
Jurnal Teknik Informatika (JUTIF) DOI: https://doi.org/10.52436/1.jutif.2024.5.2.1673
Vol. 5, No. 2, April 2024, pp. 551-560 p-ISSN: 2723-3863
 e-ISSN: 2723-3871

551

LOW CODE INTEGRATION TESTING IN OUTSYSTEMS PERSONAL

ENVIRONMENT

I Dewa Ayu Indira Wulandari Chrisna1, Dana Sulistiyo Kusumo*2, Rosa Reska Riskiana3

1,2,3Informatics, School of Computing, Telkom University, Indonesia

Email: 1indira.chrisna@gmail.com, 2danakusumo@telkomuniversity.ac.id, 3rosareskaa@telkomuniversity.ac.id

(Article received: January 04, 2024; Revision: January 11, 2024; published: April 15, 2024)

Abstract

As implied by its name, low code platforms enable software development with minimal or no coding involved.

Consequently, ensuring the correctness of the software becomes crucial as developers are unable to directly

scrutinize the logic. Furthermore, discussions about the various testing approaches applicable to such

applications are relatively scarce. This study aims to conduct integration testing through both white box and black

box methods, as well as exploring the types of testing that can be carried out on low code based applications. This

research involves several stages, including creating a basic e-shop application and API using OutSystems, test

preparation, and test execution. API testing utilizes OutSystems' BDDFramework and Postman automation testing

tools, while web page integration is carried out using Katalon Studio. The test results indicate only one of the total

23 test cases was considered failed because the result did not match the expected result. Apart from that, of the

four existing levels of testing, component testing can also be carried out on the OutSystems application. However,

only with the black box testing method because testing is carried out without accessing the program source code.

The comparative execution of API testing (white box) using two distinct testing tools reveals the superior

effectiveness of Postman over BDDFramework, offering more comprehensive test outcomes and enhanced test

case coverage. In the realm of UI integration testing, Katalon Studio emerges as a fitting tool, benefiting from its

record and replay feature that facilitates the definition of test steps.

Keywords: API, low-code, OutSystems, testing.

1. INTRODUCTION

The Low Code Development Platform (LCDP)

is a cloud-based software development platform. It

enables users to create fully functional software

through interaction with a dynamic graphical user

interface, visual diagrams, and declarative languages

[1]. LCDP has emerged as a promising solution for

companies aiming to enable professionals without

coding experience to construct applications [2].

Facilitated by pre-built modules and an intuitive

interface that typically integrates drag-and-drop

functionality to configure process models and the

app's framework, it streamlines the app development

process, making it more efficient and easily scalable

[3]. Referring to The state of Application

Development [4], 63% of organizations say that they

will develop the majority of their applications using

low-code development platform by the end of 2024.

In 2020, Faezeh Khorram, et al. Conduct

research to determine the challenges and

opportunities that exist in testing low-code based

applications. The research is aimed at presenting the

progress of low-code testing from a business

perspective [5]. The results indicate that challenges in

low-code testing encompass three issues: the role of

the Citizen Developer in testing, the need for high-

level test automation, and cloud testing [5]. In Low-

Code-based application development, test automation

is particularly crucial, especially for API testing. This

is due to the reliance of Low-Code applications on

APIs for integration with other services. Regular

testing of these integrations is essential to prevent

application failures [5].

The OutSystems development platform boasts a

notable advantage with its self-correction feature,

capable of automatically rectifying certain potential

errors and promptly providing developers with

relevant information about the necessary

modifications [6]. This ensures that nothing is broken

during the implementation stage.

However, despite the support offered by the

platform, there is no assurance that errors will be

entirely absent, and the evolving software will be

entirely free of bugs. Consequently, various testing

activities must be conducted at different stages

throughout the life cycle of an OutSystems

application [6].

Software testing is a verification and validation

process to ensure that the system under development

has fulfilled the business needs and technical

requirements that underpin its design, ensuring that

the developed system operates in accordance with the

established expectations [7]. Failure of assuring

software quality can leads to a serious bug that might

cost more than one year’s salary of a programmer [8].

https://doi.org/10.52436/1.jutif.2024.5.2.xx
mailto:indira.chrisna@gmail.com
mailto:danakusumo@telkomuniversity.ac.id
mailto:rosareskaa@telkomuniversity.ac.id

552 Jurnal Teknik Informatika (JUTIF), Vol. 5, No. 2, April 2024, pp. 551-560

Therefore, testing serves as a proactive safeguard,

akin to an insurance mechanism. In software testing,

there are three techniques, each with a more specific

testing strategy, aimed at enhancing the effectiveness

of the testing process. These techniques are white-box

testing, black-box testing, and gray-box testing [9].

In a research entitled "Characteristics and

Challenges of Low-Code Development: Practitioners'

Perspective" (2021) by Luo et al. The research results

show that one of the limitations of the Low Code

development platform is the lack of access to the

program's Source Code. The results of this research

are directly correlate with a limitation in the

OutSystems Personal Environment. Specifically,

developers are unable to execute the detach process,

preventing them from obtaining the Source Code of

their applications. The ability to perform this Detach

process is restricted to Enterprise Environment

owners who decide to terminate their contract with

OutSystems [10]. Consequently, White Box testing,

which necessitates access to the program's Source

Code, is not feasible under these circumstances.

On the other hand, OutSystems has a

Framework component called BDDFramework

which allows Citizen Developers to conduct testing

from the server side and enables BDD / TDD Testing

for applications developed with this Low-Code based

development platform [11]. The focus of this

component is to test the logic in the application

module by practicing critical actions that can support

Test Case design [11]. Component Testing in

OutSystems with BDDFramework includes testing

open actions and services that form the logic of the

application being developed [12]. In this way, it can

be concluded that Component Testing which can be

carried out in the Low-Code OutSystems application

is still not possible using the White Box method.

This research aims to explore the types of tests

applicable to Low-Code based applications using the

OutSystems platform, given its prominence as a low-

code development platform widely adopted by major

companies such as AXA, Honda Motor Co., Ltd.,

Intel Corporation, and numerous others across 22

industries [13].

Apart from that, this research will focus on

integration testing (API Testing). The rationale for

conducting only integration testing in this study is

grounded in the research by Khorram et al., which

specifically emphasizes the significance of

integration testing, especially in the context of low-

code-based applications [5]. Beside, integration

testing is among the testing types applicable in low-

code development. Integration testing will be

conducted using 2 methods: White Box Testing (API

Testing) and Black Box Testing (integration between

website pages). API testing will be carried out using

two testing tools. One is OutSystems’

BDDFramework, and the other one is Postman which

is a platform for building, using, and also testing APIs

[14]. While UI Testing will be carried out using

Katalon Studio which is an automation testing tool for

conducting UI testing on Web and/or mobile

applications [15]. It is anticipated that the results of

this research will provide guidance on the types of

testing applicable to Low-Code based applications

developed with the OutSystem platform, particularly

in the Personal Environment.

2. RESEARCH METHODOLOGY

This research involves three crucial phases,

namely the preparation of the Application Under Test

(AUT), testing preparation encompassing Test

Planning and Test Case Creation, and the ultimate

stage, Test Execution. The visual representation of

the entire sequence of research stages is depicted in

Figure 1.

Figure 1. Research Flowchart

2.1. AUT Preparation

The first phase that will be taken in this research

is to develop the application and API that will be

tested. Application and API development is

conducted utilizing OutSystems, a platform for low

code development. The environment used is

OutSystems’ Personal Environment.

The Application Under Test (AUT) being

developed is a basic e-shop application that has

Create, Read, Update, and Delete (CRUD) features

and can send data to an API called productsAPI. The

Add To Cart feature was also added to this application

to support integration testing with Black Box Testing.

The ProductsAPI has been developed with

multiple methods, including POST, PUT, DELETE,

and GET (such as GetAllProducts, GetProductById,

GetProductByCategory). This API operates as a

I Dewa Ayu Indira Wulandari Chrisna, et al., LOW CODE INTEGRATION TESTING … 553

Public API, meaning it does not necessitate an

authentication process for data access. Furthermore,

the required data requests are expected to be in JSON

format.

2.2. Testing Preparation

In the second phase, Testing Preparation, two

key activities will be undertaken: Test Planning and

Test Case Generation. During the Test Planning

stage, an evaluation of the application will be

conducted to identify the types of tests applicable to

Low-Code-based applications. Then, Test Cases for

White Box and Black Box integration testing will be

designed at the Test Case Making phase.

This research will focus on Integration Testing

with automation, especially API Testing. Because

based on research conducted by Khorram et al. In

2020, test automation is very important in application

development with Low-Code platforms. Especially

API Testing automation is important in Low Code

Development Platform (LCDP) because Low-Code

based applications use a lot of integration to other

services using APIs [5]. According to [16], in every

testing levels, there are several objects that can be

tested. In AUT preparation and Test Preparation step,

the application will be evaluated to know which test

objects can be tested in OutSystems applications. A

table of those testing objects per testing levels and

OutSystems application’s testability to those objects

will be presented in subsection 3.2. which explain the

results of test planning step.

The methods that will be tested in API testing

are all methods that have been created at the AUT

preparation stage, namely POST, PUT, DELETE, and

3 types of GET (Get All, By Id, and By CategoryId).

This testing will be carried out using 2 different

automation testing tools, namely the BDDFramework

component from OutSystems and Postman.

Integration Testing has a focus on testing

Request/Response accuracy, service availability, and

performance [17]. Therefore, in this research, the test

parameters that will be analyzed in API Testing are

the resulting Status Code and Response Time (ms).

In Black Box testing, the focus will be on

assessing the integration between pages, specifically

the Home Page and the Cart Page. In essence, this test

aims to determine whether the Cart Page accurately

displays identical information as observed before

and/or after modifying the product information on the

Home Page. Katalon Studio, an automation test tool

designed for UI testing, will be utilized to conduct

this testing.

2.3. Testing Execution

At this stage, all test cases that have been created

in the previous stage will be executed. Testing will be

carried out using 2 methods: black box testing and

white box Testing. In the Black Box testing method,

the assessment will involve testing the integration

between pages, specifically focusing on the Home

Page and Cart Page. It is expected that both pages will

display the same data before and after data changes

are made via the Home Page. In Black Box testing,

the Katalon Studio automation test tool will be

utilized. Meanwhile, API Testing (White Box) will be

conducted using two testing tools: BDDFramework

which is a component in OutSystems Forge and

Postman which is an API testing tool to compare

experiences in conducting Low Code API Testing.

OutSystems has a component called

BDDFramework that can be installed in Forge in

OutSystems Service Studio. As usual, OutSystems

provides a web template that has implemented the

BDDFramework, so Citizen Developers only need to

use the template, then write scenarios and Gherkin

scripts, namely Given, When, and Then. Apart from

that, developers can also setup and teardown the

actions that have been carried out during testing to

reset the data so that it is not mixed with the testing

results data. Apart from that, testing applications

using the BDDFramework is recommended to create

a special testing application that is separate from the

existing application. under development. This can be

considered as a form of Version Management.

As is its characteristic as a Low-Code platform,

namely software development using the Drag-and-

Drop method, creating logic for the Given, When, and

Then syntax is also done by pulling the API Method

node, Client Action, and other activities such as

Assign Value, Exception Handling, etc. to the center

of the screen. Designing application logic in general

is also greatly facilitated by AI which can provide

fairly accurate recommendations when developers

assign values.

In the context of API testing, the first thing that

must be done is to consume the REST API (or SOAP

depending on the testing being carried out). After

carrying out Consuming and all Methods have been

saved in the Testing application, the next step is to

start designing the logic that must be carried out

behind each Given, When, and Then scenario.

3. RESULT

In this section will be delivered the result of the

research from each of the research methodology

steps. The third step of this research, namely “Test

Execution” will be divided by three sections: API

Testing in OutSystems, API Testing in Postman, and

UI Testing in Katalon Studio.

3.1. AUT Preparation

At the AUT preparation stage, a simple e-shop

application is created with CRUD features, and in

addition, there is a function to add products to the cart.

Meanwhile, at the API development stage, a REST

API for product data has been created and can be

accessed publicly. The request methods that have

been created are POST, PUT, DELETE, and 3 types

554 Jurnal Teknik Informatika (JUTIF), Vol. 5, No. 2, April 2024, pp. 551-560

of GET (get all products, get product by id, and get

product by category id). The homepage UI of the

simple e-shop application that has been created can

be seen in Figure 2, while the API documentation

page can be seen in Figure 3.

Figure 2. AUT Home Page

Figure 3. API Documentation Page

3.2. Test Preparation

In this study, the feasibility of conducting

testing has been examined based on the four

established testing levels outlined in the Certified

Tester Foundation Level (CTFL) Syllabus, which

include Component Testing, Integration Testing,

System Testing, and Acceptance Testing [16].

After evaluating the application through

development and reviewing relevant documentation,

it has been identified that certain test objects for each

test level cannot be executed in OutSystems'

applications due to limitations in accessing the source

code. Lists of test objects that can be tested in

OutSystems’ application is presented in Table 1.

In test preparation phase, a total of 14 API

Testing Test Cases has been created based on the 6

methods mentioned in the previous subchapter. Test

Cases are built based on 2 main scenarios: valid and

invalid input parameters. API test cases is described

in subsection 3.5.

The aspect that will be examined in UI testing is

integration between application pages (Home Page &

Cart Page). Test Cases are built by paying attention to

the business rules for adding products to Cart,

namely:

1. The product will be displayed on the Cart Page

if the product's addedToCart attribute is > 0.

2. Products can only be added to Cart as many

times as product.Stock.

That way, the range of the number of times a

product is added to the Cart is [1 … product.Stock],

so that by using the Boundary Value Analysis (BVA)

method, there are at least 6 Test Cases that can be

built. The sample test case that has been built is

described in subsection 3.6.

I Dewa Ayu Indira Wulandari Chrisna, et al., LOW CODE INTEGRATION TESTING … 555

Table 1. Possible testing on Low-Code Applications

Testing

Levels

Component

Testing
Integration Testing System Testing Acceptance Testing

Test

Objects

C
o
m

p
o
n
en

ts, u
n
its, o

r m
o
d
u
les

C
o
d
e an

d
 D

ata S
tru

ctu
re

C
lasses

D
atab

ase M
o
d
u
les

S
u
b
sy

stem
s

D
atab

ases

In
frastru

ctu
re

In
terfaces

A
P

Is

M
icro

serv
ices

A
p
p
licatio

n
s

H
ard

w
are/S

o
ftw

are S
y
stem

s

O
p
eratin

g
 S

y
stem

s

S
y
stem

 U
n
d
er T

est (S
U

T
)

S
y
stem

 co
n
fig

u
ratio

n
 an

d
 co

n
fig

u
ratio

n
 d

ata

B
u
sin

ess p
ro

cesses

R
eco

v
ery

 S
y
stem

s

O
p
eratio

n
al an

d
 M

ain
ten

an
ce

F
o
rm

s

R
ep

o
rts

E
x
istin

g
 an

d
 C

o
n
v
erted

 p
ro

d
u
ctio

n
 d

ata

Testability                   

3.3. API Testing in OutSystems

In one application, several Test Suites can be

created by adding new Screens. The screen can then

be filled with several Web Blocks with a BDD

template (Figure 4).

Figure 4. Web Blocks per Test Case

The Test Case that will be used for API testing

with BDDFramework is the same as the Test Case

that was designed based on the test scenario as

described in Table 2. However, there are several

disadvantages when carrying out API Testing with

the BDDFramework. OutSystems has been designed

to have a system that can perform syntax checking

automatically to avoid errors due to syntax or data

type errors, and does not allow empty parameter

input. However, this advantage can become a

disadvantage when carrying out testing which

requires all possibilities including negative scenarios

such as errors in writing data types in input

parameters and cases of sending requests without

parameters. These two types of negative scenarios

cannot be carried out because OutSystems will give

an error warning and the Testing application cannot

be published (run). Therefore, as many as 4 out of 14

Test Cases cannot be carried out using the

BDDFramework. Test cases that can be run with the

BDDFramework are described in Table 2.

Table 2. Testing Result Using BDDFramework

TEST CASE ID Scenario Result

TC-000 Get All Product Test Passed (all products retrieved successfully)

TC-001 Create New Product (valid input) Test Passed (new product added successfully)

TC-003 Edit Product (valid input) Test Passed (product data edited successfully)

TC-004 Edit product (invalid productId) Exception (product with given Id is not found)

TC-006 Delete product (valid productId) Test Passed (product deleted successfully)

TC-007 Delete product (invalid input Id) Test Passed (no product to be deleted)

TC-008 Get product by Id (valid input) Test Passed (product retrieved successfully)

TC-009 Get product by Id (invalid Id) Test Passed (no data in response)

TC-011 Get product by categoryId (valid Id) Test Passed (product retrieved successfully)

TC-012 Get product by categoryId (invalid Id Out of range) Test Passed (no data retrieved)

Figure 5. Web Block TC-009 when test application published

556 Jurnal Teknik Informatika (JUTIF), Vol. 5, No. 2, April 2024, pp. 551-560

In addition, when the Test Suite is run, the

Response Time of each Request cannot be known and

the Status Code requires additional instructions to be

obtained.

Figure 6. When logic creation

Apart from using the BDDFramework,

OutSystems also allows users to perform API testing

per method by double clicking on the method that has

been saved in the Logic section. A pop up will appear

and in the last tab, namely in the "Test" section.

Testing can be done by having a Method in the

Dropdown at the top left, then entering the Request

Body or input parameters as needed (see Figure 7 &

Figure 9). Then, the results can be seen in the same

tab after clicking the Test button (see Figure 8 &

Figure 10). 4 Test Cases that fail to run with the

BDDFramework will be tested using this feature. The

result was that 3 of the 4 Test Cases that could not be

carried out previously, namely TC-005, TC-010, and

TC-013, received test results that matched the

expected results, namely 400 Bad Request.

Meanwhile, TC-002 (Edit product with stock written

as String) received a response of 200 Ok which was

not in line with expectations.

Figure 7. Setup TC-002 in OutSystems

Figure 8. TC-002 testing result OutSystems

Figure 9. Setup TC-010 in OutSystems

Figure 10. TC-010 testing result in OutSystems

3.4. API Testing in Postman

API Testing has been carried out in the Postman

automation test tool by executing 14 Test Cases with

a combination of Positive and Negative Cases. Test

Cases are separated into 4 different folders according

to the Method to be tested. Each Test Case in the same

folder is then executed 1x.

5 of the 13 Test Cases executed had test results

that were different from the expected results. The five

Test Cases that had final results that were different

from the expected results were then re-executed to

validate the results obtained.

Table 3. Test Scenario and API Testing result in Postman

TC

ID
Test Scenario

Expected

Result (Status

Code)

Actual

Result

(Status

Code)

TC-

000
Get All Product 200 Ok 200 Ok

TC-

001

Create New Product

(valid input)
200 Ok 200 Ok

TC-

002

Create New Product

(Invalid Input)

400 Bad

Request

500 Internal

Server

Error

TC-

003

Edit Product (valid

input)
200 Ok 200 Ok

TC-

004

Edit product

(invalid productId)
404 Not found

500 Internal

Server

Error

TC-

005

Edit product

(invalid data type)

400 Bad

Request

400 Bad

Request

TC-

006

Delete product

(valid productId)
200 Ok 200 Ok

I Dewa Ayu Indira Wulandari Chrisna, et al., LOW CODE INTEGRATION TESTING … 557

TC-

007

Delete product

(invalid input Id)
404 Not Found 200 Ok

TC-

008

Get product by Id

(valid input)
200 Ok 200 Ok

TC-

009

Get product by Id

(invalid Id)
404 Not Found 200 Ok

TC-

010

Get product by Id

(invalid Id data

type)

400 Bad

Request

400 Bad

Request

TC-

011

Get product by

categoryId (valid

Id)

200 Ok 200 Ok

TC-

012

Get product by

categoryId (invalid

Id Out of range)

404 Not Found 200 Ok

TC-

013

Get product by

categoryId (invalid

Id data type)

400 Bad

Request

400 Bad

Request

3.5. UI Testing in Katalon Studio

Black Box Testing is carried out by

implementing two testing techniques, namely

Boundary Value Analysis (BVA) and based on

application requirements. The BVA testing technique

works by testing data that is close to the boundaries

of the data to be tested. These data include minimum,

maximum values, just outside the data range, and just

inside the data range [18]. 6 BVA Test Cases have

been executed and the Actual Result obtained is in

accordance with the Expected Result even though

some test results were declared Failed by Katalon

Studio due to a mismatch in the object to be verified.

The following is a report on the results of the Test

Case execution that was carried out at Katalon Studio

using the Record-and-Replay testing technique.

The scenario of TC-101 is to test the application

response when a product called ASUS VivoBook is

added to Cart 0x. Meanwhile, on the TC-102, the

application response was tested when the same

product (ASUS VivoBook) was added to the Cart

once.

Figure 11. TC-101 test steps

Table 4 Response Time API Testing

Method POST PUT DELETE GetAll GET

TC ID
TC-

001

TC-

002

TC-

003

TC-

004

TC-

005

TC-

006

TC-

007

TC-

000

TC-

008

TC-

009

TC-

010

TC-

011

TC-

012

TC-

013

Response

Time (s)
2021 1886 1792 1810 2004 1909 1992 2033 1767 1757 2035 1792 1998 1296

Avg.

Response

Time

1953.5 1868.66 1950.5 2033 1774.16

In the UI Testing execution process, TC-102 is

carried out first to add the product to the Cart once.

After that, TC-101 is executed to test the application

when the product is added to the Cart 0x. As per

Expected Result, once TC-101 is executed, the

product disappears from the Cart Page.

Figure 12. TC-102 test result

Test Case TC-103 was declared failed by

Katalon Studio because in the last step (Verify

Element Present), the objects used were still the same

as the objects used in TC-102 and TC-101. After

executing TC-101, the ASUS VivoBook product has

disappeared from the Cart Page. Therefore, after

being added to the Cart on the TC-103, the XPath

belonging to the ASUS VivoBook product object

changed and its existence could not be verified.

However, when viewed from the applications tested,

ASUS VivoBook products have been successfully

added to Cart 2x in accordance with the TC-103

testing objectives. So, TC-103 is considered

successful and meets the expected results.

TC-104 has a scenario to test the application

response when a product called ASUS VivoBook is

added to the Cart as much as the stock of that product

is reduced by one. In this case, the stock amount of

the ASUS VivoBook is 6. So, the Test Data used is 5

(entering the product into the Cart 5x). Continuing the

results of the previous test which had added the same

product 2x, in this Test Case the product was added

3x more. The result of this test is the Actual Result in

accordance with the Expected Result.

TC-107 and TC-108 are designed based on the

requirements of the application being developed,

namely when the user changes the data of a product

in the Cart via the Home Page, the product data

displayed on the Cart Page must also change (TC-

107). Meanwhile, on TC-108, the user will delete a

product that has been added to the Cart Page via the

Home Page. Expected Result from TC-108 is that the

product is missing from the Home Page or Cart Page.

558 Jurnal Teknik Informatika (JUTIF), Vol. 5, No. 2, April 2024, pp. 551-560

Table 5. Test Case & UI Testing Result

TC ID Scenario Expected

Result

Actual

Result

TC-

101

addedToCart

count = 0

Product not

present in

Cart page

Product not

present in

Cart page

TC-

102

Adding product to

cart (addedToCart

count = 1)

Product

shown in

Cart page

Product

shown in

Cart page

TC-

103

Adding product to

cart (addedToCart

count = 2)

Product

shown in

Cart page

Product

shown in

Cart Page

TC-

104

Adding product to

cart (addedToCart

count = 5)

Product

shown in

Cart page

Product

shown in

Cart Page

TC-

105

Adding product to

cart (addedToCart

count = 6)

Product

appears in

Cart page

Product

shown in

Cart Page

TC-

106

Adding product to

cart (addedToCart

count = 7)

addedToCart

count not

added & a

notification

appears

addedToCart

count not

added & a

notification

appears

TC-

107

An in-Cart product

is edited in Home

Page and the same

edited data must

be shown in Cart

Page

The data

shown in

Cart page is

the same

with Home

Page

The data

shown in

Cart page is

the same

with Home

Page

TC-

108

An in-Cart product

is deleted in Home

Page and that

product must

dissapear from

Cart Page

Product

disappear

from Cart

page

Product

disappear

from Cart

Page

4. DISCUSSION

As indicated in [5] and [6], BDDFramework is

a viable tool for conducting tests on OutSystems

applications, including API Testing. In the research

conducted by [6], the author also performed API

testing using BDDFramework. However, the primary

objective was to illustrate the impacts of certain best

practices in OutSystems development as facilitators

in the test automation process. In contrast, this study

obtained comparative results when conducting API

testing using BDD Framework and Postman.

Furthermore, [6] did not elaborate on the strengths

and weaknesses of BDDFramework as described in

this current research.

From the findings of this research, it is evident

that API testing with Postman yields more

comprehensive results. Postman provides detailed

test results, including the Status Code, Response

Time, and Size of the Response.

Setting up tests using BDDFramework is

relatively uncomplicated, involving the drag-and-

drop of methods or other activities to the central area

of the Service Studio screen (refer to Figure 5).

Nevertheless, this procedure is time-consuming when

compared to the preparation of test cases using

Postman. Importantly, it is acknowledged that this

framework may not encompass all potential

scenarios, such as errors in formulating the Request

body. An example includes the inclusion of a stock

attribute with a string data type instead of the requisite

integer data type, and situations where input

parameters are inadvertently left empty. This

investigation provides insights into the evaluative

aspects of testing objects at each testing level based

on the categorizations outlined in [15].

Table 6. Postman & BDDFramework Comparison

Postman BDDFramework

All test case can be

executed

Some negative test case can’t be

carried out

Visible testing results

are status code,

response time, and

data size

Visible testing results are just wether

the test case is passed or not

Simple, to the point

testing. But needs

more attention to

request body format.

To build the test case, tester only

needs to set up the client actions to be

executed by drag and dropping every

needed component.

Doesn’t need much

time to set up test

cases

Need more time to set up the test case

As illustrated in the comparison table above,

Postman offers several advantages, particularly in

terms of simplicity and efficiency in setting up test

cases, requiring minimal time investment, provide

complete test result data, and have wide negative and

positive case coverage. The drawbacks of using

Postman include the need for testers to be more

careful in writing the request body as errors may lead

to varied results. Postman proves to be a favorable

option for conducting API testing, emphasizing the

examination of the API's behavior and response

across diverse scenarios. Conversely,

BDDFramework serves as a suitable tool for

observing the application's behavior when the API

Method request is integrated into its logic.

From the UI aspect, testing using Katalon has

several advantages, such as the record-replay feature

which can make it easier for testers to define test

steps. However, in UI Testing on Outsystems

applications using Katalon Studio, the tester must pay

attention to the XPath of the captured object,

especially in the add and delete test cases. The reason

is that the resulting XPath may be different and

adjustments must be made for each test case.

5. CONCLUSION

From the research that has been carried out, it is

known that the Outsystems development platform can

be used to create website applications and APIs.

OutSystems also has a component called

BDDFramework which can help developers in the

testing process.

Low code based applications, especially

OutSystems, can be tested based on the four existing

testing levels, namely component, integration,

system, and acceptance. However, from these four

levels, there are test objects that cannot be tested, such

as program source code due to limited access. From

previously developed websites and APIs, there are a

I Dewa Ayu Indira Wulandari Chrisna, et al., LOW CODE INTEGRATION TESTING … 559

total of 23 test cases that can be built to carry out

integration testing.

Following the execution of API testing with

BDDFramework and Postman, it is evident that the

use of Postman proves to be more effective. This is

attributed to the comprehensive testing results

provided and the efficient setup of test cases, which

does not consume much time. Conversely,

BDDFramework is more suitable when the testing

objective is to assess the application's behavior in

various cases related to API usage. However, it is

noteworthy that BDDFramework tends to require

more time in preparing each test case. In UI testing,

employing Katalon Studio is a prudent choice, given

its record-replay feature that significantly aids in

defining test steps.

Future research endeavors could explore testing

low-code-based applications using various testing

methodologies and monitor the evolution of testing

tools and frameworks specifically designed for low-

code applications, particularly those utilizing the

OutSystems platform.

REFERENCES

[1] M. Tisi et al., ‘Lowcomote: Training the Next

Generation of Experts in Scalable Low-Code

Engineering Platforms’, in STAF 2019 Co-

Located Events Joint Proceedings: 1st Junior

Researcher Community Event, 2nd

International Workshop on Model-Driven

Engineering for Design-Runtime Interaction

in Complex Systems, and 1st Research

Project Showcase Workshop co-located with

Software Technologies: Applications and

Foundations (STAF 2019), 2019.

[2] Y. Luo, P. Liang, C. Wang, M. Shahin, and J.

Zhan, “Characteristics and Challenges of

Low-Code Development,” Proceedings of

the 15th ACM / IEEE International

Symposium on Empirical Software

Engineering and Measurement (ESEM), Oct.

2021, doi:

https://doi.org/10.1145/3475716.3475782.

[3] S. Shridhar, “Analysis of Low Code-No Code

Development Platforms in comparison with

Traditional Development Methodologies,”

International Journal for Research in

Applied Science and Engineering

Technology, vol. 9, no. 12, pp. 508–513, Dec.

2021, doi:

https://doi.org/10.22214/ijraset.2021.39328.

[4] OutSystems, “The State of Application

Development,” OutSystems, 2023. Accessed:

Jan. 04, 2024. [Online]. Available:

https://www.outsystems.com/1/state-app-

development-trends/

[5] F. Khorram, J.-M. Mottu, and G. Sunyé,

“Challenges & opportunities in low-code

testing,” Proceedings of the 23rd ACM/IEEE

International Conference on Model Driven

Engineering Languages and Systems:

Companion Proceedings, Oct. 2020, doi:

https://doi.org/10.1145/3417990.3420204.

[6] J. Salgueiro, F. Ribeiro, and José Metrôlho,

“Best Practices for OutSystems Development

and Its Influence on Test Automation,”

Springer eBooks, pp. 85–95, Jan. 2021, doi:

https://doi.org/10.1007/978-3-030-72654-

6_9.

[7] J. E. BENTLEY, W. Bank, & NC. Charlotte.

(2005). Software Testing Fundamentals—

Concepts, Roles, and Terminology Paper

141-30. SUGI 30 Proceedings. Philadelphia,

Pennsylvania: SAS Institute Inc.

[8] A. Dennis, Roberta Marie Roth, and Barbara

Haley Wixom, System Analysis and Design,

Fifth Edition. John Wiley & Sons, 2012.

[9] M. A. Umar, ‘Comprehensive study of

software testing: Categories, levels,

techniques, and types’, vol. 5, pp. 32–40, 11

2019.

[10] “About the detach process,” OutSystems

Community, 2020.

https://www.outsystems.com/forums/discuss

ion/66302/about-the-detach-process/

(accessed Dec. 27, 2023).

[11] “BDDFramework - Overview | OutSystems,”

www.outsystems.com, 2016.

https://www.outsystems.com/forge/compone

nt-

overview/1201/bddframework#:~:text=The

%20BDD%20Framework%20provides%20a

(accessed Dec. 19, 2023).

[12] OutSystems, “Component Testing with

BDDFramework Tools,” Outsystems.com,

2023.

https://success.outsystems.com/documentati

on/11/developing_an_application/testing_yo

ur_application/component_testing_with_bdd

framework_tools/ (accessed Dec. 19, 2023).

[13] D. Golovin, “OutSystems as a Rapid

Application Development Platform for

Mobile and Web Applications,” Thesis,

LAHTI UNIVERSITY OF APPLIED

SCIENCES, 2017. Accessed: Dec. 27, 2023.

[Online]. Available:

https://www.theseus.fi/bitstream/handle/100

24/132267/Golovin_Dmitry.pdf?sequence=2

[14] “Postman API Platform,” Postman, 2023.

https://www.postman.com/product/what-is-

postman/

[15] “Katalon Platform Overview | Platform

Software Testing Tools,” katalon.com, 2023.

https://katalon.com/katalon-platform

[16] D. Friedenberg, M. Hamburg, J. McKay, M.

Posthuma, H. Schaefer, and R. Smilgin,

Certified Tester Foundation Level Syllabus,

560 Jurnal Teknik Informatika (JUTIF), Vol. 5, No. 2, April 2024, pp. 551-560

Version 2018 v3.1.1. International Software

Testing Qualifications Board (ISTQB), 2021.

[17] Outsystems.com, 2023.

https://success.outsystems.com/documentati

on/best_practices/outsystems_testing_guidel

ines/integration/api_testing/ (accessed Dec.

21, 2023).

[18] M. Araújo Cabeda, “Automated Test

Generation Based on an Applicational

Model,” Faculty of Sciences and Technology,

NOVA University Lisbon, 2018..

