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Abstract 
 

Butterflies play a significant role in ecosystems, especially as indicators of the state of biological balance. Each 

butterfly species is distinctly different, although some also show differences with very subtle traits. Etymologists 

recognize butterfly species through manual taxonomy and image analysis, which is time-consuming and costly. 

Previous research has tried to use computer vision technology, but it has shortcomings because it uses a small 

distribution of data, resulting in a lack of programs for recognizing various other types of butterflies. Therefore, 

this research is made to apply computer vision technology with the application of transfer learning, which can 

improve pattern recognition on image data without the need to start the training process from scratch. Transfer 

learning has a main method, which is fine-tuning. Fine-tuning is the process of matching parameter values that 

match the architecture and freezing certain layers of the architecture. The use of this fine-tuning process causes a 

significant increase in accuracy. The difference in accuracy results can be seen before and after using the fine-

tuning process. Thus, this research focuses on using two Convolutional Neural Network architectures, namely 

MobileNetV2 and NASNetMobile. Both architectures have satisfactory accuracy in classifying 75 butterfly species 

by applying the transfer learning method. The results achieved on both architectures using fine-tuning can produce 

an accuracy of 86% for MobileNetV2, while NASNetMobile has a slight difference in accuracy of 85%. 
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1. INTRODUCTION 

Butterflies are a type of insect that is spread all 

over the world. Butterflies have an important role in 

the ecosystem, which includes functions as flower 

pollinators, food sources, and indicators of biological 

well-being[1], [2]. The most striking feature of 

butterflies is the beauty and uniqueness of their 

stunning wings, which are characterized by a wide 

variety of colors and interesting patterns. Each type 

of butterfly has striking differences, in terms of body 

structure, wings, and antennae. There are many 

different species of butterflies, and most of them 

exhibit very subtle characteristic differences, 

especially in their wings[3]. Therefore, to be able to 

differentiate and identify specific butterfly species, 

only a few resources can help, due to the large number 

of variations and similarities between species. 

Etymologists identify butterflies by involving 

taxonomy and manual image processing, a process 

that is time-consuming and costly[4]. Therefore, 

alternative methods are needed to identify different 

types of butterflies. One of them is by using computer 

vision technology[5]. 

Computer vision is an interdisciplinary field of 

study, utilizing the ability of computers to process and 

identify images, and making significant contributions 

to the evolution of artificial intelligence 

technology[5]. In this context, the important role of 

computer vision can be seen in the process of 

analyzing and understanding patterns in image 

data[6]. As an example of its implementation, 

Convolutional Neural Network (CNN) is used in the 

classification process, where this approach uses 

training data to identify the most representative image 

features to describe a particular image class[7]. 

However, the use of CNNs is often faced with certain 

challenges, mainly related to the need for adequate 

hardware, such as a Graphic Processing Unit (GPU), 

as it involves large-scale matrix computation and 

optimization[8]. To overcome this obstacle, the 

concept of transfer learning emerged, which allows 

CNNs to use pre-trained models that already 

understand the general features of the image data. 

Transfer learning refers to the use of models that have 

been pre-trained on a specific image processing task, 

and then adapted for a new task, often by utilizing 

datasets such as ImageNet[9]. Some of the 

architectures developed in the context of transfer 

learning involve MobileNet, ResNet, NASNet, 

EfficientNet, VGG, and others[10]. These concepts 

enable high efficiency in pattern recognition on image 

data without the need to start the training process 

from scratch, accelerating model development and 

improving performance in various computer vision 

tasks[11]. 
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Several previous researches have used transfer 

learning methods to classify butterfly images. One 

such research that covers this can be found in[12]. In 

that research, classification was performed on 17,769 

butterfly images that were divided into 10 different 

classes. The classification process was performed by 

utilizing the VGG16, VGG19, and ResNet50 

architectures. The results showed that the highest 

testing accuracy was achieved by VGG16, which 

amounted to 79.5%, followed by VGG19 with 77.2%, 

and ResNet50 with 70.2%. Furthermore, in another 

research[1], butterfly classification using the 

GoogleNet CNN architecture was conducted. The 

dataset used consisted of 120 images divided into 4 

different species. The division of the dataset is done 

by allocating 80% for training (train) and 20% for 

testing (test). The results showed that the 

classification accuracy reached 97.5%, demonstrating 

the effectiveness of the GoogleNet CNN architecture 

in identifying and classifying butterfly species on the 

given dataset. 

From the discussion of previous research, it can 

be seen that these studies have shortcomings in the 

distribution of datasets. The dataset distribution used 

in research[12] only uses a dataset distribution 

consisting of 10 classes of butterfly species, while in 

research[1] only uses 4 classes of butterfly species. 

The use of limited datasets can result in the program 

only being able to recognize a few different types of 

butterflies, even though there are many different 

types of butterflies. Therefore, this research aims to 

explore a wider dataset of butterfly types so that it can 

provide convenience for etymologists in identifying 

various other types of butterflies. 

Based on these considerations, this research 

proposes a butterfly classification method by utilizing 

a transfer learning approach using MobileNetV2 and 

NASNetMobile architectures. The selection of these 

architectures refers to comparisons that have been 

made in previous studies, especially in[13]. The 

research evaluated the classification of honeybee 

comb cells using various Convolutional Neural 

Network (CNN) architectures such as DenseNet, 

Inception, MobileNet, NasNetMobile, ResNet, and 

Xception. The best results were obtained by the 

MobileNet architecture, achieving an f1-score of 

94.3%. Meanwhile, another research, namely[14], 

also evaluated the classification of cephalopod 

objects using Inception, ResNet50, MobileNetV2, 

Xception, NASNetMobile, and DenseNet201 

architectures. In the research, these architectures went 

through a tuning process, and the best results of the 

tuning were achieved by MobileNetV2 and 

NASNetMobile with an accuracy rate of 89.74%. 

Both architectures will undergo hyperparameter 

tuning, a step to optimize the feature representation to 

fit the task at hand. This process helps overcome 

overfitting and underfitting issues while utilizing 

knowledge from previous tasks. In addition, the 

architecture will also be subjected to layer freezing, a 

technique where some layers of the model remain 

unchanged during the fine-tuning process. This aims 

to ensure that the knowledge gained from previous 

tasks is preserved. Particularly in the early 

convolutional layers, freezing layers allow the model 

to focus more on adjustments in the later layers that 

are more specific to the new dataset or task at hand. 

The main objective of this research is to analyze the 

performance of both architectures in the context of 

the butterfly classification task before and after 

undergoing the tuning process. 

2. METHOD 

 
Figure 1. Research Flow 

 

As seen in Figure 1, this research starts with 

collecting the dataset. After that, the dataset will 

undergo a preprocessing stage and be divided into 

three parts, namely for training, validation, and 

testing purposes. The training and validation datasets 

will be applied in the training process using the 

proposed architectures, namely MobileNetV2 and 

NASNetMobile. Meanwhile, the testing dataset will 

be used to evaluate the training results and to obtain 

the accuracy, precision, recall, and f1-score metrics of 

the developed model[15]. 

2.1. Dataset 

This research utilizes a public dataset taken 

from the Kaggle source 

(https://www.kaggle.com/datasets/phucthaiv02/butte

rfly-image-classification)[16]. This dataset consists 

of 6,499 butterfly images covering 75 different 

species, shown in Figure 3. All images in this dataset 

have dimensions of 224x224 pixels. The class 

distribution in this dataset is unbalanced, the class 

with the highest number of images is Mourning 

Cloak, which includes 131 images, while the class 

with the lowest number of images is Wood Satyr, 

with 71 images, shown in Figure 2. 
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Figure 2. Dataset Distribution 

 

 
Figure 3. Dataset Sample 

2.2. Preprocessing 

Before proceeding to the training stage, the 

dataset undergoes pre-processing. This pre-

processing stage involves image normalization, 

aiming to achieve uniform data distribution as well as 

ensuring consistency of variable scales within the 

entire dataset. Next, the dataset will be divided into 

three parts, with an allocation of 70% for the training 

dataset, 15% for the validation dataset, and 15% for 

the evaluation dataset, as depicted in Figure 4. 
 

 
Figure 4. Dataset Splitting Flow 

2.3. MobileNetV2 and NASNetMobile 

The first architecture proposed in this research 

is MobileNetV2. The MobileNetV2 architecture is 

known as a lightweight architecture with fewer 

layers, specifically designed for mobile and 

embedded devices. As detailed in Table 1, the 

original MobileNetV2 architecture has a fully 

connected layer with 32 filters, followed by 19 

residual bottleneck layers[8]. In addition to these 

layers, there is also ReLU6, a dropout layer, an 

average pooling layer, and batch normalization[15]. 
 

Table 1. The Original Architecture of MobileNetV2 

Input Operator Output 

2242 x 3 conv2d 32 

1122 x 32 Bottleneck 16 

1122 x 16 Bottleneck 24 

562 x 24 Bottleneck 32 

282 x 32 Bottleneck 64 

142 x 64 Bottleneck 96 

142 x 96 Bottleneck 160 

72 x 160 Bottleneck 320 

72 x 1280 Bottleneck 1280 

72 x 1280 Bottleneck - 

1 x 1 x 1280 Conv2d 1 x 1 k 

 

The next architecture proposed is 

NasNetMobile, a concept generated by Google's 

development team to find optimal parameters and 

create superior models. Developed through the 

application of the Neural Architecture Search (NAS) 

technique, NASNet utilizes an automated process for 

designing neural networks, resulting in an 

architecture that is capable of providing superior 

performance compared to designs created by human 

experts[17]. A depiction of the NASNetMobile 

architecture's is presented in Figure 5. The white-

colored input label signifies the concealed state from 

the input image. Meanwhile, the output, a pink hue, 

results from a concatenation operation encompassing 

all outcomes. Each convolutional cell emerges from 

B blocks, with a solitary block comprising two 

fundamental operations, denoted in yellow, and a 

conjoining operation marked in green. This intricate 

structure highlights the intricate interplay of primitive 

and combinatory operations within the architecture. 

In this research, as documented in Tables 2 and 

3, both architectures utilize the pre-trained from 

imagenet as the base model. The architecture is then 

extended with the addition of several layers. These 
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layers are the flatten and dense layers. The flatten 

layer is used to convert the output of the previous 

layer into a one-dimensional vector, allowing the 

computational process in the next layer to be more 

efficient. Then, the dense layer is used to connect the 

results of the convolution process to pave the way for 

the classification process. 
 

 
Figure 5. The Original Architecture of NASNetMobile 

 

Table 2. The Architecture of MobileNetV2 in Research 

Layer (type) Output Shape 

Input Layer (None, 224, 224, 3) 

MobileNetV2 (None, 7, 7, 1280) 

flatten (Flatten) (None, 62720) 

dense (Dense) (None, 256) 

dense_1 (Dense) (None, 75) 

 

Table 3. The Architecture of NASNetMobile in Research 

Layer (type) Output Shape 

Input Layer (None, 224, 224, 3) 

NASNetMobile (None, 7, 7, 1056) 

flatten (Flatten) (None, 62720) 

dense (Dense) (None, 256) 

dense_1 (Dense) (None, 75) 

 

In the dense layer, the RELU (Rectified Linear 

Activation) activation function is used to provide an 

element of non-linearity to the model (1). The 

Softmax activation function is also applied to the last 

dense layer to support the multi-class classification 

(2). Where X_m is the value of class m, while k is the 

number of classes and Euler number 2.71828. 

𝑅𝑒𝑙𝑢 (𝑖) = 𝑚𝑎𝑥 (0, 𝑖) (1) 

𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (𝑥_𝑚) =  
𝑒𝑋𝑚

∑ 𝑒𝑋𝑛𝑘
𝑛=1

 (2) 

In addition, the optimization in this research 

uses Adam's algorithm. Adam's algorithm is a 

randomized stepwise optimization algorithm that 

combines the first and second moments of the 

gradient to update the parameters. Equations (3), (4), 

(5), (6), and (7) describe the Adam's Algorithm 

formula applied in this research. Where m is the 

momentum, beta is the parameter recurrence, the 

gradient is the gradient of the loss function for the 

parameter, p is the parameter, t is the iteration, lr is 

the learning rate, and epsilon is a small number to 

avoid division by zero. 

𝑚1 =  𝑏𝑒𝑡𝑎1 ×  𝑚1 + (1 − 𝑏𝑒𝑡𝑎1) × 𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡(3) 

𝑚2 =  𝑏𝑒𝑡𝑎2 × 𝑚2 + (1 − 𝑏𝑒𝑡𝑎2) × 𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡(4) 

𝑚1ℎ𝑎𝑡 =  𝑚1 ÷  (1 −  𝑏𝑒𝑡𝑎1𝑡) (5) 

𝑚2ℎ𝑎𝑡 =  𝑚2 ÷  (1 −  𝑏𝑒𝑡𝑎2𝑡)  (6) 

𝑝 =  𝑝 − 𝑙𝑟 × 𝑚1ℎ𝑎𝑡 ÷ (√𝑚2ℎ𝑎𝑡 + 𝑒𝑝𝑠𝑖𝑙𝑜𝑛) (7) 

2.4. Evaluation 

The use of evaluation metrics is necessary to 

determine the classification ability of the trained 

model. The evaluation metrics used in this research 

include accuracy, precision, and recall or sensitivity. 

Accuracy is the ratio of the correct prediction class to 

the total amount of data evaluated (8). Precision is the 

accuracy of correct positive predictions against all 

positive predictions (9). Recall or Sensitivity, 

measures the accuracy in making correct positive 

predictions against all correct predictions (10). Where 

TP, FP, TN, and FN are the number of cases classified 

as true positive, false positive, true negative, and false 

negative. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
  (8) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃+ 𝐹𝑃
 (9) 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃+ 𝐹𝑁
 (10) 

3. RESULT AND DISCUSSION 

The implementation was carried out on the 

Kaggle platform, using a P-100 GPU with 16 GB of 

memory and 30 GB of RAM. Experiments were run 

in Python and supported by various libraries, such as 

TensorFlow, Keras, NumPy, scikit-learn, Matplotlib, 

and Pandas. The experimental process consists of two 

stages in the implementation phase. First, there is a 

training process with initial parameters, such as batch 

size 32, learning rate 0.001, epoch 25, and freeze on 

all layers. The second stage involves fine-tuning the 

architecture, which includes changing the batch size, 

and learning rate, and modifying the number of layers 

that are frozen. 

Table 4 displays the implementation results of 

the proposed architectures, MobileNetV2 and 

NASNetMobile, on the datasets used in this research. 

A summary of the accuracy, precision, recall, and 

training time results for both architectures can be 

found in the table. MobileNetV2, using the default 

parameters, achieved an accuracy rate of 71%, with a 

training duration of 2 minutes and 3 seconds. Fine-

tuning the parameters increased the accuracy to 86%, 

with a training time of 5 minutes and 26 seconds. In 

MobileNetV2 architecture tuning, optimal results 
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were obtained by using a batch size of 16, a learning 

rate of 0.0001, and freezing the front 40% of the layer. 

On the other hand, NASNetMobile with default 

parameters produced an accuracy of 57%, with a 

training duration of 5 minutes and 3 seconds. 

However, with fine-tuning, the accuracy increased to 

85%, and the training time took 10 minutes and 41 

seconds. The tuning of the NASNetMobile 

architecture showed the best results with a batch size 

of 32, a learning rate of 0.0001, and freezing of the 

front 30% of the layer.  

Both architectures showed almost identical 

precision and recall results when using fine-tuning 

parameters. However, significant differences were 

seen in the precision and recall results when using the 

default parameters. Although there were variations in 

the accuracy, precision, and recall values during 

training with the default parameters, the differences 

were not as pronounced when using the fine-tuning 

parameters. This shows that both architectures are 

capable of performing good classification for 75 

classes of butterfly images. 

Although there is a considerable difference in 

the accuracy levels before and after the tuning 

process, the training graph shows that the pattern of 

results does not substantially change between the pre-

and post-tuning stages. In the MobileNetV2 

architecture graph in Figure 6, there is an increase in 

accuracy at each epoch, although the stability does 

not reach the optimal level, both in the training 

accuracy graph and the validation accuracy graph. 

 

Table 4. Implementation Result 

Model Accuracy 
Precision Recall 

Training Time 
macro weighted macro weighted 

MobileNetV2 0.7149 0.7505 0.7631 0.7175 0.7149 2 minutes 3 second 

MobileNetV2 with fine-tuning 0.8677 0.8828 0.8865 0.8736 0.8677 5 minutes 26 seconds 

NASNetMobile 0.5795 0.6391 0.6528 0.5725 0.5795 5 minutes 3 seconds 

NASNetMobile with fine-tuning 0.8533 0.8669 0.8769 0.8552 0.8533 10 minutes 41 seconds 

 

In addition, the pattern seen in the loss graph of 

the MobileNetV2 architecture shows significant 

improvement, with a decrease in loss values seen 

throughout the training and validation process as the 

epochs progress, although there is still instability. It 

is important to note that the loss graph of the 

MobileNetV2 architecture does not show any signs of 

overfitting, as the training loss graph and the 

validation loss graph remain relatively small 

differences. The results of the training graphs on the 

MobileNetV2 architecture show that the number of 

epochs used is appropriate for the desired conditions. 

Similar to MobileNetV2, the NASNetMobile 

architecture shown in Figure 7 also shows an increase 

in accuracy at each epoch, and the stability does not 

reach the optimal level, both in the training accuracy 

graph and the validation accuracy graph. 
 

 
Figure 6. MobileNetV2 Graph (a) Loss Before Tuning (b) Loss 

After Tuning (c) Accuracy Before Tuning (d) Accuracy After 

Tuning 

The pattern seen in the loss graph of the 

NASNetMobile architecture also indicates a 

significant improvement, with the loss value 

decreasing during the training and validation process 

as epochs pass, although there is still instability that 

needs to be considered. In the NASNetMobile 

architecture, as in MobileNetV2, there are no signs of 

overfitting, as the training loss graph and validation 

loss graph continue to show relatively small 

differences. Thus, the results of the training graph on 

the NASNetMobile architecture indicate that the 

number of epochs used is appropriate for the desired 

conditions. 
 

 
Figure 7. NASNetMobile Graph (a) Loss Before Tuning (b) Loss 

After Tuning (c) Accuracy Before Tuning (d) Accuracy After 

Tuning 

4. DISCUSSION 

This research evaluates the performance of two 

architectures, namely MobileNetV2 and 
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NASNetMobile, by applying the transfer learning 

method using pre-trained models from ImageNet as 

the foundation of the butterfly dataset. The 

experiments involved parameter adjustments and 

layer freezing for fine-tuning both architectures. 

MobileNetV2, when using the default parameters, 

achieved an accuracy rate of 71% in a training time 

of 2 minutes and 3 seconds. Through the application 

of fine-tuning the parameters, the accuracy increased 

to 86% but required a longer training time of 5 

minutes and 26 seconds. In tuning the MobileNetV2 

architecture, optimal results were achieved with a 

batch size of 16, a learning rate of 0.0001, and 

freezing of the front 40% of the layer. Meanwhile, 

NASNetMobile with default parameters initially 

recorded 57% accuracy in a training time of 5 minutes 

and 3 seconds. However, through fine-tuning, the 

accuracy improved to 85%, with a significantly 

longer training time of 10 minutes and 41 seconds. 

Tuning on the NASNetMobile architecture showed 

the best results with a batch size of 32, a learning rate 

of 0.0001, and freezing of the front 30% of the layer. 

Overall, the implementation results indicate that fine-

tuning has a significant positive impact on improving 

model accuracy. From the results presented, the 

MobileNetV2 architecture shows superior accuracy 

performance compared to NASNetMobile on the 

dataset used. 

The difference in accuracy values before and 

after the fine-tuning process is influenced by the 

parameter values during training and the number of 

layers frozen. The learning rate and batch size play a 

crucial role in influencing the parameters. Both 

architectures experienced optimal tuning at a learning 

rate of 0.0001. The application of a low learning rate 

has a positive impact on model convergence, 

especially when the training data has a high level of 

noise or variation, such as in this research, where the 

images in the dataset still contain backgrounds with 

various colors. Using a low learning rate allows the 

model to adjust parameters more carefully during the 

training process, reducing the risk of overfitting and 

improving overall convergence[18]. Batch size 

tuning also has a significant effect on the difference 

in accuracy levels before and after the fine-tuning 

process. On the MobileNetV2 architecture, the 

optimal batch size is 16, while on the NASNetMobile 

architecture, the optimal batch size reaches 32. Both 

batch sizes fall into the small category. The advantage 

of using a small batch size is seen in the ability of the 

model to converge more effectively[19]. By updating 

the parameters every iteration, the small batch size 

allows the model to respond responsively to data 

variations, making it easier to adjust to the specific 

characteristics of the dataset used. This provides 

greater flexibility in coping with data dynamics and 

diversity, as well as improving overall performance 

during the training process[20]. 

In addition, the number of layers that are fine-

tuned also has a significant impact. In the context of 

this research, the fine-tuning process involves 

freezing many layers at the beginning of the 

architecture. This approach allows the model the 

flexibility to adapt to specific data while retaining the 

information obtained from the pre-trained model[21]. 

MobileNetV2 achieves optimal results when about 

40% of all layers are freeze, while NASNetMobile 

achieves the best results with layer freezing at only 

the initial 30%. The impact of layer freezing occurs 

because Imagenet's pre-trained model already has an 

understanding of butterflies. However, to improve the 

performance in recognizing butterflies based on the 

dataset of this research, it is necessary to adjust the 

weights in the architecture. It is also important to note 

that the effect of layer freezing is manifested in the 

training time of the model[22]. The efficiency of 

training time, especially on the NASNetMobile 

architecture, takes longer. This is due to the larger 

number of weights being updated due to more layer 

freezes, as well as the larger number of layers built-in 

to NASNetMobile compared to MobileNetV2, which 

is about 5.3 million compared to 3.5 million[23]. 

In the discussion above, the utilization of 

transfer learning in MobileNetV2 and 

NASNetMobile has been proven to increase the 

accuracy rate in butterfly classification. The highest 

accuracy rate achieved was 86%, showing a 

significant improvement compared to previous 

studies that used the VGG19 architecture and only 

achieved an accuracy of 79.5%[12]. This study was 

also able to achieve a satisfactory accuracy rate by 

considering 75 different butterfly classes, a much 

larger number compared to previous studies that only 

focused on 4 and 10 butterfly classes[1], [12]. By 

utilizing transfer learning and a suitable fine-tuning 

process, this research can improve the accuracy of 

results even more and recognize many other types of 

butterflies. 

5. CONCLUSION 

Based on the evaluation, these two architectures 

show good ability in classifying butterfly images 

using the transfer learning method. Before the use of 

transfer learning, both architectures were tested using 

the default parameters of a learning rate of 0.001 and 

a batch size of 32. The accuracy result created by 

MobileNetV2 reached 71%, while NASNetMobile 

had a significant difference in accuracy of 57%. 

Furthermore, both architectures were trained with 

appropriate fine-tuning and the highest accuracy 

reached 86% by MobileNetV2 with a learning rate 

parameter of 0.0001, batch size of 16, and Adam 

optimizer. For NASNetMobile, the accuracy was 

slightly higher at 85% with a learning rate parameter 

of 0.0001, batch size of 32, and the same optimizer as 

MobileNetV2. The difference in results is due to the 

different architectural layers, the MobileNetV2 layer 

is lighter and the layer's understanding of the dataset 

is greater, which is 40% in the front layer, while 

NASNetMobile is only 30% in the front layer. In 
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addition, the advantages of MobileNetV2 can be seen 

from the speed of pre-training, which takes 5 minutes 

and 26 seconds, unlike NasNetMobile which takes 

more time, 10 minutes and 41 seconds. This time 

difference is also caused by the number of layers in 

each architecture. 

For future research to improve the accuracy rate, 

a segmentation approach can be implemented. This 

method involves applying segmentation techniques 

such as K-Means and GrabCut, or even utilizing deep 

learning approaches such as U2Net. In addition, to 

balance the distribution of the number of datasets in 

each class, augmentation or undersampling measures 

can be taken. These efforts are expected to produce 

more optimized results and improve the overall 

accuracy of the research. 

BIBLIOGRAPHY 

[1] N. N. K. Arzar, N. Sabri, N. F. M. Johari, A. 

A. Shari, M. R. M. Noordin, and S. Ibrahim, 

“IEEE International Conference on 

Automatic Control and Intelligent Systems,” 

in IEEE Control Systems Society. Chapter 

MalaysiaInstitute of Electrical and 

Electronics Engineers, 2019. 

[2] E. Hartati, K. Kunci, and K. Kupu, 

“Klasifikasi Spesies Kupu Kupu 

Menggunakan Metode Convolutional Neural 

Network,” in MDP Student Conference 

(MSC), 2022, pp. 569–577. 

[3] L. Zhu and P. Spachos, “Towards Image 

Classification with Machine Learning 

Methodologies for Smartphones,” Mach 

Learn Knowl Extr, vol. 1, no. 4, pp. 1039–

1057, Dec. 2019, doi: 

10.3390/make1040059. 

[4] T. Y. Chen, “MonarchNet: Differentiating 

Monarch Butterflies from Butterflies Species 

with Similar Phenotypes,” Jan. 2022, doi: 

10.1096/fasebj.2021.35.S1.05504. 

[5] B. A. Bakri, Z. Ahmad, and S. M. Hatim, 

“Butterfly family detection and identification 

using convolutional neural network for 

lepidopterology,” International Journal of 

Recent Technology and Engineering, vol. 8, 

no. 2 Special Issue 11, pp. 635–640, Sep. 

2019, doi: 10.35940/ijrte.B1099.0982S1119. 

[6] H. He, “The Comparison and Analysis of 

Classic Convolutional Neural Network in the 

Field of Computer Vision,” in IOP 

Conference Series: Materials Science and 

Engineering, Institute of Physics Publishing, 

Mar. 2020. doi: 10.1088/1757-

899X/740/1/012153. 

[7] A. K. Sharma et al., “Dermatologist-Level 

Classification of Skin Cancer Using 

Cascaded Ensembling of Convolutional 

Neural Network and Handcrafted Features 

Based Deep Neural Network,” IEEE Access, 

vol. 10, pp. 17920–17932, 2022, doi: 

10.1109/ACCESS.2022.3149824. 

[8] P. Langgeng, W. E. Putra, M. Naufal, and E. 

Y. Hidayat, “A Comparative Study of 

MobileNet Architecture Optimizer for Crowd 

Prediction,” Semarang 123 Jl. Imam Bonjol 

No, vol. 8, no. 3, p. 50131, 2023. 

[9] T. Ridnik, E. Ben-Baruch, A. Noy, and L. 

Zelnik-Manor, “ImageNet-21K Pretraining 

for the Masses,” Apr. 2021, [Online]. 

Available: http://arxiv.org/abs/2104.10972 

[10] Livinus Ifunanya Umeaduma, “Survey of 

image classification models for transfer 

learning,” World Journal of Advanced 

Research and Reviews, vol. 21, no. 1, pp. 

373–383, Jan. 2024, doi: 

10.30574/wjarr.2024.21.1.0006. 

[11] A. S. C. K. Ravi Joshi Annapurna 

Maritammanavar, “Transfer Learning in 

Computer Vision: Technique and 

applications,” Tuijin Jishu/Journal of 

Propulsion Technology, 2023, [Online]. 

Available: 

https://api.semanticscholar.org/CorpusID:26

5648825 

[12] A. S. Almryad and H. Kutucu, “Automatic 

identification for field butterflies by 

convolutional neural networks,” Engineering 

Science and Technology, an International 

Journal, vol. 23, no. 1, pp. 189–195, Feb. 

2020, doi: 10.1016/j.jestch.2020.01.006. 

[13] T. S. Alves et al., “Automatic detection and 

classification of honey bee comb cells using 

deep learning,” Comput Electron Agric, vol. 

170, Mar. 2020, doi: 

10.1016/j.compag.2020.105244. 

[14] P. Anantha Prabha, G. Suchitra, and R. 

Saravanan, “Cephalopods Classification 

Using Fine Tuned Lightweight Transfer 

Learning Models,” Intelligent Automation 

and Soft Computing, vol. 35, no. 3, pp. 3065–

3079, 2023, doi: 10.32604/iasc.2023.030017. 

[15] K. Apivanichkul, P. Phasukkit, and P. 

Dankulchai, “The Effect of Preprocessing on 

U-Net for Bladder Segmentation in CT 

Images,” in International STEM Education 

Conference (iSTEM-Ed), 2023, pp. 1–5. doi: 

10.1109/iSTEM-Ed59413.2023.10305805. 

[16] DIPIE, 

“https://www.kaggle.com/datasets/phucthaiv

02/butterfly-image-classification,” 

KAGGLE. 

[17] H. K. Dishar and L. A. Muhammed, 

“Detection Brain Tumor Disease Using a 

Combination of Xception and 

NASNetMobile,” International Journal of 

Advances in Soft Computing and its 



692   Jurnal Teknik Informatika (JUTIF), Vol. 5, No. 3, June 2024, pp. 685-692 

Applications, vol. 15, no. 2, pp. 325–336, 

2023, doi: 10.15849/IJASCA.230720.22. 

[18] Y. Ding, “The Impact of Learning Rate 

Decay and Periodical Learning Rate Restart 

on Artificial Neural Network,” in 

Proceedings of the 2021 2nd International 

Conference on Artificial Intelligence in 

Electronics Engineering, in AIEE ’21. New 

York, NY, USA: Association for Computing 

Machinery, 2021, pp. 6–14. doi: 

10.1145/3460268.3460270. 

[19] H. Iiduka, “The Number of Steps Needed for 

Nonconvex Optimization of a Deep Learning 

Optimizer is a Rational Function of Batch 

Size,” Aug. 2021, [Online]. Available: 

http://arxiv.org/abs/2108.11713 

[20] Z. Hu, J. Xiao, N. Sun, and G. Tan, “Fast and 

accurate variable batch size convolution 

neural network training on large scale 

distributed systems,” Concurr Comput, vol. 

34, no. 21, p. e7119, 2022, doi: 

https://doi.org/10.1002/cpe.7119. 

[21] R. Anditto and R. Roestam, “SECURITY 

MONITORING USING IMPROVED 

MOBILENET V2 WITH FINE-TUNING 

TO PREVENT THEFT IN RESIDENTIAL 

AREAS DURING THE COVID-19 

PANDEMIC,” Science and Information 

Technology, vol. Vol. 5, no. No 1, pp. 87–94, 

2022, [Online]. Available: 

https://doi.org/10.31598 

[22] Q. Li, J. Zhang, and Z. Chen, “Detection on 

difficult small objects using layer-wise 

training strategy,” in Proceedings of 2020 

IEEE 3rd International Conference of Safe 

Production and Informatization, IICSPI 

2020, Institute of Electrical and Electronics 

Engineers Inc., Nov. 2020, pp. 282–286. doi: 

10.1109/IICSPI51290.2020.9332370. 

[23] T. Hong Chun et al., “Efficacy of the Image 

Augmentation Method using CNN Transfer 

Learning in Identification of Timber Defect,” 

2022. [Online]. Available: 

www.ijacsa.thesai.org. 


