
Jurnal Teknik Informatika (JUTIF) DOI: https://doi.org/10.52436/1.jutif.2024.5.6.2498
Vol. 5, No. 6, December 2024, pp. 1581-1589 p-ISSN: 2723-3863
 e-ISSN: 2723-3871

1581

WORD EMBEDDING OPTIMIZATION IN SENTIMENT ANALYSIS OF REVIEWS ON

MYTELKOMSEL APP USING LONG SHORT-TERM MEMORY AND SYNTHETIC

MINORITY OVER-SAMPLING TECHNIQUE

Muhammad Raffif Haziq1, Yuliant Sibaroni*2, Sri Suryani Prasetyowati3

1,2,3Informatics, School of Computing, Telkom University, Indonesia

Email: 1raffifhzq@student.telkomuniversity.ac.id, 2yuliant@telkomuniversity.ac.id,
3srisuryani@telkomuniversity.ac.id

(Article received: July 11, 2024; Revision: August 06, 2024; published: December 29, 2024)

Abstract

Telkomsel is one of the internet service provider companies that has a mobile-based application called

MyTelkomsel which functions to facilitate users in conducting online services independently. Users of the

application certainly have their own responses about the application, so that users can provide responses to the

application. Therefore, sentiment analysis can be one of the solutions to find out public sentiment towards the

application. In this research, the author builds a system for sentiment analysis using word embedding Word2vec,

GloVe, FastText to get word representation in vector form with classification using Long Short-Term Memory

(LSTM) combined with Synthetic Minority Over-sampling Technique (SMOTE) which can handle data imbalance.

The data used comes from user reviews of the MyTelkomsel application found on the Google Play Store. This study

compares the performance of several word embedding in LSTM and LSTM-SMOTE classifiers. The results showed

the results show that the performance of three-word embedding on the LSTM model is superior compared to the

LSTM-SMOTE model. Overall, it was found that the combination of FastText and LSTM gave the best performance

compared to the other five combinations with an accuracy value of 89.11%.

Keywords: FastText, GloVe, LSTM-SMOTE, Sentiment analysis, Word Embedding, Word2vec.

1. INTRODUCTION

Telkomsel is one of the leading internet service

provider telecommunications companies in Indonesia

that created a mobile-based application called

MyTelkomsel. The Mytelkomsel application was

launched by Telkomsel commercially as a digital

channel with the aim of providing convenience for

customers in conducting online self-service and it is

hoped that users will freely interact with the

application [1][2]. Along with the development of the

MyTelkomsel application, which is widely used by

the community, it has resulted in the emergence of

reviews from its users. Therefore, an approach using

sentiment analysis is needed. Where the main purpose

of sentiment analysis is to determine the point of view

and categorize the emotions or opinions of users

about something [3], [4], [5]. This can help to

measure user sentiment towards the application.

Research on the sentiment of MyTelkomsel

application users has been conducted by R. Indra

Kurnia and A. Suganda Girsang in [6]. The research

used Word2vec word embedding and LSTM. The

amount of data used was 16,359 data divided into

80:20 for training data and test data. The best f1-score

and precision results were obtained in 5 classes using

LSTM-SMOTE, namely 0.62 and 0.70. While the

best f1-score and precision results in 3 classes using

LSTM-SMOTE, namely 0.86 and 0.87.

The addition of the SMOTE algorithm can

affect the accuracy value because it increases the

accuracy value in each experiment. Word2vec is one

of the word embedding methods created by Tomas

Mikolov from the Google team [7]. Word2Vec

technique is made for word embedding with two

models: Skip-Gram and Continuous Bag of Words

(CBOW). Research [8] shows that the use of the

CBOW algorithm gives good results on news articles

and the Skip-Gram algorithm gives better results on

tweets.

There is another popular word embedding

technique used in research, namely GloVe word

embedding. Pennington, Socher and Manning

introduced GloVe in 2014, where the GloVe

technique is a new method for matching words that

uses the probability ratio of co-occurrence between

words [9]. Two classes of word representations are

used in this model, namely global matrix factorization

and Skip-Gram, which are used to extract better

features by examining the relationship between words

[10]. In research [11] conducted a comparison of

word embedding methods for sentiment classification

on product review data. The data used contains

19,977 data and is divided into 11,986 training data

and 7,991 test data. This research uses CNN for

sentiment classification by comparing three word

embedding, namely Word2vec, GloVe, FastText to

find which one is the best word embedding in this

https://doi.org/10.52436/1.jutif.2024.5.6.XX
mailto:raffifhzq@student.telkomuniversity.ac.id
mailto:yuliant@telkomuniversity.ac.id
mailto:srisuryani@telkomuniversity.ac.id

1582 Jurnal Teknik Informatika (JUTIF), Vol. 5, No. 6, December 2024, pp. 1581-1589

classification. The accuracy results obtained from this

research are 92.5% on Word2vec, 95.8% on GloVe,

97.2% on FastText. It was found that FastText word

embedding is superior to other word embedding in

classifying using CNN.

Bojanowski et al. developed the FastText

technique in 2017, a refinement of the skip-gram

model used in the Word2vec method, where this

FastText approach analyses word representation by

considering subword information from the word [12].

In research [13], a comparison of deep learning

methods in text classification using CNN, RNN, and

LSTM with word embedding Word2vec and FastText

was conducted. It was found that the combination of

FastText and LSTM had the best accuracy value with

a value of 97.86%. This finding indicates that the

combination is superior in handling text classification

tasks compared to other combinations. In [14], [15] it

was also proven that the performance of LSTM

models is often superior to CNN and RNN in text

classification tasks.

In this study, the authors compare several word

embedding models such as Word2vec, GloVe, and

FastText for optimizing word embeddings in

classifiers using LSTM and LSTM combined with the

SMOTE algorithm to address imbalance. This

research is novel and has not been previously

conducted. The dataset used in this study consists of

user reviews of the MyTelkomsel application in

Indonesian language from the Google Play Store. The

dataset exhibits a tendency towards one category and

other categories are less represented with an

imbalance in the number of positive and negative

sentiments.

2. RESEARCH METHOD

This research is made with a review sentiment

analysis system on the MyTelkomsel application by

comparing the performance of word embedding

Word2vec, Glove, FastText on classifiers using

LSTM and LSTM-SMOTE. The flow of the

sentiment analysis system design can be seen in

Figure 1.

2.1. Scraping Data

The data collection process in this study was

carried out by taking data from user reviews of the

MyTelkomsel application found on the Google Play

Store. Data collection is done by data scraping

method. This research uses 9000 review data as a

dataset. The dataset from the scraping results is

directly saved into a file in Comma Separated Values

(CSV) format.

2.2. Labeling Data

During the data labeling stage, reviews were

manually labeled by three individuals and categorized

into two categories: positive and negative. Content

perceived as supportive, beneficial, containing praise,

and indicating high satisfaction were labeled as

positive. On the other hand, content perceived as

opposing, detrimental, containing complaints, and

indicating low satisfaction were labeled as negative.

The dataset consisted of 3,204 positive reviews and

5,796 negative reviews, totaling 9,000 reviews in all.

An example of data labeling can be seen in Table 1.

Table 1. Manual Labeling Dataset

Text Sentiment

Sering sekali gangguan ga jelas, disaat mau beli

paket susah sekali, makin lama makin sebel

pakek mytelkomsel

Negative

aplikasi nya sungguh sungguh bikin kecewa

saya tidak bisa buka aplikasi mytelkomsel ini

gimna cerita nya mau ngisi paket lwt aplk kalau

aplksinya aja tidak bisa di buka aplksinya aneh

tolong di perbaiki segera saya pelanggan

telkomsel sudah hampir 25 tahun.

Negative

Mytelkomsel merupakan produk yang memberi

rasa puas buat Penggunanya karena banyak

memberikankan banyak pilihan dan

kemudahan,lebih tingkatkan kinerja dan

pelayanan...Sukses selalu.

Positive

MyTelkomsel memudahkan pelanggan dlm

melakukan prmbelian paket data/nelpon,trm

ksh MyTelkomsel

Positive

Figure 1. System Design Flow

2.3. Preprocessing Data

This stage was conducted to facilitate the model

processing in subsequent steps and enhance the

dataset's quality. The research implemented several

preprocessing steps such as data cleaning, stemming,

data normalization, stopword removal, tokenization,

and case folding.

Data cleaning: At this stage, cleaning is done

on data that contains things that are not needed or

affect sentiment such as mentions (@), numbers,

Muhammad Raffif Haziq, et al., WORD EMBEDDING OPTIMIZATION IN … 1583

operator operations, hashtags (#), URLs, special

characters, and double spaces.

Stemming: At this stage, the removal of

prefixes, endings, or a combination of both in a word

is carried out to get the base word of the word. This

stemming process is carried out using

"StemmerFactory" from the Sastrawi library to get

the base word of each existing word.

Data normalization: At this stage, cross-word

correction or over-writing of words that are not

standardized into words that are spelled and

standardized according to KBBI standards.

Stopword removal: At this stage, words that

appear frequently and do not have significant

information in the text are removed. This process

includes the removal of adverbs and conjunctions.

This research uses a stopword dictionary containing

679 words made by Tala, F. Z. in research [16].

Examples of words removed in this process such as

"me", "yg", "will", "following", "dong", "like",

"why", "always", "general", "for example", etc.

Tokenization: In this stage, a text or sentence is

segmented into words that are referred to as tokens.

This segmentation process uses separation rules such

as spaces, punctuation, or dashes.

Case folding: At this stage, all letters in the text

are converted into the same format, by converting

uppercase letters into lowercase letters.

2.4. Optimization Word Embedding

Data that has passed the preprocessing stage

then enters the word embedding stage to get a

representation of words in vector form. There are

three word embeddings used for comparison in this

research: Word2vec, GloVe, and FastText.

Word2vec: Word2vec is a Natural Language

Processing (NLP) technology that uses a text corpus

as input and represents words as vectors. Word2vec

uses artificial neural networks to predict the

relationship between words and their contexts, the

semantic or functional similarity in a given context is

indicated by proximity in vector space [8], [17], [18].

Word representations of words with similar meanings

have similar vectors, while words with different

meanings have more varied vectors [19]. Word2vec

has two architectural models, namely Continuous Bag

of Words (CBOW) and Skip-gram. However, in this

research only one model is used in Word2vec, namely

the Skip-Gram model.

Skip-gram uses the basic principle of predicting

the vector of other words around a particular word.

The projection layer in Skip-Gram predicts

neighboring words that are close to the word in the

input layer. The Skip-gram structure provides an

advantage in vectorizing new words [8]. The

architecture of the Word2vec Skip-Gram model can

be seen in Figure 2.

Figure 2. Architecture Skip-Gram

An example of the application of the Word2vec

Skip-Gram model can be seen in Table 2.

Table 2. Word2vec+LSTM

Input Output

bagus mumpuni: 0.728231

minim: 0.719939

cocok: 0.718557

berkesan: 0.714122

sayangkan: 0.696667

memuaskan: 0.693827

menggembirakan: 0.682267

mengagumkan: 0.680325

impresif: 0.674129

keren: 0.673389

jelek menyebalkan: 0.854798

membosankan: 0.848906

kekanakkanakan: 0.841387

konyol: 0.829101

janggal: 0.825444

malas: 0.818835

gampang: 0.814619

aneh: 0.810946

muram: 0.797561

keren: 0.792262

Table 2 gives an example of the results of

applying the Word2vec word embedding Skip-Gram

model to find out the relationship between the words

obtained. The first column is the input column, where

there are two input words as an example, namely

"bagus" and "jelek". The second column contains a

list of words produced by the model as output and

includes the relationship value of each word to the

input word. The greater the relationship value of the

word in the output column indicates that the word is

more closely related to the word in the input column.

GloVe: Global Vectors is a log-binary

regression model on word representation that

outperforms other models in terms of word analogy,

word similarity, and named entity recognition. GloVe

is created by drawing insights from the global

statistics of the corpus, thus directly capturing the

overall corpus statistics [9]. The architecture of

GloVe can be seen in Figure 3, starting with a single

1584 Jurnal Teknik Informatika (JUTIF), Vol. 5, No. 6, December 2024, pp. 1581-1589

word representation as input. Next, in the model, the

word insertion matrix serves as the weight matrix.

The word insertion matrix serves as the weight matrix

in the model, so the output of the model is the inner

product vector of the word vectors.

Figure 3. Architecture GloVe

Figure 3 shows the GloVe word embedding

architecture to generate a word vector representation.

Starting with one-hot encoding (𝑒𝑖), that converts the

word into a binary vector with only one element of

value 1. Then the word is mapped into the embedding

vector (𝑤𝑖) which is a representation of the word in

vector space that captures the semantic meaning of

the word, through an embedding matrix. (𝑊𝑒). The

resulting vector is then multiplied by the transpose of

the embedding matrix. (𝑊~𝑇) and produce a dot

product (𝑊~𝑇𝑤𝑖) which is the relationship value

between words and other words in the corpus. The

final result is the output (𝑦𝑖) a vector that shows the

similarity value between the input word and other

words in the corpus and gives an overview of how

often the words co-occur in the same context.

FastText: FastText is a library developed by the

Facebook team that can be used for word

representation learning and text classification [12],

[20]. FastText enriches the generated word vectors by

adding substring vectors to each word, known as n-

grams. Therefore, the FastText model can generate

vectors for every word, even for compound words and

misspelled words [21]. FastText uses softmax

hierarchy to reduce computational complexity and

increase speed in finding the predicted class [22].

FastText utilizes the n-gram feature to describe

the word order in a sentence, thus improving the

accurate representation of sentences. In the hidden

layer, FastText uses averaging to combine the n-gram

word representations from the input layer. At the

output layer, FastText uses hierarchical softmax to

predict the label of the input text, with the advantage

of reducing the training time of the model [23]. The

purpose of predicting the label of the input text here

is to determine the category of the text whether it is

positive or negative based on its content. The

FastText architecture can be seen in Figure 4.

Figure 4. Architecture FastText

Figure 4 is FastText word embedding

architecture to generate a vector representation of the

text. It starts by breaking the input text (comment)

into individual words. (𝑥1, 𝑥2, … , 𝑥𝑁). Each split

word is then transformed into an embedding vector,

which is then combined using average pooling to

obtain a single hidden comment representation that

retains semantic information from the entire text. This

representation then undergoes linear transformation

to optimize the vector shape. The result is a comment

vector ready for prediction of text classes using

hierarchical softmax.

2.5. Split Data

At this stage, the data is divided into two parts

with a ratio of 80% for training data and 20% for

testing data from 9000 data. This division is done to

ensure the model has enough data, so that the model

can learn well and can recognize patterns effectively

and accurately. In addition, the Cross-Validation

method with k = 5 is also used with the aim of

providing more accurate model performance and

reducing the possibility of bias, so that the resulting

model can have better performance and

generalization.

2.6. Long Short-Term Memory (LSTM)

Classification

LSTM is a development of Recurrent Neural

Network (RNN) that can improve the ability of neural

networks to store long-term information and

overcome the vanishing gradient problem [24], [25].

LSTM overcomes this problem by replacing RNN

nodes with LSTM cells in the hidden layer with the

aim of retaining previous information. LSTM utilizes

gates to organize and update information on the

previous text by using three gates namely input gate,

forget gate, and output gate [26]. Input gate (𝑖𝑡)
determines whether or not a new input can be added

into the LSTM memory, forget gate (𝑓𝑡) used to

Muhammad Raffif Haziq, et al., WORD EMBEDDING OPTIMIZATION IN … 1585

remove irrelevant information from the LSTM

memory, dan output gate (𝑂𝑡) is used to determine

which information to output [27]. The LSTM cell

architecture can be seen in Figure 5.

Figure 5. LSTM Cell

Forget gate uses sigmoid function, ℎ𝑡−1 and 𝑥𝑡
are decisions, 𝑏𝑓 is the bias value, 𝑓𝑡 is the output at

this gate with values 0 and 1. 0 is discarding the value

and 1 is saving the value.

In this research, there are several layers used in

the LSTM model. The first layer is the embedding

layer, where this layer serves to call one of the

embedding words that have been trained to be used in

the LSTM model. Furthermore, this model consists of

three LSTM layers with neurons of 60, 32, and 18 in

order. The first and second LSTM layers are

configured with "return_sequence=True" which

indicates that both layers return the entire output

sequence and allow the model to capture deeper

sequence information. There is also a dropout layer

between the LSTM layers with values of 0.3 and 0.2

respectively which aims to avoid overfitting by

randomly deleting data according to a predetermined

value. Finally, there is a "Dense" layer with one

output unit that uses a sigmoid activation function to

give a decision whether it is positive or negative. The

last step is to compile all layers into a single unit by

using the "RMSprop" optimizer and using the

"binary_crossentropy" loss function which is ideal for

classification with two classes.

2.7. Synthetic Minority Over-sampling Technique

(SMOTE)

Over-sampling is a technique to balance the

number of samples in the minority class with the

number of samples in the majority class [28]. SMOTE

is one of several over-sampling techniques. This

technique increases the number of new minority class

instances by using an interpolation method, where

instances of adjacent minority classes are identified

and used to create new minority class instances. The

use of this technique can generate new synthetic

samples [29]. The application of SMOTE certainly

affects the number of data samples contained in the

train data. Before the model was added with SMOTE,

the number of data samples was 6019 and when the

model was added with SMOTE, the number of data

samples increased to 9068. This happens because the

number of samples in the minority class increases,

while the number of samples in the majority class

stays the same. The distribution of samples without

SMOTE and using SMOTE can be seen in Figure 6.

Figure 6. Comparison of Non-SMOTE and SMOTE Sample

Distribution

2.8. Evaluation

The evaluation stage in this research uses the K-

Fold Cross-Validation method with 5 iterations. This

evaluation process assesses model performance

through accuracy, precision, recall, and F-score

metrics. The confusion matrix structure is represented

by columns that represent predicted classes and rows

that represent actual classes [30]. There are four terms

contained in the confusion matrix table, namely True

Positive (TP), False Negative (FN), False Positive

(FP), and True Negative (TN) [31]. An explanation of

the components and formulas used in the confusion

matrix can be seen in Table 3.

Table 3. Confusion Matrix

Confusion Matrix
Predicted Class

Positive Negative

Actual

Class

Positive
True Positive

(TP)

False Negative

(FN)

Negative
False Positive

(FP)

True Negative

(TN)

 True Positive (TP): Data that is predicted

positive by the system and is in fact positive.

 False Negative (FN): Data that is predicted to be

negative by the system but is actually positive.

 False Positive (FP): Data that the system

predicts to be positive but in reality is negative.

 True Negative (TN): Data that is predicted

negative by the system and in reality the data is

indeed negative.

The accuracy, precision, recall, and F-score

values are obtained using the formulas as below.

Accuracy: A metric used to measure how often

a method makes correct predictions, by calculating

the number of correct predictions divided by the total

number of predictions [31]. The formula is as follows:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 (1)

Precision: calculation of the ratio of positive

predictions and positive reality and divided by the

0

5000

Non-SMOTE SMOTE

Data Distribution

Positive Negative

1586 Jurnal Teknik Informatika (JUTIF), Vol. 5, No. 6, December 2024, pp. 1581-1589

total number of positive predictions [25]. The formula

is as follows:

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (2)

Recall: calculation of the ratio of positive

predictions and positive reality divided by the total

number of positive actual data [25]. The formula is as

follows:

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (3)

F-Score: calculation by combining two metric

values, namely precision and recall values [25]. The

formula is as follows:

𝐹 − 𝑠𝑐𝑜𝑟𝑒 = 2.
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛.𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑟𝑒𝑐𝑎𝑙𝑙
 (4)

3. RESULT AND DISCUSSION

This section will explain the results of the

comparison of the performance of Word2vec, GloVe,

and FastText word embedding classified using the

LSTM model using review data from the

MyTelkomsel app as much as 9000 data. The author

uses two scenarios in the classification process to get

the most optimal results in this study. The following

are the scenarios in this study:

1) Using each word embedding method separately

with the LSTM classifier model.

2) Using each word embedding method separately

with an LSTM classifier model augmented with

SMOTE.

The test was conducted five times for each

scenario. There are also hyper parameters used in

each word embedding, namely "vocab_len" and

"maxLen". "vocab_len" is the number of unique

words in the vocabulary that will be considered by the

model. In this research, "vocab_len" is set to 55,

which means there are 55 unique words that will be

considered by the model. "maxLen" is the maximum

length of input sequence that can be accepted by the

model. In this study, "maxLen" is set to 30, which

indicates that the processed words will be truncated

or completed until they are exactly 30 words long.

Table 4. Word2vec+LSTM

Experiment Accuraccy Precision Recall F1-Score

Ke-1 87.25% 75.28% 72.04% 73.62%

Ke-2 88.51% 74.93% 80.37% 77.56%
Ke-3 87.31% 72.34% 78.76% 75.41%

Ke-4 87.91% 72.09% 83.33% 77.30%

Ke-5 88.57% 75.90% 78.76% 77.30%

average 87.91% 74.11% 78.65% 76.24%

The test results contained in Table 4 show the

results of using Word2vec word embedding and

classifying using LSTM with 5-fold. The highest

value was obtained in the 5th experiment, with an

accuracy value of 88.57%, precision 75.90%, recall

78.76%, and f1-score 77.30%.

Table 5. Word2vec+LSTM-SMOTE

Experiment Accuraccy Precision Recall F1-Score

Ke-1 86.52% 67.78% 86.55% 76.03%

Ke-2 85.52% 64.98% 89.78% 75.39%

Ke-3 87.11% 69.95% 83.87% 76.28%

Ke-4 87.51% 70.72% 84.40% 76.96%

Ke-5 86.13% 67.52% 84.40% 75.02%

average 86.56% 68.19% 85.80% 75.94%

The test results contained in Table 5 show the

results of using Word2vec word embedding and

classifying using LSTM added by SMOTE with 5-

fold. The highest value was obtained in the 4th

experiment, with an accuracy value of 87.51%,

precision 70.72%, recall 84.40%, and f1-score

76.96%.

Table 6. GloVe+LSTM

Experiment Accuraccy Precision Recall F1-Score

Ke-1 87.05% 76.10% 69.35% 72.57%

Ke-2 87.45% 77.64% 69.08% 73.11%

Ke-3 87.71% 71.89% 82.52% 76.84%

Ke-4 86.98% 77.50% 66.66% 71.67%

Ke-5 87.45% 77.47% 69.35% 73.19%

average 87.33% 76.12% 71.39% 73.48%

The test results contained in Table 6 show the

results of using GloVe word embedding and

classifying using LSTM with 5-fold. The highest

value was obtained in the 3rd experiment, with an

accuracy value of 87.71%, precision 71.89%, recall

82.52%, and f1-score 76.84%.

Table 7. GloVe+LSTM-SMOTE

Experiment Accuraccy Precision Recall F1-Score

Ke-1 86.65% 68.15% 86.29% 76.15%

Ke-2 84.59% 63.30% 89.51% 74.16%

Ke-3 86.05% 66.59% 87.36% 75.58%

Ke-4 86.45% 67.72% 86.29% 75.88%

Ke-5 86.78% 68.52% 86.02% 76.28%

average 86.10% 66.86% 87.09% 75.61%

The test results contained in Table 7 show the

results of using GloVe word embedding and

classifying using LSTM added by SMOTE with 5-

fold. The highest value was obtained in the 5th

experiment, with an accuracy value of 86.78%,

precision 68.52%, recall 86.02%, and f1-score

76.28%.

Table 8. FastText+LSTM

Experiment Accuraccy Precision Recall F1-Score

Ke-1 89.11% 76.26% 81.18% 78.64%

Ke-2 87.98% 78.50% 70.69% 74.39%

Ke-3 88.97% 75.75% 81.45% 78.49%

Ke-4 88.91% 75.94% 80.64% 78.22%

Ke-5 86.52% 67.35% 88.17% 76.36%

average 88.30% 74.76% 80.43% 77.22%

The test results contained in Table 8 show the

results of using FastText word embedding and

classifying using LSTM with 5-fold. The highest

value was obtained in the 1st experiment, with an

accuracy of 89.11%, precision 76.26%, recall

81.18%, and f1-score 78.64%.
\

Muhammad Raffif Haziq, et al., WORD EMBEDDING OPTIMIZATION IN … 1587

Table 9. FastText+LSTM-SMOTE

Experiment Accuraccy Precision Recall F1-Score

Ke-1 85.85% 66.12% 87.63% 75.37%

Ke-2 86.12% 66.46% 88.44% 75.89%

Ke-3 85.59% 63.25% 89.78% 74.22%

Ke-4 87.38% 70.31% 84.67% 76.82%

Ke-5 83.93% 61.77% 91.66% 73.80%

average 85.77% 65.58% 88.44% 75.22%

The test results contained in Table 9 show the

results of using FastText word embedding and

classifying using LSTM added by SMOTE with 5-

fold. The highest value was obtained in the 4th

experiment, with an accuracy of 87.38%, precision

70.31%, recall 84.67%, and f1-score 76.82%.

Figure 6. Model Combination Accuracy

Figure 6 shows the best accuracy comparison of

each combination used in this study. In testing the

first scenario, namely the combination of word

embedding and LSTM without adding SMOTE, the

best combination is FastText + LSTM with an

accuracy value of 89.11%. Followed by the

Word2vec + LSTM combination with an accuracy

value of 88.57% and finally there is a combination

with the smallest accuracy value, namely GloVe +

LSTM with an accuracy value of 87.71%. Where the

accuracy value of the three word embedding in the

first scenario provides quite good accuracy results.

In testing the second scenario, which is the

combination of word embedding and LSTM added to

SMOTE, the best combination is Word2vec + LSTM-

SMOTE with an accuracy value of 87.51%. Then

followed by the FastText + LSTM-SMOTE

combination with an accuracy value of 87.38% and

finally the combination with the smallest accuracy

value is GloVe + LSTM-SMOTE with an accuracy

value of 86.78%. Overall, the use of SMOTE in this

study did not increase the accuracy of the model

combination and resulted in a decrease in the

accuracy value of each model combination tested.

4. DISCUSSION

From the research results, the combination of

FastText and LSTM provides the highest accuracy

value with a value of 89.11%. This is followed by the

combination of Word2vec and LSTM with an

accuracy value of 88.57%. Then there is a

combination of GloVe and LSTM with an accuracy

value of 87.71%, then followed by 2 combinations

with almost the same accuracy value, namely

Word2vec and LSTM-SMOTE with an accuracy

value of 87.51% and FastText and LSTM-SMOTE

with an accuracy value of 87.38%. Finally, the

combination with the lowest accuracy value in this

study is the combination of GloVe and LSTM-

SMOTE with an accuracy value of 86.78%. Of the

two scenarios used in this study, it was found that the

first scenario has a superior accuracy value compared

to the second scenario. Where the results of the

accuracy value of the first scenario are in the 1st, 2nd,

and 3rd order in this study. It is also proven that the

combination of FastText and LSTM is the most

superior combination compared to the other five

combinations.

Compared to previous studies that use the same

word embedding but different classification models,

this study provides quite good results and is similar to

previous studies. In research [8] with classification

using CNN, the accuracy value of the combination of

each model is 92.5% for Word2vec, 95.8% for

GloVe, and 97.2% for FastText. Research [32] with

SVM classification obtained the accuracy value of the

combination of each model, 65% for Word2vec, 85%

for GloVe, and 71% for FastText. These results prove

that the selection of word embedding and

calcification models can affect the combination

performance for each model. In this study, it was

found that FastText + LSTM is the best combination

compared to Word2vec + LSTM and GloVe + LSTM.

This shows that FastText word embedding can

capture more detailed sub-word information for text

classification and help improve the performance of

LSTM. Although SMOTE helps to make the model

fairer to minority classes, the decrease in accuracy in

this study shows that this method should be

considered carefully to avoid overfitting the minority

classes and ensure more accurate results.

5. CONCLUSION

This research focuses on the comparison of

Word2vec, GloVe, and FastText word embedding on

classifiers using LSTM. The experiment was

conducted using two scenarios: LSTM-only

classification and LSTM augmented with SMOTE to

handle data imbalance. The aim is to find the most

optimal combination of word embedding and

classification strategies in sentiment analysis on

MyTelkomsel app reviews.

Based on the experimental results on three word

embedding with two existing scenarios, the

combination of FastText and LSTM has the highest

accuracy value with an accuracy value of more than

89%, followed by the combination of Word2vec and

LSTM with an accuracy value of more than 88%, then

the combination of GloVe and LSTM with an

accuracy value of more than 87%. then the

combination of Word2vec and LSTM-SMOTE with

an accuracy value of more than 87% and the

1588 Jurnal Teknik Informatika (JUTIF), Vol. 5, No. 6, December 2024, pp. 1581-1589

combination of FastText and LSTM-SMOTE with an

accuracy value of more than 87%. Then finally the

combination of GloVe and LSTM-SMOTE with an

accuracy value of more than 86%. From this study,

the use of the SMOTE method has an unfavorable

impact on the combination of methods used by

reducing the accuracy value of the model. Although

the difference in accuracy values obtained from this

test is not too far, it shows that the application of each

word embedding used in LSTM and LSTM-SMOTE

has competitive performance. Suggestions for future

research are to increase the number of datasets that

are different from this research to validate whether

the combination of FastText with LSTM really

provides the highest accuracy value compared to

other combinations and do a deeper exploration of the

effect of SMOTE on LSTM.

REFERENCES

[1] W. H. Ali and M. Ariyanti, “Hyper-

Segmentation Lapser MyTelkomsel Apps

Using K-Means Clustering to Increase Data

Package Purchases in Area 3-East Java,

Central Java-DIY, Bali Nusa Tenggara,”

Bandung, Jun. 2023.

[2] A. Ibrahim, F. S. Elisa, J. Fernando, L.

Salsabila, N. Anggraini, and S. N. Arafah,

“Pengaruh E-Service Quality Terhadap

Loyalitas Pengguna Aplikasi MyTelkomsel,”

Building of Informatics, Technology and

Science (BITS), vol. 3, no. 3, pp. 302–311,

Dec. 2021, doi: 10.47065/bits.v3i3.1076.

[3] S. Pandya and P. Mehta, “A Review On

Sentiment Analysis Methodologies, Practices

And Applications,” International Journal Of

Scientific & Technology Research, vol. 9, p.

2, Feb. 2020, [Online].

[4] G. Dharani Devi and Dr. S .Kamalakkannan,

" Literature Review on Sentiment Analysis in

Social Media: Open Challenges toward

Applications", International Journal of

Advanced Science and Technology, Vol. 29,

No. 7, pp. 1462-1471, (2020)

[5] Jain, P.K. and Pamula, R., “A systematic

literature review on machine learning

applications for consumer sentiment analysis

using online reviews”, Computer Science

Review, Vol. 41, (2021).

[6] R. Indra Kurnia and A. Suganda Girsang,

“Classification of User Comment Using

Word2vec and Deep Learning,” Mar. 2021,

doi: 10.25046/aj060264.

[7] T. Mikolov, K. Chen, G. Corrado, and J.

Dean, “Efficient Estimation of Word

Representations in Vector Space,” Jan. 2013,

[Online]. Available:

http://arxiv.org/abs/1301.3781

[8] B. Jang, I. Kim, and J. W. Kim, “Word2vec

convolutional neural networks for

classification of news articles and tweets,”

PLoS One, vol. 14, no. 8, Aug. 2019, doi:

10.1371/journal.pone.0220976.

[9] J. Pennington, R. Socher, and C. D. Manning,

“GloVe: Global Vectors for Word

Representation,” Doha, Qatar, Oct. 2014.

[Online]. Available: http://nlp.

[10] Mishev, K., Gjorgjevikj, A., Vodenska, I.,

Chitkushev, L. T., & Trajanov, D. (2020).

Evaluation of sentiment analysis in finance:

from lexicons to transformers. IEEE access,

8, 131662-131682.

[11] E. M. Dharma, F. Lumban Gaol, H. Leslie, H.

S. Warnars, and B. Soewito, “The Accuracy

Comparison Among Word2vec, GloVe,

AND FastText Towards Convolution Neural

Network (CNN) Text Classification,” J Theor

Appl Inf Technol, vol. 31, no. 2, 2022,

[Online]. Available: www.jatit.org.

[12] P. Bojanowski, E. Grave, A. Joulin, and T.

Mikolov, “Enriching Word Vectors with

Subword Information,” vol. 5, pp. 135–146,

2017, doi:

10.1162/tacl_a_00051/1567442/tacl_a_0005

1.pdf.

[13] N. Alvi Hasanah, Nanik Suciati, and Diana

Purwitasari, “Pemantauan Perhatian Publik

terhadap Pandemi COVID-19 melalui

Klasifikasi Teks dengan Deep Learning,”

Jurnal RESTI (Rekayasa Sistem dan

Teknologi Informasi), vol. 5, no. 1, pp. 193–

202, Feb. 2021, doi:

10.29207/resti.v5i1.2927.

[14] Johnson, R., & Zhang, T. (2015). Effective

Use of Word Order for Text Categorization

with Convolutional Neural Networks.

Proceedings of the 2015 Conference of the

North American Chapter of the Association

for Computational Linguistics.

[15] Ahmad, S., Ridwan, A. M., & Setyawan, G.

D. (2023). Analisis Sentimen Product Tools

& Home Menggunakan Metode Cnn Dan

Lstm. Teknokom, 6(2), 133-140.

[16] Tala, F. Z., "A Study of Stemming Effects on

Information Retrieval in Bahasa Indonesia".

M.Sc. Thesis. Master of Logic Project.

Institute for Logic, Language and

Computation. Universiteit van Amsterdam,

The Netherlands, 2003.

[17] S. Al-Saqqa and A. Awajan, “The Use of

Word2vec Model in Sentiment Analysis: A

Survey,” in ACM International Conference

Proceeding Series, Association for

Computing Machinery, Dec. 2019, pp. 39–

43. doi: 10.1145/3388218.3388229.

[18] S. Li and B. Gong, “Word embedding and

text classification based on deep learning

Muhammad Raffif Haziq, et al., WORD EMBEDDING OPTIMIZATION IN … 1589

methods,” MATEC Web of Conferences, vol.

336, p. 06022, 2021, doi:

10.1051/matecconf/202133606022.

[19] S. Sivakumar, L. S. Videla, T. R. Kumar, J.

Nagaraj, S. Itnal, and D. Haritha, Review on

Word2Vec Word Embedding Neural Net.

India: 2020 International Conference on

Smart Electronics and Communication

(ICOSEC), 2020. doi:

10.1109/ICOSEC49089.2020.9215319.

[20] A. Amalia, O. S. Sitompul, E. B. Nababan,

and T. Mantoro, An Efficient Text

Classification Using fastText for Bahasa

Indonesia Documents Classification. Medan:

2020 International Conference on Data

Science, Artificial Intelligence, and Business

Analytics (DATABIA), 2020. doi:

10.1109/DATABIA50434.2020.9190447.

[21] J. C. Young and A. Rusli, “Review and

Visualization of Facebook’s FastText

Pretrained Word Vector Model,” pp. 1–6,

Aug. 2019, doi:

10.1109/ICESI.2019.8863015.

[22] A. Alessa, M. Faezipour, and Z. Alhassan,

“Text classification of flu-related tweets

using FastText with sentiment and keyword

features,” in Proceedings - 2018 IEEE

International Conference on Healthcare

Informatics, ICHI 2018, Institute of Electrical

and Electronics Engineers Inc., Jul. 2018, pp.

366–367. doi: 10.1109/ICHI.2018.00058.

[23] T. Yao, Z. Zhai, and B. Gao, Text

Classification Model Based on fastText.

Dalian: Proceedings of 2020 IEEE

International Conference on Artificial

Intelligence and Information Systems:

ICAIIS, 2020. doi:

10.1109/ICAIIS49377.2020.9194939.

[24] M. A. Riza and N. Charibaldi, “Emotion

Detection in Twitter Social Media Using

Long Short-Term Memory (LSTM) and Fast

Text,” International Journal of Artificial

Intelligence & Robotics (IJAIR), vol. 3, no.

1, pp. 15–26, May 2021, doi:

10.25139/ijair.v3i1.3827.

[25] N. K. Sirohi, “Categorization of Text using

Long Short-Term Memory with Glove,”

2023, doi: 10.21203/rs.3.rs-3239199/v1.

[26] M. A. Nurrohmat and A. SN, “Sentiment

Analysis of Novel Review Using Long Short-

Term Memory Method,” IJCCS (Indonesian

Journal of Computing and Cybernetics

Systems), vol. 13, no. 3, p. 209, Jul. 2019,

doi: 10.22146/ijccs.41236.

[27] S. Siami-Namini, N. Tavakoli, and A. S.

Namin, The performance of LSTM and

BiLSTM in forecasting time series. Los

Angeles, CA: 2019 IEEE International

Conference on Big Data (Big Data), 2019.

doi: 10.1109/BigData47090.2019.9005997.

[28] V. Rupapara, F. Rustam, H. F. Shahzad, A.

Mehmood, I. Ashraf, and G. S. Choi, “Impact

of SMOTE on Imbalanced Text Features for

Toxic Comments Classification Using

RVVC Model,” IEEE Access, vol. 9, pp.

78621–78634, 2021, doi:

10.1109/ACCESS.2021.3083638.

[29] P. Jeatrakul, K. Wai Wong, and C. Che Fung,

“Classification of Imbalanced Data by

Combining the Complementary Neural

Network and SMOTE Algorithm,” 2010.

[30] V. M. Patro and M. Ranjan Patra,

“Augmenting Weighted Average with

Confusion Matrix to Enhance Classification

Accuracy,” Transactions on Machine

Learning and Artificial Intelligence, vol. 2,

no. 4, Aug. 2014, doi: 10.14738/tmlai.24.328.

[31] A. Giachanou and F. Crestani, “Like it or not:

A survey of Twitter sentiment analysis

methods,” ACM Computing Surveys, vol. 49,

no. 2. Association for Computing Machinery,

Jun. 01, 2016. doi: 10.1145/2938640.

[32] A. Margaretha and N. Helena, "

COMPARISON PERFORMANCE OF

WORD2VEC, GLOVE, FASTTEXT

USING SUPPORT VECTOR MACHINE

METHOD FOR SENTIMENT ANALYSIS",

Jurnal Teknik Informatika (JUTIF), Vol. 5,

No. 3, pp. 669-674, June 2024, doi:

10.52436/1.jutif.2024.5.3.1366.

