
Jurnal Teknik Informatika (JUTIF) DOI: https://doi.org/10.52436/1.jutif.2024.5.3.1836
Vol. 5, No. 3, June 2024, pp. 747-756 p-ISSN: 2723-3863
 e-ISSN: 2723-3871

747

COMPARISON OF JENKINS AND GITLAB CI/CD TO IMPROVE DELIVERY TIME

OF BASU DAIRY FARM ADMIN WEBSITE

Alif Babrizq Kuncara*1, Dana Sulistyo Kusumo2, Monterico Adrian3

1,2,3Telkom University, Indonesia

Email: 1alifbabrizq@students.telkomuniversity.ac.id, 2danakusumo@telkomuniversity.ac.id,
3monterico@telkomuniversity.ac.id

(Article received: February 5, 2024; Revision: February 20, 2024; published: May 28, 2024)

Abstract

The Basu Dairy Farm admin website is a web-based information system developed using monolithic architecture.

The delivery process of source code changes from the GitLab repository on the "main" branch (development) to

the main server (production) takes a long time because the build and deploy process is done manually. This causes

the delivery time to be long. To overcome this, this research applies Continuous Integration/Continuous

Deployment (CI/CD) as a solution. The CI/CD tools used are Jenkins and GitLab CI/CD because they are open

source and the most popular. In this study, a comparison of the delivery time of the two tools was carried out.

Delivery time is obtained when the build process starts to run until the deploy process is completed. The analysis

includes the time required to run the build and deploy process of the CI/CD tool. The results of this research show

that Jenkins and GitLab CI/CD are successfully implemented and can automate the build and deploy process. In

terms of implementation, Jenkins requires in-depth configuration, so it looks complicated, while GitLab CI/CD

offers simple and easy configuration. In the three experiments conducted, Jenkins showed a faster average time in

completing the build and deploy process, so Jenkins has a better delivery time than GitLab CI/CD in the context

of the Basu Dairy Farm admin website development process.

Keywords: build, ci/cd, delivery time, deploy, gitlab ci/cd, jenkins.

1. INTRODUCTION

Continuous Integration/ Continuous

Deployment (CI/CD) is a modern software

development practice that revolutionizes

development by automating the build and deploy

process of software development [1]. By

implementing CI/CD, development teams can

identify and fix problems early on, thereby reducing

the risk of missed errors during software delivery to

the server [1]. As such, CI/CD is a modern software

development practice that is essential for improving

and maintaining the quality and speed of software

delivery [2]. CI/CD is also considered to be a critical

point for QA to apply such automation methods and

tools within a dynamic environment [3].

The research uses a case study on the Basu Dairy

Farm admin website development process. The Basu

Dairy Farm admin website is developed using

monolithic architecture. According to research [4],

monolithic architecture is still widely used because of

its ease of development and does not involve many

problems related to integration, connection, and

configuration with all functionality encapsulated into

one single application [5]. The delivery process of

source code changes from the GitLab repository on

the “main” branch (development) to the main server

(production) takes a long time because the build and

deployment process is done manually by the project

manager. This causes the delivery time to be long [6].

In this research, an adaptation of [7] is made so

that the deployment process in CI/CD practice. In [7],

delivery time is a combination of two phases when

doing a pull request, namely the merge phase and the

delivery phase. The solution offered is the Basu Dairy

Farm website admin information system. Before the

implementation of CI/CD, the case study used cloud

services for deployment facilities. The application of

CI/CD tools with Travis CI in [7] did not necessarily

speed up the delivery time of pull requests but

improved the contribution processing mechanism on

the project. This is done by identifying feasible pull

requests, thus reducing the burden on developers.

In its implementation, CI/CD practices require

tools to automate the build and deploy process. This

tool is the key to facilitating efficient software

development based on how easy it is to identify

mistakes quickly [8]. We proposed the research

object using Jenkins, Jenkins is a CI tool that executes

Maven scripts and shell scripts both for Windows and

Unix/Linux environments [9]. We proposed the

research second object for comparison using GitLab,

GitLab is a web-based DevOps workflow application

for managing CI/CD [10]. In [11], Jenkins and Gitlab

CI/CD were implemented in a microservice-based

application by creating an experimental setup and

evaluating the deployment time of both tools. The

https://doi.org/10.52436/1.jutif.2024.5.3.xx
mailto:alifbabrizq@students.telkomuniversity.ac.id
mailto:danakusumo@telkomuniversity.ac.id
mailto:monterico@telkomuniversity.ac.id

748 Jurnal Teknik Informatika (JUTIF), Vol. 5, No. 3, June 2024, pp. 747-756

results show that Jenkins is more efficient in

deploying applications to the server.

We proposed to use a cloud platform for this

research that was introduced by Microsoft called

Azure, a Software as a Service (SaaS) platform that

helps organizations manage end-to-end software

development and deployment processes effectively

[12]. Microsoft Azure automatically builds and tests

code projects by combining continuous integration

(CI) and continuous delivery (CD) [13]. In this

research, we use Microsoft Azure as a Virtual

Machine based on Azure features that use virtual

networks and policies to allow CI/CD from this

machine [14]. Microsoft Azure is very suitable for the

project team that uses Microsoft technology for

CI/CD purposes [15].

In this research, the most popular open-source

CI/CD tools, namely Jenkins and GitLab CI/CD, are

implemented on a monolithic architecture and

compared against the delivery time obtained from the

length of time to run the build and deploy process that

has been automated. The selection of CI/CD tools is

based on how popular and widely used in the software

development industry. The comparison needed to be

done so that the tool that has the most advantage for

deployment can be implemented on the Basu Dairy

Farm admin website. Furthermore, research on the

effect of CI/CD tools on delivery time obtained from

the length of time to run the build and deploy process

to the server on monolithic-based applications has not

been explained. Delivery time is focused on the pull

request process, while this study focuses on

calculating delivery time on CI/CD practices.

2. METHOD

2.1. Existing Conditions

The development process of the admin website

at Basu Dairy Farm uses GitLab with two main

branches, namely ”dev” and ”main”. The ”dev”

branch is used for development, while the ”main”

branch is used to deploy to the main server. The

development workflow used is as follows.

The Basu Dairy Farm admin website was

developed using the monolithic architecture shown in

Figure 2. The main characteristic of this approach is

that the entire application consists of an integrated

whole of various functional parts, running on a single

technological environment. Therefore, this

architecture does not involve many issues related to

integration, connection, and configuration.

Figure 2. Monolithic Architecture

The delivery process is initiated whenever there

are changes or new commits made to the "main"

branch. This involves executing the build and deploy

process. According to the workflow depicted in

Figure 1, whenever there's a modification in the

source code, such as additions or deletions,

developers push these changes to the GitLab

upstream repository within the "dev" branch.

Subsequently, the developer merges the latest source

code alterations from the "dev" branch into the

"main" branch. This merge is then reviewed or

checked by a designated team member acting as a

reviewer. Once approved, the code is merged from

the "dev" branch to the "main" branch.

Frequent small changes to the "main" branch

necessitate the project manager to manually pull the

latest source code for deployment on the main server.

This process is time-consuming, error-prone, and

dependent on the manager's availability.

2.2. Architectural Design

The architecture design is a proposed workflow

architecture that is used to overcome the problems in

the build and deploy process that are still done

manually. This workflow architecture applies CI/CD

practices to overcome the problems that occur in

Figure 1. This architecture replaces the build and

deploy (delivery) process that was previously done

manually by the project manager (Figure 1) to be

automated by using CI/CD tools shown in Figure 3.

Figure 1. Current Workflow

Alif Babrizq Kuncara, et al., COMPARISON OF JENKINS AND GITLAB CI/CD … 749

Figure 3. Proposed Workflow

Based on the proposed workflow (Figure 3), the

process performed in implementing CI/CD is as

follows:

1. Source Code Push: Developers push changes to

the "dev" branch in GitLab, which are then

merged into the "main" branch.

2. Pipeline Activation: GitLab monitors changes in

the "main" branch and triggers the CI/CD

pipeline if no issues are detected.

3. Automated CI/CD: The pipeline automates

build and deployment using Docker, ensuring

the integrity of the system. Failure at any stage

halts the process to prevent potential issues.

2.3. Implementation

This stage is to implement the website

development workflow with CI/CD practices as in

Figure 3 to replace the website development

workflow in Figure 1. This implementation uses two

CI/CD tools, namely: Jenkins and GitLab CI/CD.

Both tools run on a virtual machine server running

Linux operating system with the same specifications.

The following are the server specifications used to

run each tool.

Table 1. Server Specifications

Property Value

Cloud Platform Microsoft Azure

Operating System Linux (Ubuntu 20.04 LTS Gen 2)

Size Standard D2s v3

vCPUs 2

RAM 8 GiB

1. Jenkins

Jenkins is a popular Java-based and open-source

CI/CD tool for Continuous Integration/Continuous

Deployment (CI/CD) [11]. Jenkins will perform the

deployment process after a code change in the Git

repository. In this process, Jenkins will retrieve the

latest code from the relevant branch and proceed with

the deployment steps according to predefined

instructions [17].

Jenkins version 2.436 is integrated with GitLab

for automation with the specifications (Table 1).

GitLab sends notifications to Jenkins via webhook

when new code changes are made. Jenkins pulls the

latest code and runs a predefined pipeline from the

Jenkins file. This pipeline includes building the

project with "npm run build" and storing the

compilation results in "/dist". Once built successfully,

Jenkins creates a Docker image and deploys it on the

main server using the default built-in agent, which

shares the server's specifications.

At the build stage, Jenkins will run the ”npm run

build” command to compile the software project. The

compilation results will be stored in the ”/dist” folder.

The contents of the folder will be used for the

deployment process. After the build stage is

successful, Jenkins will build a Docker image of the

project and run it on the main server.

Code 1. Pipeline on Jenkinsfile

2. GitLab CI/CD

GitLab is an open source web-based version

control system with built-in CI/CD capabilities.

Pipelines are automatically activated when changes

are made, until they can be executed on the server

[11]. GitLab CI/CD is one of the features provided by

GitLab that fulfills all the basic needs of Continuous

Integration/Continuous Deployment (CI/CD) in one

environment [18].

The research implements GitLab CI/CD on

version 16.6 for project management and automation.

Configuration involves defining pipelines in ".yml"

files and creating executors known as "Runners."

Uploaded source code triggers automated pipelines,

which are defined in ".gitlab-ci.yml" files and

executed by Runners using Docker containers. This

setup streamlines the build and deployment

processes.

pipeline
 agent any

 tools

 nodejs 'NodeJS 16'

 stages

 stage('Build')

 steps

 script

 sh 'npm install --ignore-scripts'

 sh 'npm run build'

 stage('Deploy')

 steps

 script

 sh "docker build -t image."

 sh "docker stop container || true"

 sh "docker rm -f container|| true"

 sh "docker system prune -f"

 sh "docker run -d --name container -p 9000:9000

image"

750 Jurnal Teknik Informatika (JUTIF), Vol. 5, No. 3, June 2024, pp. 747-756

Table 2. Docker Specifications

Property Value

Operating System Linux (Ubuntu 20.04.6 LTS)

Architecture x86_64

CPU 2

Memory 7.704 GiB

Docker Server Version 24.0.7

During the build stage, GitLab CI/CD compiles

the project using "npm run build" and stores the result

in "/dist". This folder's contents are used for

deployment. After a successful build, GitLab CI/CD

creates a Docker image of the project and deploys it

on the main server according to specified

specifications (Table 2).

Code 2. Pipeline on gitlab-ci.yml

3. DELIVERY TIME CALCULATION

The study evaluates delivery time (Dt) from

build initiation to deployment completion using

Jenkins and GitLab CI/CD. Dt is calculated as the

sum of build time (t1) and deployment time (t2),

expressed as Dt = t1 + t2.

This statement is based on research [3] which

explains the calculation of delivery time from pull

requests that have been merged. Delivery time in [3]

summarizes the two pull request phases, namely the

merge phase (t1) and the delivery phase (t2). The

difference between this research and research [3] lies

in the focus and method of measuring delivery time.

In [3], the delivery time calculation is focused on the

pull request process, by dividing the process into two

phases: the merge phase (t1) and the delivery phase

(t2). Meanwhile, this study focuses the delivery time

calculation on the Continuous Integration/Continuous

Deployment (CI/CD) process. Here, the delivery time

(Dt) is calculated by summing the time required to run

the build (t1) and deploy (t2) processes.

The calculation begins with pushing identical

source code to different GitLab repositories via merge

requests from the "dev" branch to the "main" branch.

Changes to the "main" branch trigger pipelines run by

Jenkins and GitLab CI/CD (Figure 4). The calculation

occurs during the execution of commands in the

"script{...}" tag in the build and deploy stages of each

pipeline. The start and end times of these processes

are recorded to determine their duration. Three

experiments were conducted, involving frequent

changes to the "main" branch of the Basu Dairy Farm

admin website. These changes included additions,

additions and deletions, and line subtractions. Each

experiment was executed once due to limited server

resources.

Figure 4. Delivery Time Calculation

1. Delivery Time (Dt) in Jenkins

1) Experiment 1

In experiment 1, a merge request was made

containing changes in the form of 22240 code line

additions and 0 code line deletions. The result for

experiment 1 in Jenkins is represented in Table 3.

Table 3. Experiment 1 on Jenkins

Process Start End Result (s)

Build (t1) 15:29:57 15:30:14 17s

Deploy (t2) 15:30:14 15:30:18 4s

Delivery Time (Dt) 21s

2) Experiment 2

In experiment 2, a merge request was made

containing changes in the form of 4486 additions of

lines of code and 4486 deletions of lines of code. The

result for experiment 2 in Jenkins is represented in

Table 4.

Table 4. Experiment 2 on Jenkins

Process Start End Result (s)

Build (t1) 16:52:17 16:52:30 13s

Deploy (t2) 16:52:30 16:52:33 3s

Delivery Time (Dt) 16s

stages:

 - build

 - deploy

build:

 image: node:16

 stage: build

 only:

 - main

 script:

 - npm install --ignore-scripts

 - npm run build

 artifacts:

 paths:

 - dist/

deploy:

 image: docker

 stage: deploy

 only:

 - main

 script:

 - docker build -t image .

 - docker stop conatiner || true

 - docker rm conatiner || true

 - docker system prune -f

 - docker run -d --name conatiner -p 9001:9001 image

Alif Babrizq Kuncara, et al., COMPARISON OF JENKINS AND GITLAB CI/CD … 751

3) Experiment 3

In experiment 3, a merge request was made

containing changes in the form of 0 additions of lines

of code and 22240 deletions of lines of code. The

result for experiment 3 in Jenkins is represented in

Table 5.
Table 5. Experiment 3 on Jenkins

Process Start End Result (s)

Build (t1) 17:45:13 17:45:24 11s

Deploy (t2) 17:45:24 17:45:28 4s

Delivery Time (Dt) 15s

2. GitLab CI/CD

1) Experiment 1

In experiment 1, a merge request was made

containing changes in the form of 22240 code line

additions and 0 code line deletions. The result for

experiment 1 in GitLab CI/CD is represented in Table

6.

Table 6. Experiment 1 on GitLab CI/CD

Process Start End Result (s)

Build (t1) 15:49:34 15:49:54 20s

Deploy (t2) 15:50:32 15:50:36 4s

Delivery Time (Dt) 24s

2) Experiment 2

In experiment 2, a merge request was made

containing changes in the form of 4486 additions of

lines of code and 4486 deletions of lines of code. The

result for experiment 2 in GitLab CI/CD is

represented in Table 7.

Table 7. Experiment 2 on GitLab CI/CD

Process Start End Result (s)

Build (t1) 17:08:11 17:08:38 27s

Deploy (t2) 17:10:02 17:10:07 5s

Delivery Time (Dt) 32s

3) Experiment 3

In experiment 3, a merge request was made

containing changes in the form of 0 additions of lines

of code and 22240 deletions of lines of code. The

result for experiment 3 in GitLab CI/CD is

represented in Table 8.

Table 8. Experiment 3 on GitLab CI/CD

Process Start End Result (s)

Build (t1) 17:58:53 17:59:13 20s

Deploy (t2) 17:59:39 17:59:43 4s

Delivery Time (Dt) 24s

4. RESULTS AND DISCUSSION

4.1. CI/CD Implementation Results

This is used to determine the results of applying

the workflow proposed in Figure 3 to the Basu Dairy

Farm admin website development process. The

workflow was tested using Jenkins and GitLab

CI/CD.

1. Jenkins

The developer pushes the changes to the ”dev”

branch with the message ”Update README.md”.

Then the developer makes a merge request from the

”dev” branch to the ”main” branch (Figure 5). SHA

”71a14d37ff7dc66d25cf05d34de35d328506c33c".

Figure 5. MR on Jenkins

Changes in the ”main” branch trigger a pipeline

in Jenkins via a webhook, and Jenkins will run the

pipeline with the set of commands defined in Code 1

(Figure 6). The pipeline automates the build and

deploy process. Here is an overview of the successful

pipeline.

Figure 6. Jenkins Pipeline

2. GitLab CI/CD

The developer pushes the changes to the ”dev”

branch with the message ”Update README.md”.

Then the developer makes a merge request from the

”dev” branch to the ”main” branch (Figure 7). The

following is an overview of the merge request that has

been merged with the SHA commit

”4fd7838b24b2459c5dd173f1141efb30f1551073".

Figure 7. MR GitLab CI/CD

Changes in the ”main” branch trigger the

pipeline in GitLab CI/CD, then the pipeline will be

run by the ”Runner”. The ”Runner” will

automatically run the pipeline with the set of

commands defined in Code 2 (Figure 8). The pipeline

automates the build and deploy process. Here is an

overview of the successful pipeline.

From the results of CI/CD implementation

(Figure 6, Figure 8), it can be concluded that the

application of the workflow proposed in Figure 3 in

the Basu Dairy Farm admin website development

752 Jurnal Teknik Informatika (JUTIF), Vol. 5, No. 3, June 2024, pp. 747-756

process has been successfully implemented. In other

words, the implementation of the CI/CD process

using Jenkins and GitLab CI/CD was successfully

implemented. Both tools can automate the build and

deploy process in the Basu Dairy Farm admin website

development process. This is evidenced when there is

a source code change in the ”main” branch, Jenkins

and GitLab CI/CD automatically run the pipeline to

perform the build and deploy process. So that any

source code changes can be automatically uploaded

and run on the main server.

Figure 8. GitLab CI/CD Pipeline

4.2. Delivery Time Calculation Result

A graph is presented from the results of the

Jenkins and GitLab CI/CD delivery time (Dt)

calculations that have been carried out in the Delivery

Time Calculation chapter. This graph presents a

visual depiction of the length of time from the build

(t1), deploy (t2), and delivery time (Dt) processes.

Here is a visual depiction of the delivery time (Dt)

calculation in 3 experiments.

1. Experiment 1 Results

During the first experiment, Jenkins and GitLab

CI/CD executed a pipeline incorporating alterations

totaling 22,240 lines of added code, while no lines

were removed. The resulting delivery time (Dt)

calculation outcomes for experiment 1 are visually

depicted. The result for experiment 1 will be

represented in Figure 9 and Figure 10.

Figure 9. Experiment 1 (t1 and t2)

Figure 10. Experiment 1 (delivery time)

2. Experiment 2 Results

In the second experiment, Jenkins and GitLab

CI/CD processed a pipeline involving modifications

comprising 4,486 lines of code additions and an equal

number of deletions. The delivery time (Dt)

calculation results from experiment 2 are illustrated

for analysis. The result for experiment 2 will be

represented in Figure 11 and Figure 12.

Figure 11. Experiment 2 (t1 and t2)

Figure 12. Experiment 2 (delivery time)

3. Experiment 3 Results

Experiment 3 witnessed Jenkins and GitLab

CI/CD executing a pipeline with alterations

characterized by the removal of 22,240 lines of code

Alif Babrizq Kuncara, et al., COMPARISON OF JENKINS AND GITLAB CI/CD … 753

without any additions. The delivery time (Dt)

calculation findings from this experiment are

presented graphically. The result for experiment 3

will be represented in Figure 13 and Figure 14.

Figure 13. Experiment 3 (t1 and t2)

Figure 14. Experiment 3 (delivery time)

Regarding the analysis of the results of the

delivery time (Dt) calculation in three experiments,

Jenkins proved to have a faster delivery time than

GitLab CI/CD. The results of this analysis are

presented in graphical form in Figure 15.

Figure 15. Delivery time (Dt) in 3 experiments

On the first experiment, Jenkins took 21s, while

GitLab CI/CD took 24s. On the second experiment,

Jenkins took 16s, while GitLab CI/CD took 32s. And

in the third experiment, Jenkins completed the

process in 15s, while GitLab CI/CD required 24s.

Below is a graph comparing the average

durations of Jenkins and GitLab for completing the

build t1, deploy t2, and delivery time (Dt) processes.

Figure 16. Average (t1 and t2)

Figure 17. Average (delivery time)

From the data that has been presented, it can be

seen that the significant difference in delivery time

(Dt) between Jenkins and GitLab CI/CD is due to the

considerable difference in the time required to run the

build process t1. When running the build process t1,

Jenkins and GitLab CI/CD require JS nodes to

execute the commands in the build stage. Jenkins

utilizes the ”NodeJS” plugin so it already has JS

nodes installed in the agent ”built-in”. On the other

hand, GitLab CI/CD needs to install the JS node using

docker first with the "node" image (node:16) so it

takes longer. The time difference is also caused by the

different resources (RAM) of the executors used.

Jenkins runs the pipeline internally on a ”built-in”

agent with a resource capacity (RAM) of 8 GiB,

which means that the build and deploy process is done

within the Jenkins system itself. Meanwhile, GitLab

CI/CD runs the pipeline externally using Docker

containers, with a resource capacity (RAM) of 7.704

GiB. In this context, ”run internally” means that

Jenkins uses resources integrated in its system, while

”run externally” in GitLab CI/CD indicates the use of

754 Jurnal Teknik Informatika (JUTIF), Vol. 5, No. 3, June 2024, pp. 747-756

resources from outside the main system, namely

through the use of Docker as an executor in a separate

container.

The graph also shows that the deploy t2 process

takes less time than the build t1 process. This is

because the deploy t2 process uses a project that has

been compiled in the build t1 process, so the project

size becomes smaller. Jenkins stores the build results

t1 in the workspace directory provided by Jenkins.

While GitLab CI/CD stores the build results t1 in

artifacts.

From the graph that has been presented, it can

be concluded that Jenkins has a faster average time in

completing the build t1 and deploy t2 processes

compared to GitLab CI/CD. In terms of delivery time

(Dt), Jenkins also shows a faster delivery time

compared to GitLab CI/CD. Jenkins takes an average

of about 17.33s to deliver changes to the main server,

while GitLab CI/CD takes an average of about

26.66s.

5. DISCUSSION

In this study, Continuous

Integration/Continuous Deployment (CI/CD)

practices were implemented on the development of

the Basu Dairy Farm admin website using popular

open source CI/CD tools, namely Jenkins and GitLab

CI/CD. The results showed that the CI/CD

implementation successfully automated the build and

deploy process, replacing the manual way previously

done by project managers.

Jenkins requires in-depth configuration for

implementation, making it seem complicated for

beginners. On the other hand, GitLab CI/CD offers a

simpler configuration and is easy to implement

because it is directly integrated into the GitLab

platform. This shows the advantages of each CI/CD

tool in terms of ease of configuration. In the context

of delivery time comparison between Jenkins and

GitLab CI/CD, the results show that Jenkins has a

faster delivery time than GitLab CI/CD. This

statement influenced by several factors, such as the

installation process of JS nodes using docker required

by GitLab CI/CD, as well as the different resources

(RAM) of the pipeline executor used by each tool.

Jenkins runs the pipeline on a "built-in" agent with

larger resources (RAM) compared to GitLab CI/CD

which uses Docker containers.

Based on research [11], to determine the use of

CI/CD tools from Jenkins or Gitlab CI/CD

implemented in microservice architecture

applications, it is determined based on the

configuration of the two tools. Where Gitlab CI/CD

uses configuration in one yml file which is easier to

configure than Jenkins. Research [11] also states that

Gitlab CI/CD is better for small-scale projects than

Jenkins. However, in the following research, we

found that the use of Jenkins can be said to be better

than Gitlab CI/CD based on the delivery time that we

have researched on the Basu Dairy Farm admin

website case study which can be said to be a small-

scale and monolithic-based project. This can be the

main reason for choosing Jenkins as a CI/CD tool

over Gitlab CI/CD by considering the delivery time

compared from 3 experiments on both tools.

Meanwhile in research [7], with a research focus

on the effect of Continuous Integration (CI) using the

Travis CI tool on the delivery time of the pull request

process obtained from the summation of the time of

the two phases when making a pull request, namely

the merging phase and the delivery phase. The result

is that the application of Continuous Integration (CI)

using the Travis CI tool does not speed up the delivery

time of the pull request process, but improves the

contribution processing mechanism on the project by

identifying feasible pull requests, thereby reducing

the burden on developers. In this study, researchers

focused on the effect of CI/CD practices on delivery

time. Delivery time is calculated as the total time

required for the build and deploy process. This is

different from research [7] which focuses delivery

time on the pull request process. We chose to focus

on delivery time on CI/CD practices because we

wanted to measure the impact of CI/CD practices on

the software development process (build and deploy).

The results found that using Jenkins compared to

Gitlab CI/CD had different delivery times, with

Jenkins time being faster than Gitlab CI/CD on a

monolithic application (Basu Dairy Farm admin

website).

The main strength of this research is the proof

of CI/CD tool Jenkins, despite requiring extensive

configuration, Jenkins shows faster delivery time

compared to GitLab CI/CD in the context of

developing a monolithic Basu Dairy Farm admin

website. Although previous studies, such as [11],

show a preference for GitLab CI/CD for small-scale

microservice-based projects, our findings highlight

that Jenkins can be a better choice for smaller-scale

monolithic-based projects. This research also

enriches the understanding of the impact of CI/CD

practices on the software development process, by

focusing on delivery time as a performance indicator,

as opposed to focusing on the pull request process as

done in previous research [7]. Thus, the results of this

study provide valuable insights for software

developers in selecting CI/CD tools that suit project

needs, as well as to deepen the understanding of

CI/CD effectiveness in the context of monolithic-

based software development.

6. CONCLUSIONS

Based on the research conducted, CI/CD

practices were successfully implemented in the

development of the Basu Dairy Farm admin website

using Jenkins and GitLab CI/CD. CI / CD practices

can automate the build and deploy process, so that it

can replace the manual method carried out by project

managers. Based on this research, Jenkins requires in-

depth configuration in terms of implementation, so it

Alif Babrizq Kuncara, et al., COMPARISON OF JENKINS AND GITLAB CI/CD … 755

looks complicated for beginners. On the other hand,

GitLab CI/CD offers simple configuration and easy

implementation. Jenkins needs to configure and

install plugins that suit the needs of the project.

Whereas in GitLab CI/CD, there is no need to install

anything for CI/CD, because this feature has been

integrated directly in the GitLab platform. So it can

be concluded that GitLab CI/CD has a simpler

configuration than Jenkins in the context of CI/CD

tool implementation.

In the context of the delivery time comparison,

which was calculated in 3 trials due to the limited

resources of the server used, Jenkins showed a faster

delivery time than GitLab CI/CD. When running the

build and deploy process, Jenkins also shows a faster

average time compared to GitLab CI/CD. This time

difference is influenced because GitLab CI/CD needs

to install JS nodes using docker, while Jenkins utilizes

plugins that are already installed. The time difference

is also caused by the different resources (RAM) of the

pipeline executor from each CI/CD tool. Jenkins runs

the pipeline on a "built-in" agent with a resource

(RAM) of 8 GiB, while GitLab CI/CD runs the

pipeline using a Docker container with a resource

(RAM) of 7.704 GiB. Therefore, it can be concluded

that Jenkins can improve delivery time better than

GitLab CI/CD in the context of the Basu Dairy Farm

admin website development process. In future

research, it is expected to research techniques to

shorten the build time and add other aspects to the

delivery time calculation such as the automatic testing

process. It would be better if you can take

measurements more than once for the three

experiments, in order to find out whether the

measurement time is consistent or there are variations

from the measurement results.

REFERENCES

[1] Sheeba, G. Shidaganti, and A. P. Gosar, “A

comparison study on various continuous

integration tools in software development,”

in Lecture notes in networks and systems,

2020, pp. 65–76. doi: 10.1007/978-981-15-

7106-0_7.

[2] Shahin, Mojtaba, M. A. Babar, and L. Zhu.

"Continuous integration, delivery and

deployment: a systematic review on

approaches, tools, challenges and

practices." IEEE access 5 (2017): 3909-3943.

[3] Bobrovskis, Sergejs, and A. Jurenoks. "A

Survey of Continuous Integration,

Continuous Delivery and Continuos

Deployment." BIR workshops. 2018.

[4] K. Gos and W. Zabierowski, "The

Comparison of Microservice and Monolithic

Architecture," 2020 IEEE XVIth

International Conference on the Perspective

Technologies and Methods in MEMS Design

(MEMSTECH), Lviv, Ukraine, 2020, pp. 150-

153, doi:

10.1109/MEMSTECH49584.2020.9109514.

[5] Ponce, Francisco, G. Márquez, and H.

Astudillo. "Migrating from monolithic

architecture to microservices: A Rapid

Review." 2019 38th International

Conference of the Chilean Computer Science

Society (SCCC). IEEE, 2019.

[6] S. R. Dileepkumar and J. Mathew. "Optimize

Continuous Integration and Continuous

Deployment in Azure DevOps for a

controlled Microsoft. NET environment

using different techniques and

practices." IOP Conference Series: Materials

Science and Engineering. Vol. 1085. No. 1.

IOP Publishing, 2021.

[7] J. H. Bernardo, D. A. da Costa, D.A., U.

Kulesza, et al. "The impact of a continuous

integration service on the delivery time of

merged pull requests," Empir Software Eng.

vol. 28, no. 97. 2023. doi:

https://doi.org/10.1007/s10664-023-10327-

6.

[8] Bernardo, J. Helis, D. A. da Costa, and U.

Kulesza. "Studying the impact of adopting

continuous integration on the delivery time of

pull requests." Proceedings of the 15th

International Conference on Mining

Software Repositories. 2018.

[9] Mohammad, S. Mohsienuddin. "Continuous

integration and automation." International

Journal of Creative Research Thoughts

(IJCRT), ISSN (2016): 2320-2882.

[10] J. Hembrink, and P. G. Stenberg.

"Continuous integration with

jenkins." Coaching of Programming Teams

(EDA 270), Faculty of Engineering, Lund

University, LTH (2013): 23.

[11] C. Singh, N. S. Gaba, M. Kaur and B. Kaur,

"Comparison of Different CI/CD Tools

Integrated with Cloud Platform," 2019 9th

International Conference on Cloud

Computing, Data Science & Engineering

(Confluence), Noida, India, 2019, pp. 7-12,

doi:

10.1109/CONFLUENCE.2019.8776985.

[12] Arefeen, Mohammed Shamsul, and Michael

Schiller. "Continuous Integration Using

Gitlab." Undergraduate Research in Natural

and Clinical Science and Technology

Journal 3 (2019): 1-6.

[13] H. Nguyen, "Continuous Integration for

Embedded environment." (2022).

[14] Debroy, Vidroha, S. Miller, and L. Brimble.

"Building lean continuous integration and

delivery pipelines by applying devops

principles: a case study at

varidesk." Proceedings of the 2018 26th ACM

756 Jurnal Teknik Informatika (JUTIF), Vol. 5, No. 3, June 2024, pp. 747-756

Joint Meeting on European Software

Engineering Conference and Symposium on

the Foundations of Software Engineering.

2018.

[15] Ferdian, Sendy, et al. "Continuous

Integration and Continuous Delivery

Platform Development of Software

Engineering and Software Project

Management in Higher Education." Jurnal

Teknik Informatika dan Sistem Informasi,

vol. 7, no. 1, 2021.

[16] C. Trubiani, P. Jamshidi, J. Cito, W. Shang,

Z. M. Jiang, and M. Bor, "Performance

Issues? Hey DevOps, Mind the Uncertainty.

in IEEE Software. vol. 36. no. 2. pp. 110-117.

2019, doi: 10.1109/MS.2018.2875989.

[17] D. Wijayanto, A. Firdonsyah, and F. D.

Adhinata, “Implementasi Continous

Integration/Continous Delivery

Menggunakan Process Manager 2 (Studi

Kasus: SIAKAD Akademi Keperawatan

Bina Insan),” Teknika, vol. 10, no. 3, pp. 181–

188, Oct. 2021, doi:

10.34148/teknika.v10i3.400.

[18] GitLab. What is CI/CD?. [Online]. Available

at: https://about.gitlab.com/topics/ci-cd/

(accessed Jan. 10, 2024).

https://about.gitlab.com/topics/ci-cd/

