% 

Ke-2 88.51% 74.93% 80.37% 77.56% 
Ke-3 87.31% 72.34% 78.76% 75.41% 

Ke-4 87.91% 72.09% 83.33% 77.30% 

Ke-5 88.57% 75.90% 78.76% 77.30% 

average 87.91% 74.11% 78.65% 76.24% 

 

The test results contained in Table 4 show the 

results of using Word2vec word embedding and 

classifying using LSTM with 5-fold. The highest 

value was obtained in the 5th experiment, with an 

accuracy value of 88.57%, precision 75.90%, recall 

78.76%, and f1-score 77.30%. 
 

Table 5. Word2vec+LSTM-SMOTE 

Experiment Accuraccy Precision Recall F1-Score 

Ke-1 86.52% 67.78% 86.55% 76.03% 

Ke-2 85.52% 64.98% 89.78% 75.39% 

Ke-3 87.11% 69.95% 83.87% 76.28% 

Ke-4 87.51% 70.72% 84.40% 76.96% 

Ke-5 86.13% 67.52% 84.40% 75.02% 

average 86.56% 68.19% 85.80% 75.94% 

 

The test results contained in Table 5 show the 

results of using Word2vec word embedding and 

classifying using LSTM added by SMOTE with 5-

fold. The highest value was obtained in the 4th 

experiment, with an accuracy value of 87.51%, 

precision 70.72%, recall 84.40%, and f1-score 

76.96%. 
 

Table 6. GloVe+LSTM 

Experiment Accuraccy Precision Recall F1-Score 

Ke-1 87.05% 76.10% 69.35% 72.57% 

Ke-2 87.45% 77.64% 69.08% 73.11% 

Ke-3 87.71% 71.89% 82.52% 76.84% 

Ke-4 86.98% 77.50% 66.66% 71.67% 

Ke-5 87.45% 77.47% 69.35% 73.19% 

average 87.33% 76.12% 71.39% 73.48% 

 

The test results contained in Table 6 show the 

results of using GloVe word embedding and 

classifying using LSTM with 5-fold. The highest 

value was obtained in the 3rd experiment, with an 

accuracy value of 87.71%, precision 71.89%, recall 

82.52%, and f1-score 76.84%. 
 

Table 7. GloVe+LSTM-SMOTE 

Experiment Accuraccy Precision Recall F1-Score 

Ke-1 86.65% 68.15% 86.29% 76.15% 

Ke-2 84.59% 63.30% 89.51% 74.16% 

Ke-3 86.05% 66.59% 87.36% 75.58% 

Ke-4 86.45% 67.72% 86.29% 75.88% 

Ke-5 86.78% 68.52% 86.02% 76.28% 

average 86.10% 66.86% 87.09% 75.61% 

 

The test results contained in Table 7 show the 

results of using GloVe word embedding and 

classifying using LSTM added by SMOTE with 5-

fold. The highest value was obtained in the 5th 

experiment, with an accuracy value of 86.78%, 

precision 68.52%, recall 86.02%, and f1-score 

76.28%. 
 

Table 8. FastText+LSTM 

Experiment Accuraccy Precision Recall F1-Score 

Ke-1 89.11% 76.26% 81.18% 78.64% 

Ke-2 87.98% 78.50% 70.69% 74.39% 

Ke-3 88.97% 75.75% 81.45% 78.49% 

Ke-4 88.91% 75.94% 80.64% 78.22% 

Ke-5 86.52% 67.35% 88.17% 76.36% 

average 88.30% 74.76% 80.43% 77.22% 

 

The test results contained in Table 8 show the 

results of using FastText word embedding and 

classifying using LSTM with 5-fold. The highest 

value was obtained in the 1st experiment, with an 

accuracy of 89.11%, precision 76.26%, recall 

81.18%, and f1-score 78.64%. 
\ 
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Table 9. FastText+LSTM-SMOTE 

Experiment Accuraccy Precision Recall F1-Score 

Ke-1 85.85% 66.12% 87.63% 75.37% 

Ke-2 86.12% 66.46% 88.44% 75.89% 

Ke-3 85.59% 63.25% 89.78% 74.22% 

Ke-4 87.38% 70.31% 84.67% 76.82% 

Ke-5 83.93% 61.77% 91.66% 73.80% 

average 85.77% 65.58% 88.44% 75.22% 

 

The test results contained in Table 9 show the 

results of using FastText word embedding and 

classifying using LSTM added by SMOTE with 5-

fold. The highest value was obtained in the 4th 

experiment, with an accuracy of 87.38%, precision 

70.31%, recall 84.67%, and f1-score 76.82%. 
 

 
Figure 6. Model Combination Accuracy 

 

Figure 6 shows the best accuracy comparison of 

each combination used in this study. In testing the 

first scenario, namely the combination of word 

embedding and LSTM without adding SMOTE, the 

best combination is FastText + LSTM with an 

accuracy value of 89.11%. Followed by the 

Word2vec + LSTM combination with an accuracy 

value of 88.57% and finally there is a combination 

with the smallest accuracy value, namely GloVe + 

LSTM with an accuracy value of 87.71%. Where the 

accuracy value of the three word embedding in the 

first scenario provides quite good accuracy results.  

In testing the second scenario, which is the 

combination of word embedding and LSTM added to 

SMOTE, the best combination is Word2vec + LSTM-

SMOTE with an accuracy value of 87.51%. Then 

followed by the FastText + LSTM-SMOTE 

combination with an accuracy value of 87.38% and 

finally the combination with the smallest accuracy 

value is GloVe + LSTM-SMOTE with an accuracy 

value of 86.78%. Overall, the use of SMOTE in this 

study did not increase the accuracy of the model 

combination and resulted in a decrease in the 

accuracy value of each model combination tested.  

4. DISCUSSION 

From the research results, the combination of 

FastText and LSTM provides the highest accuracy 

value with a value of 89.11%. This is followed by the 

combination of Word2vec and LSTM with an 

accuracy value of 88.57%. Then there is a 

combination of GloVe and LSTM with an accuracy 

value of 87.71%, then followed by 2 combinations 

with almost the same accuracy value, namely 

Word2vec and LSTM-SMOTE with an accuracy 

value of 87.51% and FastText and LSTM-SMOTE 

with an accuracy value of 87.38%. Finally, the 

combination with the lowest accuracy value in this 

study is the combination of GloVe and LSTM-

SMOTE with an accuracy value of 86.78%. Of the 

two scenarios used in this study, it was found that the 

first scenario has a superior accuracy value compared 

to the second scenario. Where the results of the 

accuracy value of the first scenario are in the 1st, 2nd, 

and 3rd order in this study. It is also proven that the 

combination of FastText and LSTM is the most 

superior combination compared to the other five 

combinations. 

Compared to previous studies that use the same 

word embedding but different classification models, 

this study provides quite good results and is similar to 

previous studies. In research [8] with classification 

using CNN, the accuracy value of the combination of 

each model is 92.5% for Word2vec, 95.8% for 

GloVe, and 97.2% for FastText. Research [32] with 

SVM classification obtained the accuracy value of the 

combination of each model, 65% for Word2vec, 85% 

for GloVe, and 71% for FastText. These results prove 

that the selection of word embedding and 

calcification models can affect the combination 

performance for each model. In this study, it was 

found that FastText + LSTM is the best combination 

compared to Word2vec + LSTM and GloVe + LSTM. 

This shows that FastText word embedding can 

capture more detailed sub-word information for text 

classification and help improve the performance of 

LSTM. Although SMOTE helps to make the model 

fairer to minority classes, the decrease in accuracy in 

this study shows that this method should be 

considered carefully to avoid overfitting the minority 

classes and ensure more accurate results. 

5. CONCLUSION 

This research focuses on the comparison of 

Word2vec, GloVe, and FastText word embedding on 

classifiers using LSTM. The experiment was 

conducted using two scenarios: LSTM-only 

classification and LSTM augmented with SMOTE to 

handle data imbalance. The aim is to find the most 

optimal combination of word embedding and 

classification strategies in sentiment analysis on 

MyTelkomsel app reviews. 

Based on the experimental results on three word 

embedding with two existing scenarios, the 

combination of FastText and LSTM has the highest 

accuracy value with an accuracy value of more than 

89%, followed by the combination of Word2vec and 

LSTM with an accuracy value of more than 88%, then 

the combination of GloVe and LSTM with an 

accuracy value of more than 87%. then the 

combination of Word2vec and LSTM-SMOTE with 

an accuracy value of more than 87% and the 
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combination of FastText and LSTM-SMOTE with an 

accuracy value of more than 87%. Then finally the 

combination of GloVe and LSTM-SMOTE with an 

accuracy value of more than 86%. From this study, 

the use of the SMOTE method has an unfavorable 

impact on the combination of methods used by 

reducing the accuracy value of the model. Although 

the difference in accuracy values obtained from this 

test is not too far, it shows that the application of each 

word embedding used in LSTM and LSTM-SMOTE 

has competitive performance. Suggestions for future 

research are to increase the number of datasets that 

are different from this research to validate whether 

the combination of FastText with LSTM really 

provides the highest accuracy value compared to 

other combinations and do a deeper exploration of the 

effect of SMOTE on LSTM. 
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