
Jurnal Teknik Informatika (JUTIF) DOI: https://doi.org/10.52436/1.jutif.2024.5.5.2493
Vol. 5, No. 4, October 2024, pp. 1355-1364 p-ISSN: 2723-3863
 e-ISSN: 2723-3871

1355

IMPLEMENTATION OF REST API ARCHITECTURE FOR FEELSQUEST

ONLINE COURSE FEATURE IN FEELSBOX APPLICATION USING LARAVEL

FRAMEWORK

Faza Alexander Riawan*1, Dana Sulistyo Kusumo2, Nungki Selviandro3

1,2,3Software Engineering, Informatics Faculty, Universitas Telkom, Indonesia

Email: 1fazaalexander@student.telkomuniversity.ac.id , 2danakusumo@telkomuniversity.ac.id,
3nselviandro@telkomuniversity.ac.id

(Article received: July 10, 2024; Revision: August 5, 2024; published: October 25, 2024)

Abstract

Feelsbox is a digital-based startup that focuses on the importance of mental health issues and offers innovative

solutions to help people maintain their mental health. FeelsBox took the initiative to develop an online course

feature "FeelsQuest" with the aim of providing education and helping prevent and overcome mental health

problems to the wider community, especially teenagers. The development of this feature uses the PHP

programming language with the Laravel framework and implements the REST API architecture. The choice of

REST API architecture is based on the concept of separation of responsibilities so that the API can be reused on

different platforms. In addition, a suitable test is needed to test the REST API that has been built. Testing of the

REST API that has been built is done with the API testing method which is focused on aspects of functionality

and performance using Postman to ensure that the API built produces responses and behaves according to the

needs of the FeelsQuest feature of the FeelsBox application. The test results show that the implementation of the

REST API on the FeelsQuest feature is in accordance with the functional requirements and successfully applies

the concept of separation of concerns and meets the non-functional needs of the FeelsQuest feature related to the

response time of each API, which is under 3 seconds.

Keywords: backend, functional testing method, laravel, load testing method, online course, REST API

1. INTRODUCTION

The development of information and

communication technology causes humans to

continue to innovate to meet their needs.

Information technology is a human tool for

processing activities that produce information. In

addition, information technology also plays a role in

solving a problem, encouraging creativity,

increasing effectiveness and efficiency in human

activities. [1]. One of the innovations from the

development of information technology is online

courses. E-learning, or can be called an online

course, is an online-based learning or training that is

not limited by place and time, and utilizes

information technology to gain access to learning

and teaching.[2].

FeelsBox is a digital-based startup that focuses

on the importance of mental health issues and offers

innovative solutions to help people maintain their

mental health. FeelsBox was established in 2021

under the name "Zyon" before finally rebranding in

2022 to "FeelsBox" which means feeling box.

Currently, FeelsBox is developing a new feature

called "FeelsQuest" as an effort to educate the wider

community, especially teenagers on the importance

of mental health. FeelsQuest is a web-based online

course feature, but in its development, an

architecture is needed that can be used on different

platforms. Therefore, an architecture with an

approach that applies the principle of separating

client and server responsibilities or concerns is

needed so that the business logic developed can be

reused on various platforms, namely web and mobile

platforms.

To solve these problems, an architecture is

needed that is able to handle the integration and

access needs of various platforms (multiplatform).

An architecture that is interdependent between one

system component and another will certainly not be

effective to be applied in this case. This is because if

there is an error or change that leads to a mismatch,

the developer must make changes to all system

components [3].

Web Service is a set of standards and

programming methods for sharing data between

different software applications. Web Service

provides interoperability between various

applications running on different platforms [4]. Web

Service acts as a service function provider unit in a

system into a standardized software component, can

be used and updated dynamically and independently.

The services provided by a web service are in the

form of information through the transfer of

Javascript Object Notation (JSON) or Extensible

Markup Language (XML) type data between

mailto:1fazaalexander@student.telkomuniversity.ac.id
mailto:2danakusumo@telkomuniversity.ac.id
mailto:3nselviandro@telkomuniversity.ac.id

1356 Jurnal Teknik Informatika (JUTIF), Vol. 5, No. 5, October 2024, pp. 1355-1364

systems in a network through the Hypertext Transfer

- Transfer Protocol (HTTP) protocol, thus enabling

interaction between systems with the support of

interoperability offered [5].

Representational State Transfer (REST) is a

web service architecture that allows various systems

to communicate, send or receive data in a very

simple way. REST is one type of web service

architecture that applies the concept of transferring

between states, where the way the REST

architecture works is by navigating through links or

HTTP endpoints [1]. Application Programming

Interface (API) is an interface that can be used to

integrate data and connect a system that runs on

different platforms. In addition, APIs can also speed

up the development process by providing functions

separately so that developers do not need to create

similar features. In the context of implementing

REST API, there are many programming languages

and frameworks that can be used to implement

REST API architecture [6].

One of the popular and widely used

programming languages and frameworks is the

Hypertext Preprocessor (PHP) programming

language and the Laravel framework. Laravel

framework is one of the PHP-based frameworks that

is open source and uses the concept of separation of

concerns model - view - controller (MVC) [7]. MVC

is a method of creating applications by separating

data (model), view, and data processing bridge

(controller) [8]. Therefore, the implementation of the

REST API in this research uses the PHP

programming language and the Laravel framework.

Functional Testing is part of the Black box

Testing method, which in the process aims to find

out whether each API functions and responds as

expected without knowing how the program code is

implemented [9]. Pengujian fungsionalitas pada API

sistem FeelsQuest Functionality testing on the

FeelsQuest system API is carried out to analyze and

ensure that each API that is built responds and

functions as expected.

Load Testing is a testing method used to

evaluate the performance and durability of a system

under high workload conditions or at virtual

maximum loads [10]. Load testing on the FeelsQuest

system API is carried out to analyze and ensure that

each API built has good performance and durability

in handling high workload conditions.

As in the research conducted by Iman

Nurjaman, Fandy Setyo Utomo, and Nandang

Hermanto with a study entitled "Penerapan REST

API Laravel sebagai Fondasi Back-end Aplikasi G-

MOOC 4D", discussing the development of the G-

MOOC 4D website-based online course application

by applying the REST API architecture and the

Laravel framework. From this previous research, the

author found that the application of the REST API to

the online course system produces a number of

access points (API endpoints) that can be used by

the front-end team to be able to interact and access

data from the back-end system efficiently and safely.

In addition, the tests carried out in the study tested

the functionality of each API by accessing the access

point of each API with a response that successfully

met the expected results. This previous research has

similarities with this research where this research

will help the system for the FeelsQuest feature by

implementing the REST API architecture and the

Laravel framework, and conducting functionality

testing on the API that has been built [11].

Research from Romi Choirudin and Ahmat

Adil with the research title "Implementasi REST

API Web Service Dalam Membangun Aplikasi

Multiplatform Untuk Usaha Jasa" discusses the

challenges of building a carpentry service

application with a multiplatform system with the

implementation of the REST API as a solution. In

this previous research, the author found that the

REST API architecture that had been implemented

successfully achieved the goal of being used in

multiplatform applications. This previous research

has similarities with this research, where this

research has the same problem, namely the need for

an architecture that can be used on various platforms

(multiplatform) [12].

Just like the research from Mohammad

Akmaluddin Novianto, and Sirojul Munir with the

research title "Analisis dan Implementasi RESTful

API Guna Pengembangan Sistem Informasi

Akademik Pada Perguruan Tinggi" discusses how to

answer challenges in developing systems and

applications that were previously available. One of

these challenges includes how to build a system that

can be reused in the future with the ability to run on

a multiplatform and programming language. The

solution applied in this previous research was to

apply the concept of REST architecture as a bridge

for data exchange without regard to differences in

platforms or programming languages. This previous

research also applied a functionality-based testing

method that was carried out using the Postman

application. In this previous research, the author

found that the system had been successfully built by

applying the concept of REST architecture and API

functionality testing showed that all tested scenarios

ran well and successfully produced responses as

expected. This previous research has similarities

with this research, where this research has the same

problem, namely the need for an architecture that

can be used as a solution to multiplatform problems

and implements testing that focuses on the API

functionality aspect to test the suitability of the API

that has been developed [13].

Research from Denis Akbar, Freza Riana, and

Fitrah Satrya with research entitled “Pembuatan Web

Service Pada Aplikasi SIJAB Dengan Metode

REST” also focuses on cross-platform problems.

This previous research focused on creating a web

service architecture, REST API, as a solution to the

Faza Alexander Riawan, et all, IMPLEMENTATION OF REST API ARCHITECTURE … 1357

problem. In addition, the previous research also

conducted a feasibility test of the system that had

been built by testing the functionality of the API that

had been built. The previous research has

similarities with this research in the aspects of

problems, solutions, and testing carried out [14].

In addition, research from Ahmad Pulodi,

Yulianawati, and Iqbal Suwandi with the title

“Implementasi Web Service Restful Dengan

Autentikasi JSON Web Token Berbasis Web dan

Android”, the author found that the main problem in

the study is that researchers need a solution to

support interoperability and can facilitate access

from different devices or cross platforms for online

course systems. The solution applied in this research

is to implement a REST web service architecture to

answer these problems. In addition, functionality

testing is also carried out to ensure that the API built

is in accordance with the needs of the system. This

previous research has similarities with this research

in terms of problems, solutions, testing, and types of

systems developed, namely online course systems

[15].

The formulation of the problem in this study is

how the application of REST API architecture, from

design to implementation, and how the results of

REST API testing on the FeelsQuest feature backend

system of the FeelsBox application using API

functional testing and API load testing methods. The

purpose of this research is to produce the process of

designing and implementing the REST API, as well

as testing the REST API that has been built to

determine its success and compatibility with the

needs of the FeelsQuest feature of the FeelsBox

application. The results of this research are expected

to provide insights and recommendations related to

the application of the REST API architecture so that

it can be applied to similar case studies.

2. RESEARCH METHODS

The research method used for this research is

based and described on the flowchart in Figure 1. As

can be seen in figure 1, the stages of this research

are generally divided into four stages, which is API

design stage, API implementation stage, API testing

stage, and finally report writing.

Figure 1: Flow of Research Methods

The first stage in this research is the API design

process with reference to the functional

requirements of the FeelsQuest system. API design

is done by designing the endpoint of each API to

determine the access point contract for each API

along with the request and response data. In

addition, Entity Relationship Diagram (ERD) design

is done to create a system model based on needs.

ERD is made in the form of a conceptual database

that describes the concept or database schema that is

more specifically related to the need for data to state

its relationship and boundaries [16].

The second stage in this research is the API

implementation stage. The implementation stage is

divided into two processes, including the

development environment configuration process and

the API design coding process. The development

environment configuration process is carried out to

ensure that the tools used to develop the API

(development environment) are ready for use. This

configuration process broadly includes but is not

limited to the installation and configuration of

programming languages and frameworks used,

database configuration, and dependency

configuration. After the configuration process is

complete, the next process is the API design coding

process.

The third stage in this research is the API

testing stage. Testing in this study was carried out

using functional testing and load testing methods.

Functional testing is done by testing each API

endpoint and then analyzing whether the response

generated by each API is as expected. In addition,

API performance testing is carried out using the load

testing method through three different scenarios,

each for 10 minutes.

1358 Jurnal Teknik Informatika (JUTIF), Vol. 5, No. 5, October 2024, pp. 1355-1364

Table 1 describes test scenarios with 20, 40,

and 60 Virtual Users (VU) using peak load testing.

This test aims to evaluate API performance under

conditions that resemble actual use, with the

expectation that the average response time does not

exceed 3 seconds as a performance benchmark.

Through this test, an overview of the performance of

each API in responding to simultaneous and

continuous access loads can be obtained, providing

insight into the system's ability to handle real usage.

Table 1. Load Test Scenario

Scenario
Virtual

Users (VU)

Load

Type

Test

Duration

Expected

Results

Scenario 1 20 Peak 10 min <= 3 sec

Scenario 2 40 Peak 10 min <= 3 sec

Scenario 3 60 Peak 10 min <= 3 sec

The final stage after all stages from design to

API testing have been completed is to compile a

report related to the results that have been obtained.

3. RESULT AND DISCUSSION

Broadly speaking, the implementation of the

REST API architecture on the FeelsQuest feature

applies a systematic approach consisting of three

main stages, including the API design phase, API

implementation, and API testing. The end result of

this stage is to produce an Application Programming

Interface (API) that has been tested and in

accordance with the needs of the FeelsQuest feature

system. The API design phase is carried out based

on functional requirements including the creation of

API endpoint designs to the Entity Relationship

Diagram (ERD) design.
Table 2 presents a sample API endpoint design

for the FeelsQuest feature system. This design

includes several important elements, including the

functional requirement ID, the HTTP method used,

the endpoint and its request and response, as well as

a brief description of the function or purpose of each

endpoint.

Table 2 Sample API endpoint design

No FR ID Method Endpoint Request Response Description

1 FR01 GET /api/courses page Status code, message, data, page, limit, total page Get all course data

2 FR07 POST

/api/user/
postFeedback/

{courseId}

Course id,

questions
Status code, message

Create new feedback

data or feedback from

a user for a course

3 FR11 PUT

/api/admin/
updateCourse/

{slug}

Course id Status code, message
Change or edit

existing course data

4 FR18 DELETE

/api/admin/
deleteFeedback

Question/
{questionId)

Question id Status code, message

Delete feedback

question data or

feedback for a course

Entity Relationship Diagram (ERD) is a high-

level conceptual model of a database to describe a

system and its boundaries. Figure 2 presents the

ERD of the FeelsQuest feature where there are nine

entities that are related to each other. FeelsQuest

ERD has several main entities (database tables),

including users, courses, course details, course

contents, course ratings, course feedbacks, course

feedback questions, enrolled courses, and

transactions.

Faza Alexander Riawan, et all, IMPLEMENTATION OF REST API ARCHITECTURE … 1359

Figure 2: Entity Relationship Diagram

The next stage after the API design stage is the

API implementation stage. The API implementation

stage begins with configuring the development

environment. Configuration begins by ensuring that

the PHP programming language and Laravel

framework are installed on the environment or

device that will be used for API development.

Supporting tools such as Composer are also needed

to ensure the smooth configuration process of PHP

and the Laravel framework. Composer is a

dependency manager for the PHP programming

language and is used to manage PHP-based software

dependencies and libraries that are needed for the

API development [17].

Before doing the coding process, several things

need to be prepared in addition to configuring the

programming language and framework. This

includes the installation and configuration of the

Database Management System (DBMS) as a

database to store data from the system being

developed.

The next API implementation step after the

configuration process is complete is to implement

the API design in the form of code. This process

involves several main components in the Laravel

framework, such as models to represent entities or

data tables that have been designed in ERD,

migration to define the structure and relationships

between data tables in the database, seeders to fill in

dummy data or initial data for testing purposes,

controllers to handle business logic and its

interaction with the database, and routes to define

access points or endpoints

.

Program Code 1. Model

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

<?php

namespace App\Models\ (…);

use (…);

class Course extends Model

{

use HasFactory;

protected $hidden = [‘created_at];

protected $fillable = [‘name’];

public function detail()

{

 return

 $this->hasOne(CourseDetail::class);

}

}

Program Code 2. Migration

1

2

3

4

<?php

use (…);

1360 Jurnal Teknik Informatika (JUTIF), Vol. 5, No. 5, October 2024, pp. 1355-1364

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

return new class extends Migration

{

public function up(): void

{

Schema::create('course_details',

function (Blueprint $table) {

 $table->id();

 $table->foreignId("course_id")-

>constrained("courses");

 $table->text("description");

 });

}

public function down(): void

{

 Schema::dropIfExists('courses');

 }

};

Program codes 1 and 2 are examples of the

application of model and migration program codes

for course entities in the FeelsQuest system. These

components serve to define the structure and

relationships for each entity in the database. The

model (program code 1) defines the course entity

along with attributes or data that can be filled or

hidden. In addition, defining relationships between

entities related to the course entity is also set in the

model component, for example a one-to-one

relationship with the course details entity.

Meanwhile, migration (program code 2) serves to

define the structure of each entity or data table in the

database. The structure in the database consists of

columns and their data types as well as relationships

between entities using foreign keys.

Program Code 3. Seeder

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

<?php

namespace Database\Seeders;

use (…);

class CourseSeeder extends Seeder

{

public function run(): void

{

$courses = [

 [

 "id" => 1,

 "name" => "Inner Child",

 “…” => “…”

];

 foreach ($courses as $course) {

 Course::updateOrCreate(['id' =>

$course['id']], $course);

 }

 }

22 }

Program code 3 is an example of implementing a

seeder program code to fill in dummy data or initial

data for course entities for testing purposes in the

FeelsQuest feature system database. The seeder

implementation is useful to facilitate the API testing

process that is in the process of implementation or

development. In the program code, the run() and

updateOrCreate() methods are used to insert or

update each course dummy data into the database

using the foreach loop concept. This approach can

ensure that each dummy data is inserted into the

database quickly and efficiently without duplication.

Program Code 4. Controller

1

2

3

4

5

6

7

8

9

10

11

<?php

namespace App\Http\Controllers\(…);

use (…);

class CourseController extends

\App\Http\Controllers\Controller

{

public function getAllCourses(Request

$request)

{

 (…)

}

Program code 4 is an example of implementing

a controller to handle business logic and its

interaction with the database for the course entity in

the FeelsQuest system. This controller

implementation serves as a bridge or intermediary

between HTTP requests from users and models,

responsible for receiving, retrieving or manipulating,

and returning the appropriate data. In the context of

the REST API implementation, each function on the

controller will return a return in JSON format.

This controller allows effective management of

a particular operation by implementing Create,

Read, Update, and Delete (CRUD) functions, for

example create to add new course data, read to

retrieve available course list data, update to add new

course data, and delete to delete existing course data.

Program Code 5. Route

1

2

3

4

5

6

7

8

<?php

use (…);

Route::middleware('auth:sanctum')-

>group(function() {

 Route::group(['prefix' => 'user'], function (){

Route::post('/postFeedback/{courseId}',

[CourseController::class, 'postFeedback'])-

>middleware('role:user');

 }

Faza Alexander Riawan, et all, IMPLEMENTATION OF REST API ARCHITECTURE … 1361

9 }

Program code 5 is an example of implementing

program code to define endpoint routes for each

FeelsQuest feature API. This endpoint route serves

to direct HTTP requests by users to the appropriate

controller function. Each endpoint can be grouped

into a group and can be assigned middleware to

secure and manage endpoint access. In program

code 5, API routes that require authentication are

grouped under the 'auth:sanctum' middleware. In

addition, API routes that require authentication are

further grouped based on the type of user accessing,

in this case with a 'user' prefix or an 'admin' prefix.

This allows for a more structured endpoint

organization and separates the management of

access rights based on user type.

The final stage after API design and

implementation is complete is to test the API. One

of the aspects tested in API testing on the FeelsQuest

feature focuses on the functionality aspect which is

carried out to test the suitability of the API that has

been designed to be implemented against system

requirements, especially functional requirements.

API functionality testing will be carried out by

testing each API endpoint and its suitability for

functional needs as evidenced by the suitability of

the response of each api with the expected results in

the test case of each API. The results of functional

testing of the FeelsQuest feature system are as

follows.

Table 3 presents the results of the FeelsQuest

feature API functionality testing. APIs that

successfully produce the appropriate output will

have a ‘passed’ status, which means that they pass

the API functionality test and are in accordance with

functional requirements, while APIs with ‘failed’

status are APIs that do not meet expectations and fail

the API functionality test. The conclusion column in

the table provides a final assessment of the

functionality of each API based on the test results. A

conclusion of ‘valid’ indicates that the API not only

passed the functionality test, but also fully meet the

specified requirements and is ready for further

testing, such as API load testing.

Table 3 Functionality test results of the FeelsQuest feature API

No FR ID API Functionality TC ID
HTTP

Method
Expected Results

Test

Status
Conclusion

1
FR01 Get All Course TC01-U GET Successfully returned all course

data
passed valid

2
FR02 Get Course Detail TC02-U GET Successfully retrieved all course

data
passed valid

3
FR02A

FR02B

Get All Reviews
(User)

TC03-U GET Successfully retrieved all user

review data for a course
passed valid

4
FR03 Create Invoice TC04-U POST Successfully created transaction

invoices for course purchases
passed valid

5
FR05A

FR05B

Get Course Content TC05-U GET Successfully retrieved all course

content data
passed valid

6
FR06A

FR06B

Create Review TC06-U POST Successfully added new review

data to a course
passed valid

7
FR06

FR07

Post Feedback TC07-U POST Successfully add new feedback

data to a course
passed valid

8 FR09 Create Course TC08-U POST Successfully add new course data passed valid

9
FR10A Get All Course Registrant TC09-U GET Successfully get data on all

registrants of a course
passed valid

10
FR10B

FR10C

Get All Reviews
(Admin)

TC01-A GET Successfully get all review data

from users on a course
passed valid

11
FR11 Update Course TC02-A PUT Successfully change data on a

course
passed valid

12
FR12 Create Content TC03-A POST Successfully add new content data

to a course
passed valid

13
FR13 Update Content TC04-A PUT Successfully change content data

on a course
passed valid

14
FR14 Delete Content TC05-A PUT Successfully delete content data

on a course
passed valid

15
FR15 Get All Course Contents TC06-A GET Successfully get all content data

for a course
passed valid

16
FR16 Create Feedback Questions TC07-A POST Successfully add new feedback

question data to a course
passed valid

17
FR17 Get All Feedback Questions TC08-A GET Successfully get all feedback

question data in a course
passed valid

18
FR18 Delete Feedback Question TC09-A PUT Successfully delete a feedback

question
passed valid

19
FR19 Get All Course Feedbacks TC10-A GET Successfully get all feedback data

from users in a course
passed valid

20
FR20 Get Course Feedback Detail TC11-A GET Successfully get detailed feedback

data from users on a course
passed valid

1362 Jurnal Teknik Informatika (JUTIF), Vol. 5, No. 5, October 2024, pp. 1355-1364

From the results of API functionality testing

that has been carried out, each test case on the

simulated API has provided results in accordance

with the expected results. Therefore, it can be

concluded that the FeelsQuest feature API

implemented with the REST API architecture, has

been designed and implemented properly, so that

each API can work as expected and in accordance

with the needs, especially the functional needs of the

FeelsQuest feature system.

In addition, testing on the performance aspect

of the FeelsQuest feature is done by testing the

performance of each API in handling high

workloads. This test was carried out using the Load

Testing method using Postman. Load testing is

performed on each FeelsQuest API endpoint with

three different scenarios, each for 10 minutes. Load

testing is based on the non-functional needs of the

FeelsQuest system where the response time of each

API must be under 3 seconds. In addition, according

to research results from WebsiteBuilderExpert, the

optimal response time for non-ecommerce websites

is 3 seconds, and according to Cami Bird, the ideal

response time for a website is less than 3 seconds

[18]. Therefore, in this study, the target response

time for each API is not more or equal to 3 seconds.

Table 4 presents the results of load testing on

several API samples grouped by HTTP method.

Each test scenario has a different number of virtual

users, where in the first test scenario, the number of

virtual users used is 20 VUs and will increase by 20

in the next test scenario. Min response time shows

the fastest response time, max response time shows

the longest response time, and avg response time

shows the average response time of each API. Error

Rate shows the amount of error as a percentage of

the total requests given to each API. The conclusion

refers to the non-functional requirements of the

FeelsQuest feature, where the response time of each

API must be no more or equal to three seconds, so

the conclusion is divided into two categories. API is

categorized as 'optimal' if the average response time

of the API is not more or equal to 3 seconds.

Meanwhile, an API is considered 'sub-optimal' if the

average response time is more than 3 seconds. This

categorization allows ease of evaluation of the

FeelsQuest API performance in the face of different

loads. The results of the REST API performance

testing of FeelsQuest features include the following:

Table 4 Load testing results of the FeelsQuest feature API

Scenario Thread Group
Min Response

Time
Max Response Time

Avg Response

Time

Error

Rate
Conclusion

Scenario 1

(20 VU)

GET 22 ms 2,946 ms 162 ms 0,08% optimal

POST 21 ms 1,070 ms 38 ms 0,00 % optimal

POST

(upload file)
341 ms 68,237 ms 3,368 ms 0,09% optimal

PUT 21 ms 1,022 ms 36 ms 0,00% optimal

PUT

(upload file)
338 ms 67,998 ms 3,342 ms 0,08% optimal

DELETE 22 ms 4,227 ms 119 ms 0,08% optimal

Scenario 2

(40 VU)

GET 22 ms 5,195 ms 203 ms 1,02% optimal

POST 20 ms 690 ms 32 ms 0,00% optimal

POST

(upload file)
346 ms 121,893 ms 6,429 ms 1,92%

sub-

optimal

PUT 21 ms 670 ms 35 ms 0,00 % optimal

PUT

(upload file)
334 ms 120,706 ms 6,317 ms 1,89%

sub-

optimal

DELETE 22 ms 17,358 ms 227 ms 0,47% optimal

Scenario 3

(60 VU)

GET 23 ms 16,255 ms 363 ms 3,37% optimal

POST 21 ms 4,421 ms 45 ms 0,02 % optimal

POST

(upload file)
396 ms 112,084 ms 10,183 ms 6,41%

sub-

optimal

PUT 21 ms 3,320 ms 50 ms 0,00% optimal

PUT

(upload file)
392 ms 110,651 ms 10,009 ms 6,03%

sub-

optimal

DELETE 23 ms 15,175 ms 296 ms 2,27% optimal

From the results of API performance testing

using the Load Testing method, the results show

mixed results in each scenario. Scenario 1 (20

Virtual Users) shows optimal performance for most

APIs with an average response time below 1 second,

except for the POST and PUT methods which

require file uploads (around 3 seconds). Scenario 2

(40 VU) saw a slight drop in performance, but most

APIs were still optimal, with the file upload POST

and PUT methods increasing to 6 seconds (sub-

optimal). Scenario 3 (60 VU) showed an increase in

average response time and error rate, but most APIs

remained optimized with response times below 3

seconds, except the file upload POST and PUT

methods (10 seconds, suboptimal). Overall, the

majority of APIs met FeelsQuest's non-functional

needs with average response times below 3 seconds,

even at high loads. However, the file upload POST

and PUT methods require special attention as they

First Author, et all, Short Title… 1363

show performance degradation as the number of

virtual users increases.

4. DISCUSSIONS

From the tests that have been carried out on the

FeelsQuest feature API, the author's discussion

focuses on the results of API performance testing

using the load testing method. Each API shows its

optimal ability to handle various access load

scenarios that resemble the original conditions.

However, APIs that require a file upload process,

such as create course and/or update course, take

longer. This is due to the Laravel framework's need

to process file requests before data from users enters

the API.

In this study, the authors implemented a REST

API architecture to overcome the problem of cross-

platform use, and tested the application results in the

form of an API to prove that the API meets

functional and non-functional requirements. Thus,

the author can compare the differences between this

research and previous research that is a reference.

Some previous studies used the same solution,

namely implementing REST APIs for cross-platform

problems, but some only produced applications and

tested the functionality of APIs without testing or

measuring their performance. Therefore, to complete

the reference research study, the author in this

research complements previous research by testing

the performance of each API using the load testing

method. This test is performed using the Postman

test tool on the FeelsQuest feature that has been

deployed, thus providing a more comprehensive

picture of API performance under different load

conditions.

With the results of performance testing in this

study, it is evident that testing APIs that have been

built from the aspect of functionality alone is not

enough to prove that the API has met the needs of a

system, especially if there are non-functional

performance-related requirements such as response

time. This comprehensive approach enables a more

thorough evaluation of the quality and effectiveness

of the developed API.

5. CONCLUSIONS

The results of the research on the
implementation of the REST API architecture for

FeelsQuest online course feature in FeelsBox

application using the Laravel framework, show that

the application of the REST API in this feature

provides API results that can be accessed from

various platforms because API calls can be made by

accessing the available access points or web service

links. This feature API is functionally appropriate as

evidenced by the results of the functionality testing

conducted. From the results of functionality testing,

each API provides a response that matches the

expectations in each test case. In addition, load

testing on the FeelsQuest feature API shows that

most APIs have met the non-functional needs of the

FeelsQuest feature, namely response times under 3

seconds. However, APIs that involve the file upload

process require longer response times, exceeding the

3-second limit. This is due to the complexity of the

file uploading and processing process which takes

longer. Nonetheless, the performance of the API is

still acceptable given the specific characteristics of

the file upload operation.
In future research, it can use the results of this

study as a reference to support research, besides that

researchers can add a chunking system to handle the

file upload process that has a relatively large size in

the Laravel framework to speed up the file upload

process time.

6. LITERATURE LIST

[1] R. Choirudin and A. Adil, “Implementasi

Rest Api Web Service dalam Membangun

Aplikasi Multiplatform untuk Usaha Jasa,”

MATRIK : Jurnal Manajemen, Teknik

Informatika dan Rekayasa Komputer, vol.

18, no. 2, pp. 284–293, May 2019, doi:

10.30812/matrik.v18i2.407.

[2] M. A. Hertiavi, “Penerapan E-Learning

dengan Platform Edmodo untuk

Meningkatkan Hasil Belajar Mahasiswa,”

Jurnal Komunikasi Pendidikan, vol. 4, no. 1,

pp. 1–8, 2020.

[3] S. A. Achsan and Y. A. Susetyo,

“RESTFUL WEB SERVICE

IMPLEMENTATION USING SPRING

FRAMEWORK IN ROOM ASSETS

MANAGEMENT SYSTEM,” J. Tek.

Inform. (JUTIF), vol. 3, no. 2, pp. 395–403,

Apr. 2022.

[4] M. I. Aulawi, S. Amini, and S. Mulyati,

“Implementasi Web Service dengan Metode

Restful API dan QR Code untuk Aplikasi

Manajemen Inventori pada Toko Indah Jaya

Sport,” Jurnal Ticom:Technology of

Information and Communication, vol. 10,

no. 3, pp. 211–217, May 2022.

[5] K. Gowell and Suprihadi, “Perancangan

Web Service REST API Menggunakan PHP

dan Framework Laravel di Tenta Tour

Salatiga,” Jurnal JTIK (Jurnal Teknologi

Informasi dan Komunikasi), vol. 8, no. 1, pp.

49–57, Jan. 2024, doi:

10.35870/jtik.v8i1.1269.

[6] K. Prihandani and A. Rizal, “Analisis

Perbandingan Kinerja Framework

Codeigniter Dengan Express.Js Pada Server

RESTful Api,” Jurnal Ilmiah Wahana

Pendidikan, vol. 8, no. 16, pp. 316–326,

Sep. 2022.

[7] W. Hadinata and L. Stianingsih,

“ANALISIS PERBANDINGAN

PERFORMA RESTFULL API ANTARA

1364 Jurnal Teknik Informatika (JUTIF), Vol. x, No. y, December 2023, pp. x-y

EXPRESS.JS DENGAN LARAVEL

FRAMEWORK,” Jurnal Informatika dan

Teknik Elektro Terapan, vol. 12, no. 1, Jan.

2024, doi: 10.23960/jitet.v12i1.3845.

[8] A. S. Perdana and E. Mailoa, “Perancangan

Website Penjualan Cupang Menggunakan

Laravel(Studi Kasus Salatiga Betta

Genetic),” JATISI (Jurnal Teknik

Informatika dan Sistem Informasi), vol. 9,

no. 2, pp. 1343–1354, Jun. 2022, doi:

10.35957/jatisi.v9i2.2095.

[9] S. Atmojo, R. Utami, S. Dewi, and N.

Widhiyanta, “Implementasi Sistem-

informasi Desa Berbasis Arsitektur

Microservices,” SMATIKA JURNAL, vol.

12, no. 01, pp. 55–66, Jun. 2022, doi:

10.32664/smatika.v12i01.658.

[10] I. Yatini, F. W. Nurwiyati, and K. Anam,

“PERFORMA MICROFRAMEWORK PHP

PADA REST API MENGGUNAKAN

METODE LOAD TESTING,” Jurnal

Informatika Komputer, Bisnis dan

Manajemen, vol. 19, no. 2, pp. 12–20, Nov.

2023, doi: 10.61805/fahma.v19i2.55.

[11] I. Nurjaman, F. S. Utomo, and N. Hermanto,

“Penerapan REST API Laravel sebagai

Fondasi Back-end Aplikasi G-MOOC 4D,”

Journal of Informatics and Interactive

Technology, vol. 1, no. 1, pp. 9–18, Apr.

2024.

[12] R. Choirudin and A. Adil, “Implementasi

Rest Api Web Service dalam Membangun

Aplikasi Multiplatform untuk Usaha Jasa,”

MATRIK : Jurnal Manajemen, Teknik

Informatika dan Rekayasa Komputer, vol.

18, no. 2, pp. 284–293, May 2019, doi:

10.30812/matrik.v18i2.407.

[13] M. A. Novianto and S. Munir, “ANALISIS

DAN IMPLEMENTASI RESTFUL API

GUNA PENGEMBANGAN SISTEM

INFORMASI AKADEMIK PADA

PERGURUAN TINGGI,” Jurnal

Informatika Terpadu, vol. 8, no. 1, pp. 47–

61, 2022.

[14] D. Akbar, F. Riana, and F. Satrya,

“PEMBUATAN WEB SERVICE PADA

APLIKASI SIJAB DENGAN METODE

REST,” JATI (Jurnal Mahasiswa Teknik

Informatika), vol. 8, no. 4, pp. 5567–5575,

Aug. 2024.

[15] A. Pulodi, Yulianawati, and I. Suwandi,

“Implementasi Web Service Restful Dengan

Autentikasi JSon Web Token Berbasis Web

dan Android,” AJCSR (Academic Journal of

Computer Science Research), vol. 5, no. 2,

pp. 95–103, Jul. 2023.

[16] N. L. A. M. Rahayu Dewi, R. S. Hartati, and

Y. Divayana, “Penerapan Metode Prototype

dalam Perancangan Sistem Informasi

Penerimaan Karyawan Berbasis Website

pada Berlian Agency,” Majalah Ilmiah

Teknologi Elektro, vol. 20, no. 1, p. 147,

Mar. 2021, doi:

10.24843/MITE.2021.v20i01.P17.

[17] R. J. Romandhondaru and A. Basuki,

“Visualisasi Topologi Jaringan berdasarkan

Data Routing Border Gateway Protocol,”

Jurnal Pengembangan Teknologi Informasi

Dan Ilmu Komputer, vol. 6, no. 9, pp. 4329–

4338, Sep. 2022.

[18] S. S. Raweyai and I. R. Widiasari,

“PERFORMANCE TESTING OF

ACADEMIC WEBSITE USING LOAD

TESTING METHOD SUPPORTED BY

APACHE JMETERTM AT XYZ

UNIVERSITY,” J. Tek. Inform. (JUTIF),

vol. 5, no. 3, pp. 721–730, Jun. 2024.

