
Jurnal Teknik Informatika (JUTIF) DOI: https://doi.org/10.52436/1.jutif.2024.5.4.2089
Vol. 5, No. 4, August 2024, pp. 513-520 p-ISSN: 2723-3863
 e-ISSN: 2723-3871

513

THE EVALUATIONS FOR THE BACKEND OF ONTI MEASURES WITH BLACK BOX

METHOD

Nur Alfi Ekowati*1, Sulistiyasni2, Ika Indah Lestari3

1Informatics, Faculty of Engineering, Universitas Jenderal Soedirman, Indonesia
2,3Informatics Engineering, STMIK Widya Utama, Indonesia

Email: 1nuralfi.ekowati@unsoed.ac.id, 2sulistiyasnipwt@swu.ac.id, 3ikaindah22@swu.ac.id

(Article received: May 12, 2024; Revision: July 18, 2024; published: August 14, 2024)

Abstract

Inconsistency in an ontology can be a serious problem since it can mess up the information in the ontology.

Ontology-based inconsistency measure gives inconsistency value of the whole base of the OWL ontology. It means

the produced inconsistency value is used to evaluate its whole base. Based on this characteristic, there were 10

inconsistency measures created in the previous research and collected into one package of measures in an

application program, namely Onti Measures. The application will not be useful if the measures do not work well.

This problem leads to conduct evaluations. In this research, evaluations for the backend part of Onti Measures

with the use of three kinds of OWL reasoners are done to know the performance of the application system with the

comparison of each reasoner usage. The evaluations for the whole part of the application are not the scope of this

research since they are only done for the backend part. Particularly, they are done with the black box method

since the structure of the codes are not necessary to be known. They are evaluated with several OWL files as test

cases and as the inputs of the backend program. The evaluation shows that the same inconsistent OWL file that is

computed with a different type of inconsistency measure with any chosen reasoner may result in different

inconsistency value. Other evaluations are provided. Overall, they show that Pellet is better than the two other

reasoners and I_(D_f) is more efficient than the other measures.

Keywords: backend, inconsistency measures, Onti Measures, OWL ontologies, OWL reasoner.

1. INTRODUCTION

Description Logics are a family of knowledge

representation languages that are widely used in

ontological modeling [1]. In general, ontology is

usually related to an important role in the semantic

web. One cannot deny if there is always possibility

that an inconsistent knowledge occurs in the

ontology. For example, if it is compiled by more than

one person. High inconsistency can be a serious

problem that needs to be solved since it can mess up

the information in the ontology. Inconsistency

measures are necessary in such case.

Inconsistency measures for ontology are useful

to analyze the inconsistency of the ontologies. Then

it can give insights to handle the inconsistencies.

Many inconsistency measures have been created for

Propositional Logic, such as the ones that are

proposed by [2], [3], [4], [5]. Some inconsistency

measures for First-Order Logic have been created as

well, such as the ones that are proposed by [6], [7].

On the other hand, inconsistency measures for OWL

ontologies with axiom-based computations have been

built by [8]. In contrast to the axiom-based

inconsistency measure that defines the inconsistency

for each axiom of the ontology, ontology-based

inconsistency measure gives inconsistency of the

whole base of ontology, i.e., to evaluate whole base.

Onti Measures is a name that is created to call a

package of 10 ontology-based inconsistency

measures, as mentioned in Table 1. Each of them was

previously defined and applied in some examples of

written implementation in [8]. Most of the measures

were created by transferring or converting the

inconsistency measures for Propositional Logic in the

survey of [5] which includes [9], [10], [11], [12], into

measures for ontology language OWL 2. The ones

that are not from the surveys were created by

transferring them as well.

Onti Measures had been built in the form of a

web application and had been introduced in [13]. The

descriptive analysis of test data using three reasoners

that are embedded in the Onti Measures had been

analyzed in detail by [14]. In general, brief

evaluations of Onti Measures for the whole part of the

application, i.e., backend and frontend parts were

done by [13], [14], while evaluations of each part of

them had not been done yet. The application will not

be useful if the measures do not work well. This

problem leads to conduct evaluations. That is the

importance of this research which is aimed at

evaluating the backend part of the Onti Measures with

the black box method and with the use of three kinds

of OWL reasoners to know the performance. Based

on the research [15], [16] the comparisons of some

OWL reasoners have existed. However, they are not

https://doi.org/10.52436/1.jutif.2024.5.4.2089
mailto:nuralfi.ekowati@unsoed.ac.id
mailto:sulistiyasnipwt@swu.ac.id
mailto:ikaindah22@swu.ac.id

514 Jurnal Teknik Informatika (JUTIF), Vol. 5, No. 4, August 2024, pp. 513-520

related to the inconsistency measures that are in the

Onti Measures.

Table 1. Inconsistency Measures in Onti Measures

Onti Measures

Category Inconsistency Measure Name Initial Name (Symbol)

Drastic inconsistency measures Drastic Inconsistency Measure ℐd

Minimal inconsistency-based measures

MI-inconsistency Measure ℐMI
MIC-inconsistency Measure ℐMIC

Df-inconsistency Measure ℐD𝑓

Problematic Inconsistency Measure ℐp

Incompatibility Ratio Inconsistency Measure ℐIR

Maximal consistency-based measures
MC-inconsistency Measure ℐmc
The nc-inconsistency Measure ℐnc

Variable-based measures
The mv-inconsistency Measure ℐmv
IDMCS Inconsistency Measure ℐDMCS

2. METHOD

In the scope of this research the evaluations of

Onti Measures with the user interface (frontend part)

are not applicable. Instead, the evaluations are only

done for the backend part of the program. The

backend part of Onti Measures is written with the

Java language and with the use of OWL files as the

real input. It is run in Eclipse Java Neon with the use

of Java SE Development Kit 8. The usage of the

program depends on the IDE (Integrated

Development Environment), i.e., the Eclipse. This

means one should open the IDE to run the program.

The implementation needs some libraries to

support the running of the program. Some of them are

OWL API that can create and manipulate the OWL

ontologies; and OWL explanation that is able to

retrieve the minimal subset of the ontology related to

the entailment to hold. The usage of OWL reasoner

plays a substantial role in the implementation of the

measures. It can give services which have prominent

advantages in using ontologies, such as consistency.

HermiT, JFact, and Pellet are used as the OWL

reasoners of the program. The reasoners are chosen

because they are the easiest ones to integrate with the

application system. The performance of the measures

will be compared with different OWL reasoners.

Figure 1 depicts the steps of this research. The

research data is as the input of the application, that is

a number of OWL ontologies. Research preparation

is to prepare all the things that are needed to

evaluation, such us the Onti Measures. The

evaluations of the program are done by doing

experiments with the black box testing method. Black

box testing is also called a functional testing

technique. Black box testing does not concern with

the internal mechanisms of a system, instead it

focuses solely on the outputs generated in response to

selected inputs and execution conditions [17]. The

code is purely considered to be a “big black box” to

the tester who cannot see inside the box [18]. In this

research, the evaluations by doing the testing are not

done by the one dedicated only as a tester. Instead, it

is done by the software developer who works as a

tester as well, in which those positions are taken by

the first author of this research.

The testing of the main function is done by

employing 36 OWL files as the test cases and as the

inputs mentioned earlier. They are obtained from a

website related to semantic website [19] in which all

of them are claimed as inconsistent ontologies. The

test cases are included as DL SROIQ. Most of

mainstream DLs today are, in fact, sublanguages of

DL SROIQ [20].

The step to do the black box testing in this

research is started by opening the IDE and choosing

the workspace folder where the project of Onti

Measures is located on the computer. After that, the

OWL files as the input of the program should be

placed in the data folder in the project explorer of the

IDE. Choose a reasoner among the provided three

reasoners, and run the application is the next step.

Once Onti Measures has finished running, the

inconsistency values are generated in the output

folder. Since Onti Measures consists of 10 measures,

it should generate 10 values in files as the results.

Figure 1. The Steps of the Research

3. RESULTS

There are 36 OWL ontologies in Tabel 2 which

are used as the test cases of the evaluations.

Nur Alfi Ekowati, et al., THE EVALUATIONS FOR THE BACKEND … 515

Table 2. Order of Ontology Test Cases

Order Ontology Name (*.owl)

1 DisjointClasses-002

2 New-Feature-AsymmetricProperty-001

3 New-Feature-BottomObjectProperty-001
4 New-Feature-IrreflflexiveProperty-001

5 New-Feature-NegativeObjectPropertyAssertion-001

6 New-Feature-TopObjectProperty-001
7 Rdfbased-sem-bool-complement-inst

8 Rdfbased-sem-char-asymmetric-inst

9 Rdfbased-sem-char-asymmetric-term
10 Rdfbased-sem-char-irreflflexive-inst

11 Rdfbased-sem-class-nothing-ext

12 Rdfbased-sem-eqdis-different-sameas
13 Rdfbased-sem-eqdis-disclass-eqclass

14 Rdfbased-sem-eqdis-disclass-inst

15 Rdfbased-sem-ndis-alldifferent-fw

16 Rdfbased-sem-ndis-alldifferent-fw-distinctmembers

17 Rdfbased-sem-ndis-alldisjointclasses-fw

18 WebOnt-Nothing-001
19 WebOnt-Restriction-001

20 WebOnt-Restriction-002

21 WebOnt-Thing-003
22 WebOnt-description-logic-001

23 WebOnt-description-logic-002

24 WebOnt-description-logic-003
25 WebOnt-description-logic-010

26 WebOnt-description-logic-011

27 WebOnt-description-logic-012
28 WebOnt-description-logic-013

29 WebOnt-description-logic-032

30 WebOnt-description-logic-033
31 WebOnt-description-logic-040

32 WebOnt-description-logic-101

33 WebOnt-description-logic-102
34 WebOnt-description-logic-103

35 WebOnt-description-logic-104

36 WebOnt-description-logic-110

Besides the 36 test cases which contain

inconsistent ontologies, the three OWL reasoners are

also employed in the program, i.e., HermiT, JFact,

and Pellet. Hence, the usage of Onti Measures along

with the three reasoners should be compared to know

the performance of them all. The evaluations are

discussed in the following explanations.

3.1. Inconsistency Value (wrt. the Reasoner)

Some charts will depict inconsistency values

obtained by ℐd, ℐmc, and ℐmv as the representative

measures of Onti Measures to show here, with the use

of the reasoners. The ℐd is shown to represent the

simplest computation. In Figure 2 the X axis in the

chart represents the order of ontology test cases in

which the names of OWL ontology files are as shown

in Table 2.

Each number of ontologies in the order has three

bars in three colors in which orange is for the

inconsistency measurement of the related ontology

with the reasoner HermiT. The yellow and green ones

are for the computation with the reasoner JFact and

Pellet, respectively. One example to read the chart is

ontology number 1 (DisjointClasses-002) which has

been computed with inconsistency measure ℐd in Onti

Measures program along with reasoner HermiT has

given result 1. The same result happens when it was

computed either with JFact or with Pellet. Since all

ontology is claimed to be inconsistent, other

ontologies should have values 1.

Figure 2. Inconsistency Values Obtained by ℐd

Figure 3. Inconsistency Values Obtained by ℐmc

516 Jurnal Teknik Informatika (JUTIF), Vol. 5, No. 4, August 2024, pp. 513-520

Figure 4. Inconsistency Values Obtained by ℐmv

By the chart, it is shown that the measure ℐd

along with the three reasoners HermiT, JFact, and

Pellet work correctly to help compute the

inconsistency degrees of the test cases. The same

conditions happen to the measure ℐmc and ℐmv, which

are shown in Figure 3 and Figure 4 to represent the

middle ones, i.e., not the simplest nor the most

complicated one in terms of the simplicity of the

calculation formula.

The usage of the measure along with any

reasoner can work well and give the same result in

terms of resulting the inconsistency value wrt. any

used reasoner. This evaluation claims that the same

inconsistent OWL file that is computed with different

measure may result in the different inconsistency

value, but any chosen OWL reasoner does not impact

the difference.

3.2. Inconsistency Value Quantity

The quantities of inconsistency values obtained

by the measures in the package of Onti Measures are

presented in Table 3 and Table 4. Those belong to half

of the measures shown in Table 3, while the rest ones

are in Table 4. Based on the data in the tables, the

obtained inconsistency values are various in the range

of 0 and 7, from all test case measurements. The least

value variant belongs to ℐd since it obtains one value

only for all test cases. The most value variants belong

to ℐmv and ℐDMCS since they obtain 10 values for all

test cases. Furthermore, there is no difference of

values obtained by ℐmv and ℐDMCS.

3.3. Running Time

Comparisons of the required time to run the 36

OWL files with the use of three reasoners for each

measure are here. The measures ℐd, ℐD𝑓
, ℐmc, and

ℐDMCS will represent this evaluation. There are sharp

differences of the running time with each reasoner in

the 9th, 13th, 16th, 18th, 19th, 22nd, 23rd, 27th, 28th, 29th,

30th, 36th of the test cases with the use of ℐd, as

depicted in Figure 5. The one in the 9th of the test

cases tells that the required time to run the ontology

with HermiT is 49 milliseconds, with JFact is 1

millisecond, with Pellet is 1 millisecond. The 18th of

the test cases tells that the required time with Hermit

is 53 milliseconds, with JFact is 2 milliseconds, and

with Pellet is 2 milliseconds. HermiT reaches the

highest running time among the reasoners in most of

the test cases. Figure 6 also tells the same, in which

HermiT reaches the highest running time among three

reasoners in most of the test cases, with the use of ℐ𝐷𝑓
.

The peak of HermiT’s running time is 1,803

milliseconds, belonging to the 25th of the test cases.

Whereas it is 1,191 and 673 milliseconds for JFact

and Pellet, respectively. In contrast, Pellet reaches the

lowest running time in most of the test cases.

Table 3. Inconsistency Value Quantity of ℐd, ℐMI, ℐMIC , ℐD𝑓
, And ℐp for the Test Cases

ℐd ℐMI ℐMIC ℐD𝑓
 ℐp

Inc.

Value

Number of

Ontologies

Inc.

Value

Number of

Ontologies

Inc.

Value

Number of

Ontologies

Inc.

Value

Number of

Ontologies

Inc.

Value

Number of

Ontologies

1 36 1 34 0.14 2 0 3 1 7
 2 2 0.17 3 0.01 5 2 10

 0.2 2 0.02 4 3 8

 0.25 4 0.17 2 4 4
 0.33 8 0.2 1 5 2

 0.5 8 0.25 1 6 3

 0.67 1 0.33 6 7 2
 1 6 0.5 6

 2 2 1 8

Table 4. Inconsistency Value Quantity of ℐIR, ℐmc, ℐnc, ℐmv, And ℐDMCS for the Test Cases

ℐIR ℐmc ℐnc ℐmv ℐDMCS

Inc.

Value

Number of

Ontologies

Inc.

Value

Number of

Ontologies

Inc.

Value

Number of

Ontologies

Inc.

Value

Number of

Ontologies

Inc.

Value

Number of

Ontologies

0.1 4 1 14 1 34 0.12 1 0.12 1
0.13 1 2 11 2 2 0.43 2 0.43 2

Nur Alfi Ekowati, et al., THE EVALUATIONS FOR THE BACKEND … 517

0.14 5 3 4 0.5 1 0.5 1
0.17 2 4 2 0.56 1 0.56 1

0.2 1 5 3 0.67 3 0.67 3

0.25 1 6 2 0.71 1 0.71 1
0.33 7 0.75 1 0.75 1

0.5 7 0.78 1 0.78 1

1 8 0.8 1 0.8 1
 1 24 1 24

Figure 5. Running Time of ℐd

Figure 6. Running Time of ℐD𝑓

Figure 7. Running Time of ℐmv

The one with the use of ℐmc shows no difference

in general. That is HermiT takes the highest running

time in most of the test cases as well, since it happens

to more than 25 of 36 ontologies. Whereas JFact

reaches the middle level of the running time and

Pellet reaches the lowest running time in most of

them. The same general case happens with the use of

ℐmv, even it is very sharp and clear to see, as depicted

in Figure 7. The general claim also applies to the

measurements with other measures in Onti Measures.

518 Jurnal Teknik Informatika (JUTIF), Vol. 5, No. 4, August 2024, pp. 513-520

3.4. Size of Ontologies (wrt. the Running Time)

The evaluation of the size of ontologies wrt. the

running time required by a measure with each of the

reasoners will be depicted by a chart. For overall

evaluation, there is a claim that the higher of the size

will not impact the higher of the running time.

Specifically, the higher of the size will not

automatically affect to the higher of the running time

with any reasoner. Since a chart for a measure

confirms it, it is not necessary to provide 10 charts for

the 10 measures.

The claim is clearly represented by Figure 8,

specifically by some of its bars, e.g., the 11th and 25th

of the test cases. The ontology size of the 11th of the

test cases is 1, the running time with HermiT is 1

millisecond, the running time with JFact is 0

milliseconds (since it is rounded from some

microseconds), and the running time with Pellet is 10

milliseconds. In contrast, the ontology size of the 25th

is higher, but the running time with the two reasoners

is not higher than the ones with the lower size.

Particularly, the ontology size of the 25th is 10, the

running time with HermiT is 1 millisecond, the

running time with JFact is 2 milliseconds, and the

running time with Pellet is 1 millisecond.

In the opposite, the condition happens to

ℐnc, ℐDMCS, ℐD𝑓
, ℐp, ℐmc is different, that is the higher

of the ontology size will impact the higher of the

running time with the reasoners. Although this is the

case, it cannot break the claim above since one case

confirms it, then it is enough to approve it. Recall the

claim above for overall condition in Onti Measures, it

is obvious that the higher of the size does not impact

to the higher of the running time with the three

reasoners.

Figure 8. The Size of Ontologies with the Running Time of ℐIR

3.5. Descriptive Statistics

Table 5. Descriptive Statistics of Onti Measures for the Test Cases

Descriptive Analysis
Value of Descriptive Analysis

ℐd ℐMI ℐMIC ℐD𝑓
 ℐp ℐIR ℐmc ℐnc ℐmv ℐDMCS

Mean 1 1.08 0.52 0.37 3.14 0.42 2.31 1.06 0.86 0.86
Median 1 1 0.33 0.33 3 0.33 2 1 1 1

Mode 1 1 0.33 0.33 2 0.33 1 1 1 1

Standard Deviation 0 0.28 0.45 0.36 1.64 0.32 1.45 0.23 0.22 0.22

Range 0 1 1.86 1 6 0.9 5 1 0.88 0.88

Minimum 1 1 0.14 0 1 0.1 1 1 0.12 0.12

Maximum 1 2 2 1 7 1 6 2 1 1
Sum 36 39 18.86 13.23 113 15.17 83 38 31.09 31.09

Count 36 36 36 36 36 36 36 36 36 36

Descriptive statistics are discussed in this

section to describe the basic features of the data

collection from the test cases. There are 9 descriptive

analyses in Table 5. They are mean, median, mode,

standard deviation, range, maximum, minimum, sum,

and count. Those analyses are chosen because they

are commonly used. Mean is the average of the

collected data. In this case, mean is the average of all

inconsistency values. The smallest mean belongs to

ℐD𝑓
, whereas the biggest one belongs to ℐp. The

median is the middle value in the set of the data,

which is obtained by taking the value in the middle of

the list after listing the data in numerical order. The

smallest median belongs to ℐMIC , ℐD𝑓
, and ℐIR and the

biggest one belongs to ℐp.

Mode is the value which appears most often in

the set of the values. The standard deviation is the

amount of variation or dispersion of the set. Range is

the difference between the smallest and the highest

values in the set. Minimum is the smallest value,

while maximum is the greatest or highest value. The

smallest minimum belongs to ℐD𝑓
 whereas the biggest

ones belong to ℐd, ℐMI, ℐp, ℐmc, and ℐnc. Sum is the

result of adding all values together, while count is the

Nur Alfi Ekowati, et al., THE EVALUATIONS FOR THE BACKEND … 519

quantity of values in the set. There are five measures

which have smallest maximum, i.e.

ℐd, ℐD𝑓
, ℐIR, ℐmv, and ℐDMCS, while the biggest one

belongs to ℐp..

4. DISCUSSIONS

The five kinds of evaluations have been done,

i.e. inconsistency value (wrt. the reasoner),

inconsistency value quantity, running time, size of

ontologies (wrt. the running time), and descriptive

statistics. They show that Pellet is better than the two

other OWL reasoners, i.e. HermiT and Jfact. It is

especially obtained from the evaluations of running

time and the size of ontology wrt. the running time.

The comparison of the inconsistency measures

based on the evalutions shows that ℐDf
 is more

efficient than other measures since it can give

inconsistency degree in more details. In addition, it

can produce precise limitation of minimum and

maximum value, so that one can easier to get the

certainty to judge which value is the worst one in any

case. It is obtained from the evaluations of

inconsistency value quantity and descriptive

statistics.

This research can be compared to [13], [14] as

the existing research that included the comparison

about the 10 inconsistency measures related to

HermiT, JFact, and Pellet. The difference among

them is related to the test cases. The test cases belong

to [13], [14] are ontologies for virus and disease

cases, while the test cases belong to this research are

inconsistent ontologies with no specific domain. The

second difference among them is related to the parts

to be evaluated. In [13], [14] the evaluations were

done for the backend and frontend parts of Onti

Measures, while in this research it is evaluated for the

backend part only.

In [13], based on the running time, ℐmv and

ℐDMCS were the ones that took the longest time to run

an ontology. The conclusion of reasoners performace

did not exist. In [14], based on the performance of

each reasoner in terms of processing ontology, the

three reasoners have almost the same capabilities.

Based on the resulting inconsistency value, Pellet is

better than the other two reasoners. Based on the

running time comparison, JFact is better than other

reasoners. The measure ℐmv is the inconsistency

measure in Onti Measures which requires the longest

time for ontology inconsistency measurements. In

addition, either in [13] or in [14], the higher of the

size will not impact the higher of the running time.

The latest claim is in line with the claim in this

research.

The research [15], [16] compared the reasoners

only. The research [16] showed that Pellet has the

lowest response time. It is in line with the claim

resulted by this research in which Pellet is better than

other reasoners wrt. running time.

5. CONCLUSION

In this research, evaluations have been done for

the Onti Measures that is an application program of

ontology-based inconsistency measures for OWL

ontologies. Onti Measures contains 10 inconsistency

measures. The evaluations are done for all of them

with the use of HermiT, JFact, and Pellet as the OWL

reasoners and 36 inconsistent OWL 2 ontologies as

the test cases.

Evaluation of inconsistency value wrt. the

reasoner claims that the same inconsistent OWL file

that is computed with different measure in Onti

Measures may result in the different inconsistency

value. Any chosen OWL reasoner does not impact the

difference. In terms of evaluation of inconsistency

value quantity, the least value variant belongs to ℐd

and the most value variants belong to ℐ𝑚𝑣 and ℐDMCS.

Evaluation of running time claims that Onti Measures

with HermiT takes the longest time to run in most of

the cases. In terms of evaluation of the size of the

ontologies wrt. the running time, the higher of the size

does not impact to the higher of the running time with

any reasoner The evaluation of the descriptive

statistics has shown analysis result values for 9

analyses, i.e., mean, median, mode, standard

deviation, range, minimum, maximum, sum, and

count. Overall, the evaluations show that Pellet is

better than the two other OWL reasoners and ℐDf
 is

more efficient than the other measures.

REFERENCES

[1] M. Krötzsch, F. Simančík, and I. Horrocks,

“A description logic primer,” in Perspectives

on Ontology Learning, vol. 18, 2014.

[2] A. Hunter and S. Konieczny, “Approaches to

measuring inconsistent information,” in

Lecture Notes in Computer Science

(including subseries Lecture Notes in

Artificial Intelligence and Lecture Notes in

Bioinformatics), 2004. doi: 10.1007/978-3-

540-30597-2_7.

[3] A. Hunter and S. Konieczny, “Shapley

inconsistency values,” in Proceedings of the

International Conference on Knowledge

Representation and Reasoning, 2006.

[4] A. Hunter and S. Konieczny, “Measuring

inconsistency through minimal inconsistent

sets,” in Proceedings of the International

Conference on Knowledge Representation

and Reasoning, 2008.

[5] M. Thimm, “On the expressivity of

inconsistency measures,” Artif Intell, vol.

234, 2016, doi: 10.1016/j.artint.2016.01.013.

[6] Y. Ma, G. Qi, and P. Hitzler, “Computing

inconsistency measure based on

paraconsistent semantics,” Journal of Logic

and Computation, vol. 21, no. 6, 2011, doi:

10.1093/logcom/exq053.

520 Jurnal Teknik Informatika (JUTIF), Vol. 5, No. 4, August 2024, pp. 513-520

[7] J. Grant and A. Hunter, “Analysing

inconsistent first-order knowledgebases,”

Artif Intell, vol. 172, no. 8–9, 2008, doi:

10.1016/j.artint.2007.11.006.

[8] N. A. Ekowati, “Inconsistency Measures for

OWL Ontologies,” Technische Universität

Dresden, Dresden, 2017.

[9] K. Mu, W. Liu, Z. Jin, and D. Bell, “A

Syntax-based approach to measuring the

degree of inconsistency for belief bases,”

International Journal of Approximate

Reasoning, vol. 52, no. 7, 2011, doi:

10.1016/j.ijar.2011.04.001.

[10] J. Grant and A. Hunter, “Measuring

consistency gain and information loss in

stepwise inconsistency resolution,” in

Lecture Notes in Computer Science

(including subseries Lecture Notes in

Artificial Intelligence and Lecture Notes in

Bioinformatics), 2011. doi: 10.1007/978-3-

642-22152-1_31.

[11] D. Doder, M. Raković, Z. Marković, and Z.

Ognjanović, “Measures of inconsistency and

defaults,” International Journal of

Approximate Reasoning, vol. 51, no. 7, 2010,

doi: 10.1016/j.ijar.2010.05.007.

[12] G. Xiao and Y. Ma, “Inconsistency

measurement based on variables in minimal

unsatisfiable subsets,” in Frontiers in

Artificial Intelligence and Applications,

2012. doi: 10.3233/978-1-61499-098-7-864.

[13] Nur Alfi Ekowati, Ika Indah Lestari, and

Sulistiyasni, “Pengembangan Onti Measures

Berbasis Web dengan Pengujian Data

Ontology Virus dan Penyakit,” Jurnal

Nasional Teknik Elektro dan Teknologi

Informasi, vol. 10, no. 4, 2021, doi:

10.22146/jnteti.v10i4.2443.

[14] Ika Indah Lestari, Nur Alfi Ekowati, and S.

Sulistiyasni, “Descriptive Analysis and

Comparison of Reasoner Using Onti

Measures,” Jurnal Teknik Informatika (Jutif),

vol. 5, no. 1, pp. 301–312, Feb. 2024, doi:

10.52436/1.jutif.2024.5.1.1839.

[15] S. Abburu, “A Survey on Ontology

Reasoners and Comparison,” Int J Comput

Appl, vol. 57, no. 17, 2012.

[16] A. Khamparia and B. Pandey,

“Comprehensive analysis of semantic web

reasoners and tools: a survey,” Educ Inf

Technol (Dordr), vol. 22, no. 6, 2017, doi:

10.1007/s10639-017-9574-5.

[17] H. Liu and H. B. Kuan Tan, “Covering code

behavior on input validation in functional

testing,” Inf Softw Technol, vol. 51, no. 2,

2009, doi: 10.1016/j.infsof.2008.07.001.

[18] S. Nidhra, “Black Box and White Box

Testing Techniques - A Literature Review,”

International Journal of Embedded Systems

and Applications, vol. 2, no. 2, pp. 29–50,

Jun. 2012, doi: 10.5121/ijesa.2012.2204.

[19] “OWL Test Cases.” Accessed: May 22, 2023.

[Online]. Available:

http://owl.semanticweb.org

[20] S. Rudolph, “Foundations of description

logics,” in Lecture Notes in Computer

Science (including subseries Lecture Notes in

Artificial Intelligence and Lecture Notes in

Bioinformatics), 2011. doi: 10.1007/978-3-

642-23032-5_2.

