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Abstract 
 

Bank term deposits are a popular banking product with relatively high interest rates. Predicting potential 

customers is crucial for banks to maximize revenue from this product. Therefore, bank term deposits acceptance 

classification is an important challenge in the banking industry to optimize marketing strategies. Previous studies 

have been conducted using machine learning classification techniques with the imbalanced Bank Marketing 

Dataset from the UCI Repository. However, the accuracy results obtained still need to be improved. Using the 

same dataset, this study proposes an Instance Hardness Threshold (IHT) undersampling technique to handle 

imbalanced datasets and Stacking Ensemble Learning (SEL) for classification. In this SEL, Decision Tree, Random 

Forest, and XGBoost are selected as base classifiers and Logistic Regression as meta classifier. The model trained 

on SEL with the dataset undersampled using IHT shows a high accuracy rate of 98.80% and an AUC-ROC of 

0.9821. This performance is significantly better than the model trained with the dataset without undersampling, 

which achieved an accuracy of 90.30% and an AUC-ROC of 0.6898. The findings of this research demonstrate 

that implementing of the suggested IHT undersampling technique combined with SEL has been evaluated to 

effectively enhance the performance of term deposit classification on the dataset. 

 

Keywords: Bank Term Deposit, Classification, Instance Hardness Threshold, Machine Learning, Stacking 

Ensemble Learning, Undersampling. 

 

 

1. INTRODUCTION 

Bank term deposits provide a secure and reliable 

way to earn higher interest compared to regular 

savings accounts. Their attractiveness stems from the 

fixed interest rate over a predetermined period, 

making them suitable for achieving short-term or 

medium-term financial goals [1]. However, offering 

term deposits requires banks to accurately predict 

customer acceptance to maximize revenue from this 

product. Customer rejection of term deposit offers 

translates into lost interest income for the bank. As 

such, banks must conduct thorough customer research 

to understand their profiles, needs, and preferences 

regarding term deposit products [2]. Predicting bank 

term deposit acceptance is a complex task due to the 

multitude of factors influencing customer decisions. 

The complexity is further amplified when dealing 

with imbalanced datasets [3]. 

Multiple research endeavors have investigated 

imbalanced data [4] classification methods within the 

banking sector, particularly for customer profiling, 

telemarketing success prediction, and time deposit 

acceptance forecasting. Guo et al. [5] employed an 

Artificial Neural Network (ANN) optimized with 

four metaheuristic optimization algorithms, namely 

Electromagnetic Field Optimization (EFO), Social 

Ski-Driver (SSD), Harmony Search Algorithm 

(HSA) and Future Search Algorithm (FSA). Their 

findings indicated that the EFO-ANN combination 

yielded the highest predictive performance, achieving 

an accuracy of 88.76% and an AUC of 0.79. 

This section reviews previous research on 

feature selection and imbalanced data handling 

techniques for time deposit acceptance prediction. 

Ghatasheh et al. [6] proposed a hybrid approach 

combining Genetic Algorithm (GA) for feature 

selection and Extreme Boosting algorithm for 

classification. Their method achieved an average 

accuracy of 89.07% using 10-fold cross-validation. 

Additionally, Hayder et al. [7] employed the SMOTE 

(Synthetic Minority Oversampling Technique) 

method to address the imbalanced dataset and 

compared the performance of four classification 

algorithms: Support Vector Machine (SVM), 

Decision Tree, Naïve Bayes and K-Nearest Neighbor 

(KNN). Their results demonstrated that SMOTE 

improved classification accuracy, with Decision Tree 

achieving the highest accuracy of 91%. 

This section reviews previous research on 

ensemble selection and feature analysis for 

telemarketing success prediction in time deposit 

sales. Feng et al. [8] introduced META-DES-AAP, a 

novel dynamic ensemble selection methodology, for 

predicting the performance of bank time deposit 

telemarketing initiatives. Their inquiry further sought 
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to examine the variables impacting telemarketing 

effectiveness and average profit under the META-

DES-AAP framework. The proposed method yielded 

an accuracy rate of 89.39% and an AUC of 89.44%. 

This segment reviews previous research on 

optimizing bank marketing data classification using 

Genetic Algorithm (GA), Bagging, and Naive Bayes. 

Religia et al. [9] compared the performance of 

Random Forest Classifier with and without GA and 

Bagging techniques. Their findings suggest that 

combining GA and Bagging with Random Forest did 

not improve classification accuracy, as all four 

methods achieved 88.30%. Nugroho and Religia 

Religia [10] investigated Naive Bayes optimization, 

comparing its performance with GA, Bagging, and 

the combination of both. Their results showed that the 

combination of Bagging and GA significantly 

improved Naive Bayes effectiveness, achieving a 

peak accuracy of 89.73% (an increase of 4.57%). 

Additionally, Alsolami et al. [11] explored Logistic 

Regression, Decision Tree, and Multilayer 

Perceptron models for bank marketing data 

classification. Their research identified Logistic 

Regression as the most effective method, achieving 

an accuracy of 91.48%. 

Previous research on imbalanced data 

classification for time deposit acceptance prediction 

has consistently utilized the Bank Marketing Dataset 

[4] and explored various methods to improve 

classification accuracy. However, there remains room 

for further investigation and potential enhancement. 

Therefore, this study proposes an Instance Hardness 

Threshold (IHT) and Stacking Ensemble Learning 

(SEL) method to tackle the drawbacks of prevailing 

approaches and contribute to the advancement of 

imbalanced data classification techniques in this 

domain. 

The IHT tackles the challenge of imbalanced 

datasets in classification tasks, where one class (often 

the majority class) has significantly more data points 

than the others. IHT specifically addresses this issue 

by employing an undersampling technique that 

focuses on removing the most difficult-to-classify 

data points from the majority class. These "hard" data 

points are those that are frequently misclassified by 

the model, leading to a decrease in overall accuracy 

[12]. To identify these challenging instances, IHT 

utilizes an auxiliary classifier trained on the 

imbalanced dataset itself. This auxiliary classifier 

assigns a "hardness score" to each data point, 

reflecting the difficulty the model has in correctly 

classifying it. Based on these hardness scores, IHT 

selectively discards data points belonging to the 

majority class that are considered particularly 

problematic to classify [13]. This selective removal 

process helps to balance the dataset and reduces the 

model's bias towards the majority class. 

Consequently, IHT provides numerous benefits: it 

enhances classification accuracy by prioritizing 

easily classifiable data, optimizes training data usage, 

and diminishes bias towards the majority class. 

Then, for classification purposes, one approach 

in machine learning is the utilization of ensemble 

learning [14]. Ensemble learning stands out as a 

robust machine learning strategy, involving various 

models to address specific challenges. Rather than 

relying on a single model, ensemble approaches 

leverage a diverse array of models and consolidate 

their predictions to enhance overall performance [15]. 

Ensemble learning offers several advantages, 

including enhanced prediction accuracy, feature 

selection, improved understanding of metrics, and 

effective handling of large-scale data [16]. Numerous 

studies have demonstrated the superiority of 

ensemble methods over single models. For instance, 

Divina et al. [17] and  Baccouche et al. [18] have 

shown that ensemble learning techniques consistently 

outperform single models. 

Several commonly utilized ensemble learning 

methodologies include Bagging, Boosting, and 

Stacking [19]. In the study by Lazzarini et al. [20], 

they implemented Stacking Ensemble Learning 

(SEL) by employing MLP, DNN, CNN, LSTM as 

base classifiers, and integrating DNN as a meta-

classifier, which resulted in an impressive accuracy of 

99.60% in IoT intrusion detection. Similarly, 

Almulihi et al. [21]  proposed SEL using CNN-LSTM 

and CNN-GRU as base classifiers, followed by 

employing SVM as a meta-classifier, attaining a 

remarkable accuracy rate of 97.17% in the prompt 

detection of heart disease utilizing the Cleveland 

Heart Disease dataset. Furthermore, AlJame et al. 

[22] explored SEL by leveraging ExtraTrees, 

Random Forest, and Logistic Regression as base 

classifiers, while utilizing XGBoost as a meta-

classifier, culminating in a remarkable accuracy of 

99.88% for COVID-19 diagnosis based on routine 

blood examination data. Drawing insights from these 

studies, Stacking Ensemble Learning (SEL) is a 

particular ensemble method that involves training a 

meta-classifier on the predictions of multiple base 

classifiers. This hierarchical structure allows SEL to 

capture higher-order relationships between the data 

and achieve superior performance. Given the success 

of SEL in various applications, this study adopts SEL 

as the ensemble learning method for the proposed 

approach. The goal is to harness the power of SEL to 

enhance the classification performance and address 

the challenges of imbalanced data in the context of 

time deposit acceptance prediction. 

This study proposes a Stacking Ensemble 

Learning (SEL) approach to improve classification 

accuracy for time deposit acceptance prediction using 

the Bank Marketing Dataset [4]. The selection of DT 

Classifier, RF Classifier, XGBoost Classifier, and 

Logistic Regression for the SEL method is based on 

their demonstrated effectiveness in prior research and 

their unique advantages. Decision Trees excel at 

capturing complex non-linear relationships within 
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data [20]. Random Forests combine multiple 

Decision Trees to enhance accuracy and reduce 

overfitting [21]. XGBoost, a powerful boosting 

algorithm, is particularly adept at handling high-

dimensional and complex data [22]. Finally, Logistic 

Regression, a widely used and interpretable statistical 

method [23], proves valuable for diverse 

classification tasks [24].  

To contextualize the proposed approach, this 

section highlights the performance of single 

algorithms applied to the Bank Marketing Dataset in 

previous studies: Hayder et al. [7] using Decision 

Tree and SMOTE achieved 91% accuracy. Religia et 

al. [9] using Random Forest achieved 88.30%. 

Ghatasheh et al. [6] using XGBoost achieved 89.07% 

and Alsolami et al. [25] using Logistic Regression 

achieved 91.48%. To comprehensively evaluate the 

SEL approach, the study will consider various 

classification scenarios, including using the original 

imbalanced data, resampled data to address class 

distribution issues, and comparing the performance of 

individual models to the ensemble model. 

Furthermore, the evaluation will extend beyond 

accuracy by incorporating additional metrics like 

precision, recall, F1-score and AUC to assess the 

model's ability to distinguish between positive and 

negative classes. along with the intended evaluation 

approach, seeks to thoroughly evaluate the efficiency 

of the Stacking Ensemble Learning model in 

addressing the hurdles of imbalanced data 

classification for bank term deposit acceptance. 

2. RESEARCH METHODOLOGY 

In Figure 1, the research flowchart is depicted, 

encompassing data collection, data understanding, 

preprocessing, without or with undersampling, data 

splitting, classification scenario and evaluation. 

 

 
Figure 1. Research Flow 

 

2.1. Data Collection 

Data collection is the process of gathering data 

that will be used in the research. This is done by 

conducting a literature study to obtain theories and 

previous research as reference materials for this 

research. Next, the dataset is collected from the UCI 

related to bank term deposit acceptance. 

2.2. Data Understanding 

Data understanding involves iteratively 

analyzing and visualizing data to uncover 

characteristics, patterns, and relationships. This 

crucial step in data science allows for informed model 

building and decision-making. 

2.3. Data Preprocessing 

Data preprocessing is crucial for optimizing data 

for machine learning. Cleaning, transforming, and 

engineering data enhance model performance, 

efficiency, and generalizability [28]. In the Bank 

Marketing Dataset, preprocessing techniques such as 

label encoding and ordinal encoding can greatly 

enhance the effectiveness of time deposit acceptance 

prediction models [29]. 
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2.3.1. Label Encoding 

Label encoding simplifies data by converting 

categories to numbers, making it machine-learning 

friendly. However, it can lose order information and 

impact model performance, so use it cautiously. [30]. 

For example, label encoding assigns numbers to 

categories. "Yes" might be 1 and "No" might be 0 for 

credit status. 

2.3.2. Ordinal Encoding 

Unlike label encoding, ordinal encoding 

translates categorical data into numerical sequences, 

enabling machine learning models to understand 

relationships such as "greater than" and "lesser than" 

[31]. Ordinal encoding assigns values based on order, 

like 5 for "very satisfied" and 1 for "very dissatisfied" 

in customer reviews. This helps models make better 

predictions. [32]. Ordinal encoding can also be 

applied to non-order-sensitive attributes. 

2.4. Instance Hardness Threshold (IHT) 

The IHT approach is a type of undersampling 

technique utilized for identifying data instances with 

elevated instance hardness within a dataset, namely 

data that has a high probability of being misclassified 

by the machine learning model. In the data selection 

process, this "instance hardness" value, which is 

abbreviated as 𝐼𝐻, is obtained from calculating the 

probability 𝑝(ℎ|𝑡) using Bayes' theorem  [12]. 𝑝(ℎ|𝑡): 

probability of function mapping (ℎ) producing a 

particular label (t) based on training data (t). ℎ: 

function that maps input features (raw data) to 

corresponding labels. 𝑡: represents the training data 

utilized for training the machine learning model [11]. 

Equation (1) is a written equation to find the IHT 

value. 

𝐼𝐻ℎ(〈𝑥𝑖, 𝑦𝑖〉) =  1 − 𝑝(𝑦𝑖|𝑥𝑖 , ℎ) (1) 

In short, IHT works by resampling an 

imbalanced dataset by eliminating data instances 

from the majority class that have high IH values. This 

elimination process is carried out until the desired 

balance ratio is reached [33]. 

2.5. Split Data 

In machine learning studies, dividing data into a 

training set and a test set is a crucial step to ensure the 

model is well trained and produces accurate 

performance. This is done by dividing the data by 

certain proportions [34]. 

2.6. Stacking Ensemble Learning (SEL) 

Stacked Generalization, commonly referred to 

as Stacking, was originally introduced by Wolpert in 

1992 [35]. The primary goal of Stacking is to 

combine the prediction results from multiple 

classification models (called base classifiers) and 

then use another model (called a meta classifier) to 

process these prediction results to achieve a more 

optimal final result. The primary benefit of this 

approach lies in its capacity to incorporate diverse 

models utilizing different algorithms as base learners 

to construct an ensemble [17]. The prediction results 

of these base models are then combined using another 

classification technique, which is trained using the 

output from the ensemble members. This process 

produces a stacking model that is expected to perform 

better than the base models used [36]. For a clearer 

understanding, the Stacking Ensemble Learning 

architecture can be seen in Figure 2. 
 

 
Figure 2. Stacking Ensemble Learning Architecture 

 

In the context of this paper, the SEL approach 

utilizes three distinct classification models as base 

learners: Decision Tree, Random Forest, and 

XGBoost. These base learners are responsible for 

generating initial predictions, which are then fed into 

a meta learner, Logistic Regression, for further 

processing. The meta learner combines the 

predictions from the base learners to produce a final 

prediction that is expected to be more accurate than 

the individual predictions. The SEL approach [36] is 

particularly well-suited for scenarios where different 

models have varying strengths and weaknesses. By 

combining these models, The SEL approach is 

expected to harness the strengths of individual models 

to overcome their weaknesses and achieve overall 

better performance. 

2.6.1. Decision Tree 

The DT Classifier is a classification model 
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nodes, starting from the root node, serve to divide the 
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This division process continues recursively until the 

data can no longer be divided further [37]. Decision 
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for splitting data. Information gain measures how 
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well a feature separates data into different categories 

[38]. Information gain itself can be calculated 

mathematically as shown in Equation (2). 

𝐼𝐺 =  𝐸𝑛𝑡𝑟𝑜𝑝𝑦 (𝑠)  −  [(𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑𝐴𝑣𝑔. ) ∗

𝐸𝑛𝑡𝑟𝑜𝑝𝑦 (𝐸𝑣𝑒𝑟𝑦 𝐹𝑒𝑎𝑡𝑢𝑟𝑒)] (2) 

Entropy (S): Initial measure of uncertainty in the 

entire dataset. It is typically calculated using the 

proportion of each class present and can be computed 

using Equation (3). The more diverse the classes in 

the data, the higher the Entropy value. WeightedAvg.: 

Accounts for the proportion of data that falls into each 

branch after splitting. Entropy (Every Feature): 

Remaining uncertainty in each branch after splitting 

[38]. 

𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑠)  =  − 𝑃(𝑦𝑒𝑠)𝑙𝑜𝑔2 𝑃(𝑦𝑒𝑠)  −

𝑃(𝑛𝑜)𝑙𝑜𝑔2 (𝑛𝑜) (3) 

In the provided formula, S: Overall sample 

count in the dataset. This represents the total number 

of data points being considered. P(yes): Probability of 

obtaining the class "yes." This represents the 

distribution of data points within the dataset that 

belong to the "yes" class. P(no): Probability of 

obtaining the class "no." This denotes the share of 

data points in the dataset attributed to the "no" class. 

2.6.2. Random Forest 

Random Forest [39] is a powerful and popular 

non-parametric classification algorithm that builds 

multiple decision trees from different training data 

samples. Each tree is trained on a subset of data and 

features, reducing correlation between trees and 

improving prediction diversity. The final prediction is 

determined by majority voting from all decision trees. 

Random Forest excels in producing accurate and 

robust predictions due to its ensemble learning 

approach, random subsampling, and OOB error 

estimation. It is widely used in classification tasks, 

feature engineering, and anomaly detection. 

For example [40] {ℎ(𝑥, 𝛩𝑘), 𝑘 = 1, … } where 
{𝛩𝑘} is an independent and identically distributed 

random vector and each tree then selects the class 

most represented in the data, based on the principle 

"most votes". Consider an ensemble 

ℎ1(𝑥), ℎ2(𝑥), … , ℎ𝑘(𝑥) with training data chosen 

randomly from the distribution of random vectors Y 

and X. The margin function (𝑚𝑔(𝑋, 𝑌)) of Random 

Forest is defined as in Equation (4). 

(𝑚𝑔(𝑋, 𝑌)) =  
Ʃ𝑘=1

𝐾  𝐼(ℎ𝑘(𝑋)=𝑌)

𝐾
− 

𝑚𝑎𝑥
𝑗 ≠ 𝑌 [

Ʃ𝑘=1𝐼(ℎ𝑘(𝑋)=𝑗)
𝐾

𝐾
] (4) 

In Equation (4), 𝐼 represents the indicator 

function and 𝐾 represents the number of trees. The 

margin function serves to measure the difference 

between the average votes for X and Y and the 

average votes from other classes. Strength is the 

average value (expectation) of a measure of the 

accuracy of a single tree. The greater the value of s, 

the better the prediction accuracy. The definition of 

the s value can be seen in Equation (5). 

𝑠 =  𝐸𝑋,𝐹𝑚𝑔(𝑋, 𝑌)  (5) 

�̅� =  
𝐸

𝐴.𝐴′(𝜌(θ,θ′)sd(θ)sd(θ′))

𝐸θ.θ′(𝑠𝑑(θ)sd(θ′))
 (6) 

Equation (6) represents the correlation between 

two trees, where 𝜌(𝜃,𝜃′) denotes the correlation 

between trees with parameters 𝜃 and 𝜃′. The terms 

𝑠𝑑(𝜃) and 𝑠𝑑(𝜃′) represent the standard deviations of 

the trees with parameters 𝜃 and 𝜃′, respectively. 

Equation (7) defines the prediction error of Random 

Forest in classifying new data points. It measures the 

average error across all trees in the ensemble. 

εRF ≤  ρ̅ (
1− 𝑆2

𝑆2  ) (7) 

A low value of 𝜀𝑅𝐹 indicates that the Random 

Forest model is effectively predicting the labels of 

new data points. This implies that the ensemble of 

decision trees is working in harmony to produce 

accurate classifications. A high value of 𝜀𝑅𝐹 suggests 

that the Random Forest model is struggling to 

accurately predict the labels of new data points. This 

may be due to factors such as overfitting, underfitting, 

or insufficient training data. Equation (7) highlights 

the interplay between correlation and strength in 

determining the prediction error of Random Forest. 

To achieve low error, a combination of low 

correlation and strong individual trees is desirable. 

This can be achieved by adjusting the values of 

parameters m and ntree. It is important to note that 

there is no single optimal value for m and ntree that 

applies to all datasets. The best values for these 

parameters need to be determined experimentally for 

each specific dataset. Additionally, Random Forest 

offers other tunable parameters, such as max_depth 

and min_samples_split, which can be adjusted to 

further optimize model performance. 

2.6.3. XGBoost 

XGBoost, an acronym for Extreme Gradient 

Boosting, is a robust machine learning technique that 

employs a combination of decision trees to achieve 

improved predictive accuracy [37]. It builds upon the 

Gradient Boosting algorithm, originally proposed by 

Friedman in 2001, and has emerged as a popular 

choice for various machine learning tasks, 

particularly in the realm of supervised learning.  

The core principle of XGBoost are [25][37][41]: 

1) Ensemble Learning: XGB builds an ensemble of 

decision trees, each sequentially improving on its 

predecessors, leveraging strengths while mitigating 

weaknesses. 2) Gradient Boosting: XGB uses 

Gradient Boosting, where each new tree corrects the 
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inaccuracies of the preceding ones, minimizing the 

overall loss function iteratively for a more accurate 

model. 3) Loss Function Optimization: XGBoost 

supports various loss functions, such as the squared 

error loss and the logistic loss, to optimize the training 

process for specific tasks, such as regression and 

classification, respectively.  

The mathematical representation [25] of the 

XGBoost model is given by Equation (8): 

�̂�𝑖 = Ʃ𝑘=1
𝐾  𝑓𝑘(𝑥𝑖), 𝑓𝑘 ∈ 𝐹 (8) 

In this model, K describes the number of 

existing trees, 𝑦𝑖  is the predicted value and 

𝑓𝑘 indicates the 𝑘𝑡ℎ tree. The predicted value is the 

total score projected by the K tree. Meanwhile F is the 

space in the regression tree / CART. To solve this 

problem, a set of functions is needed as in Equation 

(9) which is applied in the model by reducing loss and 

regularization. 

𝑜𝑏𝑗 (𝜃) = Ʃ𝑖=1
𝑛  𝑙(𝑦𝑖, �̂�𝑖) + Ʃ𝑘=1

𝐾  𝛺( 𝑓𝑘) (9) 

In Equation (9) 𝑙(𝑦𝑖 , �̂�𝑖) is a loss function, while 

𝛺( 𝑓𝑘) is called the regularization term. Then 𝛺 is 

used to help reduce overfitting in the model which can 

be calculated as in equation (10). 

𝛺( 𝑓𝑘)  =  ϒ𝑇 + 
1

2
 λ ||𝑊||2 (10) 

In equation (10), T represents the total number 

of leaves on the tree. Meanwhile, W represents the 

weight per leaf that the tree has. 

2.6.4. Logistic Regression 

Logistic Regression predicts the probability of 

binary outcomes, contrasting with Linear Regression, 

which forecasts continuous numerical outcomes. It 

generates probability estimates between 0 and 1, 

indicating the likelihood of the event's occurrence 

[42].  

The Core Principles of Logistic Regression 

[43][44]: 1) Binary Outcome Prediction: LR 

classifies data into two categories, useful for yes/no 

scenarios like classifying an email as spam or 

determining if a patient has a disease. 2) Probability 

Estimation: LR estimates the probability of each 

outcome, offering nuanced insights into the event's 

potential occurrence. 3) Logistic Function: LR uses 

the sigmoid function to transform the linear 

relationship between independent variables and the 

dependent variable into a probability distribution. 4) 

Model Optimization: LR uses optimization 

algorithms to minimize errors between predicted 

probabilities and actual outcomes. 

The mathematical representation [44] of the LR 

model is given by Equation (11):  

log (
𝜋

1− 𝜋
) = 𝛽0 + 𝛽1𝑥1 +  𝛽2𝑥2 + ⋯ 𝛽𝑚𝑥𝑚  (11) 

In Equation (11), π (pi) represents the 

probability of an event occurring. β (beta) is the 

regression coefficient. Each independent variable (𝑥1 

to 𝑥𝑚) has an associated regression coefficient (𝛽𝑖). 

This coefficient shows how the independent variable 

affects the probability of the event. 𝛽0 is a special 

regression coefficient related to the reference group. 

The reference group is the basic category used to 

compare the effects of other independent variables 

[42]. 

2.7. Evaluation Metrics 

Analyzing the performance of machine learning 

models is fundamental for assessing their 

effectiveness and identifying areas for improvement. 

The Confusion Matrix  [45] is a vital tool for 

summarizing and visualizing classification model 

performance, offering a detailed overview of 

predictions versus true labels, revealing both 

strengths and weaknesses. The Confusion Matrix is a 

square table with dimensions matching the number of 

classes in the classification task. Each cell represents 

a combination of actual and predicted class labels, as 

depicted in Figure 3. 
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(True Negative) 

Figure 3. Confusion Matrix 
 

As shown in Figure 3, the four main categories 

of cells in the Confusion Matrix are  [46]:  

1) True Positives (TP): Correctly classified 

positive cases, such as predicting a customer 

will subscribe and they actually do. 

2) True Negatives (TN): Correctly classified 

negative cases, like predicting a customer won't 

subscribe, and they don't. 

3) False Positives (FP): Incorrectly predicted 

positives, such as predicting a customer will 

subscribe, but they don't. 

4) False Negatives (FN): Missed positives, like 

predicting a customer won't subscribe, but they 

do. 

Several performance metrics can be acquired 

from the Confusion Matrix [47], such as Accuracy, 

Precission, Recall, F1-Score dan AUC-ROC. 

2.7.1. Accuracy 

Accuracy is the percentage of correct 

predictions made by the model, calculated by 

dividing the number of correct predictions by the total 

number of predictions. Mathematically, accuracy can 

be represented as Equation (12) : 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁
 (12) 
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2.7.2. Precision 

Precision is the percentage of correctly 

classified positive predictions, calculated by dividing 

the number of true positives by the total positive 

predictions. Mathematically, precision can be 

represented as Equation (13): 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (13) 

2.7.3. Recall 

Recall is the percentage of true positives 

correctly identified by the model, calculated by 

dividing the number of true positives by the total 

actual positives. Mathematically, recall can be 

represented as Equation (14) : 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (14) 

2.7.4. F1-Score 

The F1-Score, the harmonic mean of precision 

and recall, is crucial for evaluating classification 

models, balancing true positive identification and 

minimizing false positives. Mathematically, recall is 

represented as Equation (15) : 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 =  
2 𝑥 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑥 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 (15) 

2.7.5. AUC-ROC 

The AUC-ROC represents the area under the 

ROC curve, which plots the true positive rate against 

the false positive rate across all classification 

thresholds.. Mathematically,  AUC-ROC can be 

represented as Equation (16) : 

𝐴𝑈𝐶 =  
1 − ∑(𝐹𝑃𝑅[𝑖+1]− 𝐹𝑃𝑅[𝑖])∗ (1 − 𝑇𝑃𝑅[𝑖+1])

2
 (16) 

Where: 

FPR[i] : False positive rate at point i 

FPR[i+1] : False positive rate at point i+1 

TPR[i] : True positive rate at point i 

TPR[i+1] : True positive rate at point i+1. 

3. RESULT 

3.1. Data Collection 

The publicly available Bank Marketing Dataset 

[4] downloaded from UCI Machine Learning 

Repository serves as the foundation for this research. 

It comprises 45,211 records, each featuring 16 

attributes and a single class label, 'y'. The dataset 

stems from a direct marketing initiative executed by 

a Portuguese bank, where telemarketing was used to 

promote bank deposit products. 

3.2. Data Understanding 

A crucial aspect of the dataset is its imbalanced 

class distribution. The 'yes' class (minority class) 

represents only 5,289 instances, while the 'no' class 

(majority class) encompasses a significantly larger 

number of instances (39,922). Figure 4 presents a 

visual representation of the data distribution within 

the Bank Marketing Dataset. 
 

 
Figure 4. Original Data Distribution 

 

The graphical representation in Figure 4 

showcases the distribution of data classes in the 

Dataset. The 'no' class, representing customers who 

did not accept the term deposit product, dominates the 

dataset with a share of 88.3%. In contrast, the 'yes' 

class, representing customers who accepted the 

product, accounts for only 11.7%. This imbalanced 

class distribution necessitates careful consideration in 

the selection and evaluation of classification 

algorithms to ensure fair and accurate prediction for 

both classes. The dataset includes various 

demographic and financial attributes of bank 

customers, offering insights into factors influencing 

time deposit acceptance.  

Table 1 provides a detailed breakdown of these 

attributes, while Figure 5 showcases a sample of data 

records, illustrating the dataset's structure and 

content. 
 

Table 1. Attributes 

Variable Attribute Data Type Description 

input 

age numeric age of the customer in years 

job categorical type of job ('unknown', 'unemployed', 'technician','self-employed','student','retired', 

'management','services','housemaid','blue-collar','entrepreneur','admin') 
marital categorical marital status ('unknown', 'single','married','divorced') 

education categorical educational level ('unknown', 'university.degree', 'professional.course', 'illiterate', 'high.school', 

'basic.9y','basic.6y', 'basic.4y') 

default categorical is there any defaulted credit? 

balance numeric mean yearly balance 

housing categorical does the individual have a mortgage? 
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Variable Attribute Data Type Description 

loan categorical does the individual have a personal loan? 

contact categorical preferred communication channel for reaching the contact ('telephone','cellular') 

day numeric weekday of last interaction 
month categorical month of last contact 

duration numeric last interaction duration (seconds) 

campaign numeric contact frequency for this client (current campaign) 
pday numeric days since last contact (previous campaign) 

previous numeric prior contact frequency for this client 

poutcome categorical result of prior campaign ('success', 'nonexistent','failure') 

output y binary has the client signup a time deposit? (yes or no) 

 

 
Figure 5. Example of Record Data in Dataset 

 

3.3. Data Preprocessing 

3.3.1. Label Encoding 

In the context of the Bank Marketing Dataset, 

label encoding can effectively transform categorical 

attributes like default, loan, housing, contact, and "y" 

into numerical representations. Table 2 shows the 

categories were transformed using label encoding. 
 

Table 2. Example of Data Transformation Results with 

Label Encoding 

Default Housing Loan Contact Y 

0 1 0 2 0 

0 1 1 2 0 

0 0 0 2 0 
0 0 1 0 1 

0 1 0 1 1 

3.3.2. Ordinal Encoding 

Table 3 shows the categories like job, marital 

status, education, month, and outcome are commonly 

transformed using ordinal encoding. 

Table 3. Example of Data Transformation Results with 
Ordinal Encoding 

Job Marital Education Month Poutcome 

4.0 1.0 2.0 8.0 3.0 

0.0 1.0 1.0 11.0 0.0 
11.0 2.0 3.0 8.0 3.0 

7.0 1.0 1.0 9.0 1.0 

9.0 2.0 1.0 8.0 3.0 

3.3.3. Preprocessed Dataset 

As depicted in Figure 6, the data preprocessing 

has successfully transformed categorical features into 

numerical representations. This was achieved using 

label encoding and ordinal encoding techniques. The 

features that have been converted to numerical are 

job, marital, education, default, housing, loan, 

contact, month, poutcome, and the label class y. This 

transformation is crucial to prepare the data for 

effective processing by machine learning algorithms, 

which typically operate on numerical data. 

 

 
Figure 6. Illustration of A Preprocessed Data Record in The Dataset 
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3.4. Classification on Dataset without 

Undersampling 

In the initial phase of the study, a series of 

comprehensive experiments were performed on the 

bank-full.csv dataset without applying any 

undersampling techniques. The experiments 

employed various individual classification 

algorithms, including Decision Tree, Random Forest, 

and XGBoost. Additionally, the study utilized the 

advanced Stacking Ensemble Learning method, 

which combined these individual algorithms—

Decision Tree, Random Forest, and XGBoost—as 

base classifiers. This ensemble was further enhanced 

by incorporating Logistic Regression as the meta-

classifier to improve the overall predictive 

performance. Following these setups, the dataset was 

meticulously divided into training and testing subsets, 

with 80% of the data allocated for training and the 

remaining 20% for testing, as detailed in Table 4. 
 

Table 4. Split Data Distribution without Undersampling 

Label Train Data Test Data 

0 31.970 7.952 

1 4.198 1.091 

Amount 36.168 9.043 

 

Table 4 illustrates the distribution of training 

data, consisting of 36,168 instances, with 31,970 

records classified as class 0 and 4,198 records 

classified as class 1. Additionally, the testing data 

comprises 9,043 instances, with 7,952 records 

classified as class 0 and 1,091 records classified as 

class 1. 

Figure 7 depicts the Confusion Matrix results of 

the four method scenarios, which were employed as 

the basis for determining Accuracy, Precision, Recall, 

and F1-Score values. 
 

 
(a)      (b) 

 
(c)      (d) 

Figure 7. Confusion Matrix of (a) DT, (b) RF, (c) XGB, (d) SEL without Undersampling 

 

Figure 7(a) depicts the performance of the 

Decision Tree algorithm. For class 0 (No), the 

algorithm accurately classified 7,378 out of 7,952 

data points, with 574 misclassified as class 1 (Yes). 

For class 1 (Yes), it correctly classified 526 out of 

1,091 data points, while 565 were misclassified as 

class 0 (No). Figure 7(b) shows the Random Forest 

algorithm's results, where 7,694 out of 7,952 class 0 

(No) instances were correctly classified, and 258 

were misclassified as class 1 (Yes). For class 1 (Yes), 

449 out of 1,091 instances were correctly classified, 

with 642 misclassified as class 0 (No). According to 

Figure 7(c), the XGBoost algorithm correctly 

classified 7,649 out of 7,952 class 0 (No) instances, 
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with 303 misclassified as class 1 (Yes). For class 1 

(Yes), 524 out of 1,091 instances were correctly 

classified, while 567 were misclassified as class 0 

(No). Finally, Figure 7(d) shows the performance of 

the SEL algorithm, with 7,720 out of 7,952 class 0 

(No) instances correctly classified, and 232 

misclassified as class 1 (Yes). For class 1 (Yes), 446 

out of 1,091 instances were correctly classified, with 

645 misclassified as class 0 (No). 

Based on the confusion matrix results in Figure 

7, the accuracy, precision, recall, and F1-score values 

were calculated and are shown in Table 5. These 

metrics comprehensively assess the algorithms' 

classification performance. 
 

Table 5. Experiment Results Without Undersampling 

Method Accuracy Precision Recall F1-Score 

DT 87,40 87,45 87,40 87,43 
RF 90,05 88,82 90,05 89,10 

XGB 90,38 89,51 90,38 89,80 

SEL 90,30 89,09 90,30 89,29 

 

As seen in Table 5, the performance of each 

method wherein Decision Tree achieved an Accuracy 

of 87.40%, Precision of 87.45%, Recall of 87.40%, 

and F1-Score of 87.43%. Random Forest attained an 

Accuracy of 90.05%, Precision of 88.82%, Recall of 

90.05%, and F1-Score of 89.10%. XGBoost yielded 

an Accuracy of 90.38%, Precision of 89.51%, Recall 

of 90.38%, and F1-Score of 89.80%. The SEL 

approach obtained an Accuracy of 90.30%, Precision 

of 89.09%, Recall of 90.30%, and F1-Score of 

89.29%. This experiment reveals that classification 

using the XGBoost single algorithm outperforms the 

other two single algorithms, namely DT and RF, in all 

four measured metrics. Furthermore, it even 

outperforms the SEL approach, which utilizes all 

three algorithms as base classifiers and for the meta 

classifier, LR was applied. In addition to these four 

metrics, the evaluation process also incorporated 

AUC-ROC analysis, as visualized in Figure 8. These 

results highlight the effectiveness of XGB in handling 

this classification task. 
 

 
Figure 8. AUC-ROC on Original Dataset 

 

Figure 8 shows that XGBoost again got the 

highest score with an AUC-ROC of 0.7211, followed 

by Decision Tree of 0.7050, SEL of 0.6898 and 

Random Forest 0.6896. 

3.5. Classification on Resampled Dataset with 

IHT 

In the second stage, experiments were 

conducted on the bank-full.csv dataset, which had 

undergone undersampling using Instance Hardness 

Threshold (IHT). The classification algorithms 

employed remained consistent, utilizing single 

models such as DT, RF, and XGB. Additionally, SEL 

was implemented, incorporating DT, RF, and XGB as 

base classifiers, with Logistic Regression serving as 

the meta-classifier.  

In Figure 9, we can see the distribution of data 

that has been resampled using IHT, where the number 

of majority (no) classes which originally reached 

39,922 data records has become 15,070 data records. 
 

 
Figure 9. Data Distribution after Undersampling with IHT 

 

The dataset was partitioned into two subsets, 

with 80% allocated for training and the remaining 

20% reserved for testing. The detailed distributions of 

these subsets are illustrated in Table 6, ensuring 

clarity in data allocation and supporting the 

reproducibility of the experimental results. 
 

Table 6. Split Data Distribution with IHT Undersampling 

Label Train Data Test Data 

0 12.062 3.008 

1 4.225 1.064 

Amount 16.287 4.072 

 

In Table 6, the distribution of training data can 

be observed, comprising 16,287 instances, with 

12,062 records classified as class 0 and 4,225 records 

classified as class 1. Additionally, the testing data 

consists of 4,072 instances, with 3,008 records 

classified as class 0 and 1,064 records classified as 

class 1.  

Figure 8 illustrates the Confusion Matrix results 

of the four algorithm scenarios utilized as the basis 

for determining Accuracy, Precision, Recall, and F1-

Score values. 

Figure 8(a) displays the performance results of 

the Decision Tree algorithm. For class 0 (No), the 

algorithm accurately classified 2,956 out of 3,008 

instances, misclassifying 52 as class 1 (Yes). In the 

case of class 1 (Yes), it correctly classified 1,001 out 

of 1,064 instances, with 63 misclassified as class 0 

(No). Moving to Figure 8(b), the Random Forest 
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algorithm's results are detailed as follows: out of 

3,008 class 0 (No) instances, 2,994 were correctly 

classified, and 14 were misclassified as class 1 (Yes). 

For class 1 (Yes), it correctly classified 1,006 out of 

1,064 instances, with 58 misclassified as class 0 (No). 

In Figure 8(c), the XGBoost algorithm's performance 

shows that out of 3,008 class 0 (No) instances, 2,994 

were correctly classified, and 14 were misclassified 

as class 1 (Yes). For class 1 (Yes), 1,019 out of 1,064 

instances were correctly classified, with 45 

misclassified as class 0 (No). Finally, Figure 8(d) 

illustrates the SEL algorithm's results: out of 3,008 

class 0 (No) instances, 2,991 were correctly 

classified, with 17 misclassified as class 1 (Yes). For 

class 1 (Yes), 1,032 out of 1,064 instances were 

correctly classified, with 32 misclassified as class 0 

(No). 

 

 
(a)      (b) 

 
(c)      (d) 

Figure 8. Confusion Matrix of (a) DT, (b) RF, (c) XGB, (d) SEL with IHT Undersampling 

 

By analyzing the confusion matrix depicted in 

Figure 8, we can derive various evaluation metrics, 

which are elaborated upon and presented in Table 7. 

These metrics provide insights into the performance 

of the classification algorithms, aiding in the 

assessment of their effectiveness in accurately 

predicting class labels. 
 

Table 7. Experimental Results on Resampled Dataset 

Method Accuracy Precision Recall F1-Score 

DT 97,18 97,17 97,18 97,17 
RF 98,23 98,24 98,23 98,22 

XGB 98,55 98,55 98,55 98,54 

SEL 98,80 98,79 98,80 98,79 

 

In Table 7, the performance of each algorithm 

can be observed, with Decision Tree achieving an 

Accuracy of 97.18%, Precision of 97.17%, Recall of 

97.18%, and F1-Score of 97.17%. Random Forest 

achieved an Accuracy of 98.23%, Precision of 

98.34%, Recall of 98.55%, and F1-Score of 98.54%. 

XGBoost attained an Accuracy of 98.55%, Precision 

of 98.55%, Recall of 98.55%, and F1-Score of 

98.54%. SEL obtained an Accuracy of 98.80%, 

Precision of 98.79%, Recall of 98.80%, and F1-Score 

of 98.79%. This experiment demonstrates that 

classification using SEL yields the best results in 

terms of Accuracy, Precision, Recall, and F1-Score. 

Additionally, AUC-ROC analysis, shown in 

Figure 9, complements these metrics, offering 

insights into the model's performance by depicting 

the trade-offs between sensitivity and specificity 

across various threshold values, emphasizing the 

algorithms' ability to distinguish between classes. 

In Figure 9, it can be observed that SEL 

achieved the highest AUC-ROC level of 0.9821, 

followed by XGBoost with 0.9765, Random Forest 

with 0.9704, and Decision Tree with 0.9618. This 

trend aligns with the findings from the other 
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performance metrics, further solidifying the superior 

performance of SEL. 
 

 
Figure 9. AUC-ROC on Resampling Dataset 

4. DISCUSION 

This study found that combining SEL and IHT 

undersampling techniques improved term deposit 

acceptance classification accuracy in the imbalanced 

Bank Marketing Dataset to 98.80%, with an AUC-

ROC of 0.9821. While the impact of SEL on 

classification performance in this study is relatively 

small, these results are consistent with several studies 

in other classification cases, such as those conducted 

by Divina et al., Baccouche et al., and Almulihi et al., 

which indicate that ensemble learning can yield better 

classification performance than single classification 

models [17][18][21]. In this study, applying IHT 

undersampling had the most significant and effective 

impact on addressing class imbalance, leading to an 

approximately 8% improvement in classification 

model performance compared to without IHT 

undersampling. 

Compared to several similar studies utilizing the 

same dataset, this research achieves higher accuracy 

levels. Table 8 compares the performance of SEL-

IHT with the optimal performance gained from 

previous studies using the same dataset. The studies 

by Zaki et al. [48], Fitriani and Febrianto [49], 

Nugroho and Religia [10], Religia et al. [9] and 

Alsolami et al. [11] achieved their highest accuracy 

rates of 87.50%, 92.61%, 89.73%, 88.30%, and 

91.48%, respectively, using RF Classifier, RF + 

SMOTE, GA + Naïve Bayes + Bagging, GA + RF + 

Bagging, and LR. None of these five studies utilized 

IHT undersampling and SEL techniques as employed 

in this study. 
 

Table 8. Comparison with Previous Research on the Same Dataset 

Author Accuracy Best Method Year 

Zaki et al. [48] 87,50% RF Classifier 2023 
Fitriani & Febrianto [49] 92,61% RF + Smote 2021 

Nugroho & Religia [10] 89,73% GA + NB + Bagging 2021 
Religia, et al. [9] 88,30% GA + RF + Bagging 2021 

Alsolami et al. [11] 91,48% Logistic Regression 2020 

SEL + IHT APPROACH 98,80% SEL + IHT 2024 

Aside from the accuracy advantages mentioned, 

this study also has several limitations. Firstly, it only 

utilizes one dataset. Secondly, it does not compare the 

IHT undersampling technique with other 

undersampling techniques. Thirdly, it does not 

investigate the impact of parameters on model 

performance. Future research can address these 

limitations by using datasets from different banks, 

comparing the IHT undersampling technique with 

other undersampling techniques, investigating the 

impact of parameters on model performance, 

performing feature selection, and exploring 

alternative algorithm combinations in ensemble 

learning architectures to achieve more accurate and 

comprehensive results. Additionally, considering the 

dynamic nature of financial data, longitudinal studies 

may provide valuable insights into the stability and 

generalizability of the proposed model over time. 

5. CONCLUSION 

This research investigates techniques to enhance 

the classification performance of term deposit 

acceptance on imbalanced datasets. Such 

classification is crucial for banks, aiming to optimize 

term deposit marketing strategies. The study 

compares single classification models (Decision 

Tree, Random Forest, and XGBoost) with Stacking 

Ensemble Learning (SEL), which integrates these 

models as base classifiers and and for the meta 

classifier, Logistic Regression was chosen. 

Undersampling Instance Hardness Threshold (IHT) is 

applied to address class imbalance in the dataset. 

The findings indicate that SEL with IHT 

undersampling significantly improves classification 

accuracy compared to models without 

undersampling. In datasets without undersampling, 

XGBoost achieves the highest accuracy among single 

classification models. However, in datasets with 

undersampling, SEL surpasses all other models in 

terms of Accuracy, Precision, Recall, F1-Score, and 

AUC-ROC. These findings suggest that 

implementing SEL with IHT undersampling can yield 

superior models for term deposit acceptance 

classification on imbalanced datasets. 

Future research may explore the generalizability 

of these findings using different datasets. Moreover, 

other undersampling techniques and ensemble 

learning methods could be investigated to determine 

if they can achieve better performance. Lastly, this 

study opens avenues to examine move forward 

classification method such as deep learning to further 

enhance classification accuracy. With further 
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research, it is anticipated that banks can leverage the 

most accurate classification models to assist in 

marketing term deposit products to potentially more 

prospective customers. 
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