
Jurnal Teknik Informatika (JUTIF) DOI: https://doi.org/10.52436/1.jutif.2024.5.3.1583
Vol. 5, No. 3, June 2024, pp. 685-692 p-ISSN: 2723-3863
 e-ISSN: 2723-3871

685

OPTIMIZING BUTTERFLY CLASSIFICATION THROUGH TRANSFER LEARNING:

FINE-TUNING APPROACH WITH NASNETMOBILE AND MOBILENETV2

Ni Kadek Devi Adnyaswari Putri*1, Ardytha Luthfiarta2, Permana Langgeng Wicaksono Ellwid Putra3

1,2,3Study Program in Informatics Engineering, Faculty of Computer Science, Universitas Dian Nuswantoro,

Indonesia

Email: 1adnyaswaridevi386@gmail.com, 2ardytha.lutfiarta@dsn.dinus.ac.id, 3langgeng86@gmail.com

(Article received: December 06, 2023; Revision: January 15, 2024; published: May 18, 2024)

Abstract

Butterflies play a significant role in ecosystems, especially as indicators of the state of biological balance. Each

butterfly species is distinctly different, although some also show differences with very subtle traits. Etymologists

recognize butterfly species through manual taxonomy and image analysis, which is time-consuming and costly.

Previous research has tried to use computer vision technology, but it has shortcomings because it uses a small

distribution of data, resulting in a lack of programs for recognizing various other types of butterflies. Therefore,

this research is made to apply computer vision technology with the application of transfer learning, which can

improve pattern recognition on image data without the need to start the training process from scratch. Transfer

learning has a main method, which is fine-tuning. Fine-tuning is the process of matching parameter values that

match the architecture and freezing certain layers of the architecture. The use of this fine-tuning process causes a

significant increase in accuracy. The difference in accuracy results can be seen before and after using the fine-

tuning process. Thus, this research focuses on using two Convolutional Neural Network architectures, namely

MobileNetV2 and NASNetMobile. Both architectures have satisfactory accuracy in classifying 75 butterfly species

by applying the transfer learning method. The results achieved on both architectures using fine-tuning can produce

an accuracy of 86% for MobileNetV2, while NASNetMobile has a slight difference in accuracy of 85%.

Keywords: butterfly classification, fine-tuning, MobileNetV2, NASNetMobile, transfer learning.

1. INTRODUCTION

Butterflies are a type of insect that is spread all

over the world. Butterflies have an important role in

the ecosystem, which includes functions as flower

pollinators, food sources, and indicators of biological

well-being[1], [2]. The most striking feature of

butterflies is the beauty and uniqueness of their

stunning wings, which are characterized by a wide

variety of colors and interesting patterns. Each type

of butterfly has striking differences, in terms of body

structure, wings, and antennae. There are many

different species of butterflies, and most of them

exhibit very subtle characteristic differences,

especially in their wings[3]. Therefore, to be able to

differentiate and identify specific butterfly species,

only a few resources can help, due to the large number

of variations and similarities between species.

Etymologists identify butterflies by involving

taxonomy and manual image processing, a process

that is time-consuming and costly[4]. Therefore,

alternative methods are needed to identify different

types of butterflies. One of them is by using computer

vision technology[5].

Computer vision is an interdisciplinary field of

study, utilizing the ability of computers to process and

identify images, and making significant contributions

to the evolution of artificial intelligence

technology[5]. In this context, the important role of

computer vision can be seen in the process of

analyzing and understanding patterns in image

data[6]. As an example of its implementation,

Convolutional Neural Network (CNN) is used in the

classification process, where this approach uses

training data to identify the most representative image

features to describe a particular image class[7].

However, the use of CNNs is often faced with certain

challenges, mainly related to the need for adequate

hardware, such as a Graphic Processing Unit (GPU),

as it involves large-scale matrix computation and

optimization[8]. To overcome this obstacle, the

concept of transfer learning emerged, which allows

CNNs to use pre-trained models that already

understand the general features of the image data.

Transfer learning refers to the use of models that have

been pre-trained on a specific image processing task,

and then adapted for a new task, often by utilizing

datasets such as ImageNet[9]. Some of the

architectures developed in the context of transfer

learning involve MobileNet, ResNet, NASNet,

EfficientNet, VGG, and others[10]. These concepts

enable high efficiency in pattern recognition on image

data without the need to start the training process

from scratch, accelerating model development and

improving performance in various computer vision

tasks[11].

https://doi.org/10.52436/1.jutif.2024.5.3.1583
mailto:adnyaswaridevi386@gmail.com
mailto:ardytha.lutfiarta@dsn.dinus.ac.id
mailto:langgeng86@gmail.com

686 Jurnal Teknik Informatika (JUTIF), Vol. 5, No. 3, June 2024, pp. 685-692

Several previous researches have used transfer

learning methods to classify butterfly images. One

such research that covers this can be found in[12]. In

that research, classification was performed on 17,769

butterfly images that were divided into 10 different

classes. The classification process was performed by

utilizing the VGG16, VGG19, and ResNet50

architectures. The results showed that the highest

testing accuracy was achieved by VGG16, which

amounted to 79.5%, followed by VGG19 with 77.2%,

and ResNet50 with 70.2%. Furthermore, in another

research[1], butterfly classification using the

GoogleNet CNN architecture was conducted. The

dataset used consisted of 120 images divided into 4

different species. The division of the dataset is done

by allocating 80% for training (train) and 20% for

testing (test). The results showed that the

classification accuracy reached 97.5%, demonstrating

the effectiveness of the GoogleNet CNN architecture

in identifying and classifying butterfly species on the

given dataset.

From the discussion of previous research, it can

be seen that these studies have shortcomings in the

distribution of datasets. The dataset distribution used

in research[12] only uses a dataset distribution

consisting of 10 classes of butterfly species, while in

research[1] only uses 4 classes of butterfly species.

The use of limited datasets can result in the program

only being able to recognize a few different types of

butterflies, even though there are many different

types of butterflies. Therefore, this research aims to

explore a wider dataset of butterfly types so that it can

provide convenience for etymologists in identifying

various other types of butterflies.

Based on these considerations, this research

proposes a butterfly classification method by utilizing

a transfer learning approach using MobileNetV2 and

NASNetMobile architectures. The selection of these

architectures refers to comparisons that have been

made in previous studies, especially in[13]. The

research evaluated the classification of honeybee

comb cells using various Convolutional Neural

Network (CNN) architectures such as DenseNet,

Inception, MobileNet, NasNetMobile, ResNet, and

Xception. The best results were obtained by the

MobileNet architecture, achieving an f1-score of

94.3%. Meanwhile, another research, namely[14],

also evaluated the classification of cephalopod

objects using Inception, ResNet50, MobileNetV2,

Xception, NASNetMobile, and DenseNet201

architectures. In the research, these architectures went

through a tuning process, and the best results of the

tuning were achieved by MobileNetV2 and

NASNetMobile with an accuracy rate of 89.74%.

Both architectures will undergo hyperparameter

tuning, a step to optimize the feature representation to

fit the task at hand. This process helps overcome

overfitting and underfitting issues while utilizing

knowledge from previous tasks. In addition, the

architecture will also be subjected to layer freezing, a

technique where some layers of the model remain

unchanged during the fine-tuning process. This aims

to ensure that the knowledge gained from previous

tasks is preserved. Particularly in the early

convolutional layers, freezing layers allow the model

to focus more on adjustments in the later layers that

are more specific to the new dataset or task at hand.

The main objective of this research is to analyze the

performance of both architectures in the context of

the butterfly classification task before and after

undergoing the tuning process.

2. METHOD

Figure 1. Research Flow

As seen in Figure 1, this research starts with

collecting the dataset. After that, the dataset will

undergo a preprocessing stage and be divided into

three parts, namely for training, validation, and

testing purposes. The training and validation datasets

will be applied in the training process using the

proposed architectures, namely MobileNetV2 and

NASNetMobile. Meanwhile, the testing dataset will

be used to evaluate the training results and to obtain

the accuracy, precision, recall, and f1-score metrics of

the developed model[15].

2.1. Dataset

This research utilizes a public dataset taken

from the Kaggle source

(https://www.kaggle.com/datasets/phucthaiv02/butte

rfly-image-classification)[16]. This dataset consists

of 6,499 butterfly images covering 75 different

species, shown in Figure 3. All images in this dataset

have dimensions of 224x224 pixels. The class

distribution in this dataset is unbalanced, the class

with the highest number of images is Mourning

Cloak, which includes 131 images, while the class

with the lowest number of images is Wood Satyr,

with 71 images, shown in Figure 2.

Jurnal Teknik Informatika (JUTIF) DOI: https://doi.org/10.52436/1.jutif.2024.5.3.1583
Vol. 5, No. 3, June 2024, pp. 685-692 p-ISSN: 2723-3863
 e-ISSN: 2723-3871

687

Figure 2. Dataset Distribution

Figure 3. Dataset Sample

2.2. Preprocessing

Before proceeding to the training stage, the

dataset undergoes pre-processing. This pre-

processing stage involves image normalization,

aiming to achieve uniform data distribution as well as

ensuring consistency of variable scales within the

entire dataset. Next, the dataset will be divided into

three parts, with an allocation of 70% for the training

dataset, 15% for the validation dataset, and 15% for

the evaluation dataset, as depicted in Figure 4.

Figure 4. Dataset Splitting Flow

2.3. MobileNetV2 and NASNetMobile

The first architecture proposed in this research

is MobileNetV2. The MobileNetV2 architecture is

known as a lightweight architecture with fewer

layers, specifically designed for mobile and

embedded devices. As detailed in Table 1, the

original MobileNetV2 architecture has a fully

connected layer with 32 filters, followed by 19

residual bottleneck layers[8]. In addition to these

layers, there is also ReLU6, a dropout layer, an

average pooling layer, and batch normalization[15].

Table 1. The Original Architecture of MobileNetV2

Input Operator Output

2242 x 3 conv2d 32

1122 x 32 Bottleneck 16

1122 x 16 Bottleneck 24

562 x 24 Bottleneck 32

282 x 32 Bottleneck 64

142 x 64 Bottleneck 96

142 x 96 Bottleneck 160

72 x 160 Bottleneck 320

72 x 1280 Bottleneck 1280

72 x 1280 Bottleneck -

1 x 1 x 1280 Conv2d 1 x 1 k

The next architecture proposed is

NasNetMobile, a concept generated by Google's

development team to find optimal parameters and

create superior models. Developed through the

application of the Neural Architecture Search (NAS)

technique, NASNet utilizes an automated process for

designing neural networks, resulting in an

architecture that is capable of providing superior

performance compared to designs created by human

experts[17]. A depiction of the NASNetMobile

architecture's is presented in Figure 5. The white-

colored input label signifies the concealed state from

the input image. Meanwhile, the output, a pink hue,

results from a concatenation operation encompassing

all outcomes. Each convolutional cell emerges from

B blocks, with a solitary block comprising two

fundamental operations, denoted in yellow, and a

conjoining operation marked in green. This intricate

structure highlights the intricate interplay of primitive

and combinatory operations within the architecture.

In this research, as documented in Tables 2 and

3, both architectures utilize the pre-trained from

imagenet as the base model. The architecture is then

extended with the addition of several layers. These

https://doi.org/10.52436/1.jutif.2024.5.3.1583

688 Jurnal Teknik Informatika (JUTIF), Vol. 5, No. 3, June 2024, pp. 685-692

layers are the flatten and dense layers. The flatten

layer is used to convert the output of the previous

layer into a one-dimensional vector, allowing the

computational process in the next layer to be more

efficient. Then, the dense layer is used to connect the

results of the convolution process to pave the way for

the classification process.

Figure 5. The Original Architecture of NASNetMobile

Table 2. The Architecture of MobileNetV2 in Research

Layer (type) Output Shape

Input Layer (None, 224, 224, 3)

MobileNetV2 (None, 7, 7, 1280)

flatten (Flatten) (None, 62720)

dense (Dense) (None, 256)

dense_1 (Dense) (None, 75)

Table 3. The Architecture of NASNetMobile in Research

Layer (type) Output Shape

Input Layer (None, 224, 224, 3)

NASNetMobile (None, 7, 7, 1056)

flatten (Flatten) (None, 62720)

dense (Dense) (None, 256)

dense_1 (Dense) (None, 75)

In the dense layer, the RELU (Rectified Linear

Activation) activation function is used to provide an

element of non-linearity to the model (1). The

Softmax activation function is also applied to the last

dense layer to support the multi-class classification

(2). Where X_m is the value of class m, while k is the

number of classes and Euler number 2.71828.

𝑅𝑒𝑙𝑢 (𝑖) = 𝑚𝑎𝑥 (0, 𝑖) (1)

𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (𝑥_𝑚) =
𝑒𝑋𝑚

∑ 𝑒𝑋𝑛𝑘
𝑛=1

 (2)

In addition, the optimization in this research

uses Adam's algorithm. Adam's algorithm is a

randomized stepwise optimization algorithm that

combines the first and second moments of the

gradient to update the parameters. Equations (3), (4),

(5), (6), and (7) describe the Adam's Algorithm

formula applied in this research. Where m is the

momentum, beta is the parameter recurrence, the

gradient is the gradient of the loss function for the

parameter, p is the parameter, t is the iteration, lr is

the learning rate, and epsilon is a small number to

avoid division by zero.

𝑚1 = 𝑏𝑒𝑡𝑎1 × 𝑚1 + (1 − 𝑏𝑒𝑡𝑎1) × 𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡(3)

𝑚2 = 𝑏𝑒𝑡𝑎2 × 𝑚2 + (1 − 𝑏𝑒𝑡𝑎2) × 𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡(4)

𝑚1ℎ𝑎𝑡 = 𝑚1 ÷ (1 − 𝑏𝑒𝑡𝑎1𝑡) (5)

𝑚2ℎ𝑎𝑡 = 𝑚2 ÷ (1 − 𝑏𝑒𝑡𝑎2𝑡) (6)

𝑝 = 𝑝 − 𝑙𝑟 × 𝑚1ℎ𝑎𝑡 ÷ (√𝑚2ℎ𝑎𝑡 + 𝑒𝑝𝑠𝑖𝑙𝑜𝑛) (7)

2.4. Evaluation

The use of evaluation metrics is necessary to

determine the classification ability of the trained

model. The evaluation metrics used in this research

include accuracy, precision, and recall or sensitivity.

Accuracy is the ratio of the correct prediction class to

the total amount of data evaluated (8). Precision is the

accuracy of correct positive predictions against all

positive predictions (9). Recall or Sensitivity,

measures the accuracy in making correct positive

predictions against all correct predictions (10). Where

TP, FP, TN, and FN are the number of cases classified

as true positive, false positive, true negative, and false

negative.

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 (8)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+ 𝐹𝑃
 (9)

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+ 𝐹𝑁
 (10)

3. RESULT AND DISCUSSION

The implementation was carried out on the

Kaggle platform, using a P-100 GPU with 16 GB of

memory and 30 GB of RAM. Experiments were run

in Python and supported by various libraries, such as

TensorFlow, Keras, NumPy, scikit-learn, Matplotlib,

and Pandas. The experimental process consists of two

stages in the implementation phase. First, there is a

training process with initial parameters, such as batch

size 32, learning rate 0.001, epoch 25, and freeze on

all layers. The second stage involves fine-tuning the

architecture, which includes changing the batch size,

and learning rate, and modifying the number of layers

that are frozen.

Table 4 displays the implementation results of

the proposed architectures, MobileNetV2 and

NASNetMobile, on the datasets used in this research.

A summary of the accuracy, precision, recall, and

training time results for both architectures can be

found in the table. MobileNetV2, using the default

parameters, achieved an accuracy rate of 71%, with a

training duration of 2 minutes and 3 seconds. Fine-

tuning the parameters increased the accuracy to 86%,

with a training time of 5 minutes and 26 seconds. In

MobileNetV2 architecture tuning, optimal results

Ni Kadek Devi Adnyaswari Putri, et al., OPTIMIZING BUTTERFLY CLASSIFICATION … 689

were obtained by using a batch size of 16, a learning

rate of 0.0001, and freezing the front 40% of the layer.

On the other hand, NASNetMobile with default

parameters produced an accuracy of 57%, with a

training duration of 5 minutes and 3 seconds.

However, with fine-tuning, the accuracy increased to

85%, and the training time took 10 minutes and 41

seconds. The tuning of the NASNetMobile

architecture showed the best results with a batch size

of 32, a learning rate of 0.0001, and freezing of the

front 30% of the layer.

Both architectures showed almost identical

precision and recall results when using fine-tuning

parameters. However, significant differences were

seen in the precision and recall results when using the

default parameters. Although there were variations in

the accuracy, precision, and recall values during

training with the default parameters, the differences

were not as pronounced when using the fine-tuning

parameters. This shows that both architectures are

capable of performing good classification for 75

classes of butterfly images.

Although there is a considerable difference in

the accuracy levels before and after the tuning

process, the training graph shows that the pattern of

results does not substantially change between the pre-

and post-tuning stages. In the MobileNetV2

architecture graph in Figure 6, there is an increase in

accuracy at each epoch, although the stability does

not reach the optimal level, both in the training

accuracy graph and the validation accuracy graph.

Table 4. Implementation Result

Model Accuracy
Precision Recall

Training Time
macro weighted macro weighted

MobileNetV2 0.7149 0.7505 0.7631 0.7175 0.7149 2 minutes 3 second

MobileNetV2 with fine-tuning 0.8677 0.8828 0.8865 0.8736 0.8677 5 minutes 26 seconds

NASNetMobile 0.5795 0.6391 0.6528 0.5725 0.5795 5 minutes 3 seconds

NASNetMobile with fine-tuning 0.8533 0.8669 0.8769 0.8552 0.8533 10 minutes 41 seconds

In addition, the pattern seen in the loss graph of

the MobileNetV2 architecture shows significant

improvement, with a decrease in loss values seen

throughout the training and validation process as the

epochs progress, although there is still instability. It

is important to note that the loss graph of the

MobileNetV2 architecture does not show any signs of

overfitting, as the training loss graph and the

validation loss graph remain relatively small

differences. The results of the training graphs on the

MobileNetV2 architecture show that the number of

epochs used is appropriate for the desired conditions.

Similar to MobileNetV2, the NASNetMobile

architecture shown in Figure 7 also shows an increase

in accuracy at each epoch, and the stability does not

reach the optimal level, both in the training accuracy

graph and the validation accuracy graph.

Figure 6. MobileNetV2 Graph (a) Loss Before Tuning (b) Loss

After Tuning (c) Accuracy Before Tuning (d) Accuracy After

Tuning

The pattern seen in the loss graph of the

NASNetMobile architecture also indicates a

significant improvement, with the loss value

decreasing during the training and validation process

as epochs pass, although there is still instability that

needs to be considered. In the NASNetMobile

architecture, as in MobileNetV2, there are no signs of

overfitting, as the training loss graph and validation

loss graph continue to show relatively small

differences. Thus, the results of the training graph on

the NASNetMobile architecture indicate that the

number of epochs used is appropriate for the desired

conditions.

Figure 7. NASNetMobile Graph (a) Loss Before Tuning (b) Loss

After Tuning (c) Accuracy Before Tuning (d) Accuracy After

Tuning

4. DISCUSSION

This research evaluates the performance of two

architectures, namely MobileNetV2 and

690 Jurnal Teknik Informatika (JUTIF), Vol. 5, No. 3, June 2024, pp. 685-692

NASNetMobile, by applying the transfer learning

method using pre-trained models from ImageNet as

the foundation of the butterfly dataset. The

experiments involved parameter adjustments and

layer freezing for fine-tuning both architectures.

MobileNetV2, when using the default parameters,

achieved an accuracy rate of 71% in a training time

of 2 minutes and 3 seconds. Through the application

of fine-tuning the parameters, the accuracy increased

to 86% but required a longer training time of 5

minutes and 26 seconds. In tuning the MobileNetV2

architecture, optimal results were achieved with a

batch size of 16, a learning rate of 0.0001, and

freezing of the front 40% of the layer. Meanwhile,

NASNetMobile with default parameters initially

recorded 57% accuracy in a training time of 5 minutes

and 3 seconds. However, through fine-tuning, the

accuracy improved to 85%, with a significantly

longer training time of 10 minutes and 41 seconds.

Tuning on the NASNetMobile architecture showed

the best results with a batch size of 32, a learning rate

of 0.0001, and freezing of the front 30% of the layer.

Overall, the implementation results indicate that fine-

tuning has a significant positive impact on improving

model accuracy. From the results presented, the

MobileNetV2 architecture shows superior accuracy

performance compared to NASNetMobile on the

dataset used.

The difference in accuracy values before and

after the fine-tuning process is influenced by the

parameter values during training and the number of

layers frozen. The learning rate and batch size play a

crucial role in influencing the parameters. Both

architectures experienced optimal tuning at a learning

rate of 0.0001. The application of a low learning rate

has a positive impact on model convergence,

especially when the training data has a high level of

noise or variation, such as in this research, where the

images in the dataset still contain backgrounds with

various colors. Using a low learning rate allows the

model to adjust parameters more carefully during the

training process, reducing the risk of overfitting and

improving overall convergence[18]. Batch size

tuning also has a significant effect on the difference

in accuracy levels before and after the fine-tuning

process. On the MobileNetV2 architecture, the

optimal batch size is 16, while on the NASNetMobile

architecture, the optimal batch size reaches 32. Both

batch sizes fall into the small category. The advantage

of using a small batch size is seen in the ability of the

model to converge more effectively[19]. By updating

the parameters every iteration, the small batch size

allows the model to respond responsively to data

variations, making it easier to adjust to the specific

characteristics of the dataset used. This provides

greater flexibility in coping with data dynamics and

diversity, as well as improving overall performance

during the training process[20].

In addition, the number of layers that are fine-

tuned also has a significant impact. In the context of

this research, the fine-tuning process involves

freezing many layers at the beginning of the

architecture. This approach allows the model the

flexibility to adapt to specific data while retaining the

information obtained from the pre-trained model[21].

MobileNetV2 achieves optimal results when about

40% of all layers are freeze, while NASNetMobile

achieves the best results with layer freezing at only

the initial 30%. The impact of layer freezing occurs

because Imagenet's pre-trained model already has an

understanding of butterflies. However, to improve the

performance in recognizing butterflies based on the

dataset of this research, it is necessary to adjust the

weights in the architecture. It is also important to note

that the effect of layer freezing is manifested in the

training time of the model[22]. The efficiency of

training time, especially on the NASNetMobile

architecture, takes longer. This is due to the larger

number of weights being updated due to more layer

freezes, as well as the larger number of layers built-in

to NASNetMobile compared to MobileNetV2, which

is about 5.3 million compared to 3.5 million[23].

In the discussion above, the utilization of

transfer learning in MobileNetV2 and

NASNetMobile has been proven to increase the

accuracy rate in butterfly classification. The highest

accuracy rate achieved was 86%, showing a

significant improvement compared to previous

studies that used the VGG19 architecture and only

achieved an accuracy of 79.5%[12]. This study was

also able to achieve a satisfactory accuracy rate by

considering 75 different butterfly classes, a much

larger number compared to previous studies that only

focused on 4 and 10 butterfly classes[1], [12]. By

utilizing transfer learning and a suitable fine-tuning

process, this research can improve the accuracy of

results even more and recognize many other types of

butterflies.

5. CONCLUSION

Based on the evaluation, these two architectures

show good ability in classifying butterfly images

using the transfer learning method. Before the use of

transfer learning, both architectures were tested using

the default parameters of a learning rate of 0.001 and

a batch size of 32. The accuracy result created by

MobileNetV2 reached 71%, while NASNetMobile

had a significant difference in accuracy of 57%.

Furthermore, both architectures were trained with

appropriate fine-tuning and the highest accuracy

reached 86% by MobileNetV2 with a learning rate

parameter of 0.0001, batch size of 16, and Adam

optimizer. For NASNetMobile, the accuracy was

slightly higher at 85% with a learning rate parameter

of 0.0001, batch size of 32, and the same optimizer as

MobileNetV2. The difference in results is due to the

different architectural layers, the MobileNetV2 layer

is lighter and the layer's understanding of the dataset

is greater, which is 40% in the front layer, while

NASNetMobile is only 30% in the front layer. In

Ni Kadek Devi Adnyaswari Putri, et al., OPTIMIZING BUTTERFLY CLASSIFICATION … 691

addition, the advantages of MobileNetV2 can be seen

from the speed of pre-training, which takes 5 minutes

and 26 seconds, unlike NasNetMobile which takes

more time, 10 minutes and 41 seconds. This time

difference is also caused by the number of layers in

each architecture.

For future research to improve the accuracy rate,

a segmentation approach can be implemented. This

method involves applying segmentation techniques

such as K-Means and GrabCut, or even utilizing deep

learning approaches such as U2Net. In addition, to

balance the distribution of the number of datasets in

each class, augmentation or undersampling measures

can be taken. These efforts are expected to produce

more optimized results and improve the overall

accuracy of the research.

BIBLIOGRAPHY

[1] N. N. K. Arzar, N. Sabri, N. F. M. Johari, A.

A. Shari, M. R. M. Noordin, and S. Ibrahim,

“IEEE International Conference on

Automatic Control and Intelligent Systems,”

in IEEE Control Systems Society. Chapter

MalaysiaInstitute of Electrical and

Electronics Engineers, 2019.

[2] E. Hartati, K. Kunci, and K. Kupu,

“Klasifikasi Spesies Kupu Kupu

Menggunakan Metode Convolutional Neural

Network,” in MDP Student Conference

(MSC), 2022, pp. 569–577.

[3] L. Zhu and P. Spachos, “Towards Image

Classification with Machine Learning

Methodologies for Smartphones,” Mach

Learn Knowl Extr, vol. 1, no. 4, pp. 1039–

1057, Dec. 2019, doi:

10.3390/make1040059.

[4] T. Y. Chen, “MonarchNet: Differentiating

Monarch Butterflies from Butterflies Species

with Similar Phenotypes,” Jan. 2022, doi:

10.1096/fasebj.2021.35.S1.05504.

[5] B. A. Bakri, Z. Ahmad, and S. M. Hatim,

“Butterfly family detection and identification

using convolutional neural network for

lepidopterology,” International Journal of

Recent Technology and Engineering, vol. 8,

no. 2 Special Issue 11, pp. 635–640, Sep.

2019, doi: 10.35940/ijrte.B1099.0982S1119.

[6] H. He, “The Comparison and Analysis of

Classic Convolutional Neural Network in the

Field of Computer Vision,” in IOP

Conference Series: Materials Science and

Engineering, Institute of Physics Publishing,

Mar. 2020. doi: 10.1088/1757-

899X/740/1/012153.

[7] A. K. Sharma et al., “Dermatologist-Level

Classification of Skin Cancer Using

Cascaded Ensembling of Convolutional

Neural Network and Handcrafted Features

Based Deep Neural Network,” IEEE Access,

vol. 10, pp. 17920–17932, 2022, doi:

10.1109/ACCESS.2022.3149824.

[8] P. Langgeng, W. E. Putra, M. Naufal, and E.

Y. Hidayat, “A Comparative Study of

MobileNet Architecture Optimizer for Crowd

Prediction,” Semarang 123 Jl. Imam Bonjol

No, vol. 8, no. 3, p. 50131, 2023.

[9] T. Ridnik, E. Ben-Baruch, A. Noy, and L.

Zelnik-Manor, “ImageNet-21K Pretraining

for the Masses,” Apr. 2021, [Online].

Available: http://arxiv.org/abs/2104.10972

[10] Livinus Ifunanya Umeaduma, “Survey of

image classification models for transfer

learning,” World Journal of Advanced

Research and Reviews, vol. 21, no. 1, pp.

373–383, Jan. 2024, doi:

10.30574/wjarr.2024.21.1.0006.

[11] A. S. C. K. Ravi Joshi Annapurna

Maritammanavar, “Transfer Learning in

Computer Vision: Technique and

applications,” Tuijin Jishu/Journal of

Propulsion Technology, 2023, [Online].

Available:

https://api.semanticscholar.org/CorpusID:26

5648825

[12] A. S. Almryad and H. Kutucu, “Automatic

identification for field butterflies by

convolutional neural networks,” Engineering

Science and Technology, an International

Journal, vol. 23, no. 1, pp. 189–195, Feb.

2020, doi: 10.1016/j.jestch.2020.01.006.

[13] T. S. Alves et al., “Automatic detection and

classification of honey bee comb cells using

deep learning,” Comput Electron Agric, vol.

170, Mar. 2020, doi:

10.1016/j.compag.2020.105244.

[14] P. Anantha Prabha, G. Suchitra, and R.

Saravanan, “Cephalopods Classification

Using Fine Tuned Lightweight Transfer

Learning Models,” Intelligent Automation

and Soft Computing, vol. 35, no. 3, pp. 3065–

3079, 2023, doi: 10.32604/iasc.2023.030017.

[15] K. Apivanichkul, P. Phasukkit, and P.

Dankulchai, “The Effect of Preprocessing on

U-Net for Bladder Segmentation in CT

Images,” in International STEM Education

Conference (iSTEM-Ed), 2023, pp. 1–5. doi:

10.1109/iSTEM-Ed59413.2023.10305805.

[16] DIPIE,

“https://www.kaggle.com/datasets/phucthaiv

02/butterfly-image-classification,”

KAGGLE.

[17] H. K. Dishar and L. A. Muhammed,

“Detection Brain Tumor Disease Using a

Combination of Xception and

NASNetMobile,” International Journal of

Advances in Soft Computing and its

692 Jurnal Teknik Informatika (JUTIF), Vol. 5, No. 3, June 2024, pp. 685-692

Applications, vol. 15, no. 2, pp. 325–336,

2023, doi: 10.15849/IJASCA.230720.22.

[18] Y. Ding, “The Impact of Learning Rate

Decay and Periodical Learning Rate Restart

on Artificial Neural Network,” in

Proceedings of the 2021 2nd International

Conference on Artificial Intelligence in

Electronics Engineering, in AIEE ’21. New

York, NY, USA: Association for Computing

Machinery, 2021, pp. 6–14. doi:

10.1145/3460268.3460270.

[19] H. Iiduka, “The Number of Steps Needed for

Nonconvex Optimization of a Deep Learning

Optimizer is a Rational Function of Batch

Size,” Aug. 2021, [Online]. Available:

http://arxiv.org/abs/2108.11713

[20] Z. Hu, J. Xiao, N. Sun, and G. Tan, “Fast and

accurate variable batch size convolution

neural network training on large scale

distributed systems,” Concurr Comput, vol.

34, no. 21, p. e7119, 2022, doi:

https://doi.org/10.1002/cpe.7119.

[21] R. Anditto and R. Roestam, “SECURITY

MONITORING USING IMPROVED

MOBILENET V2 WITH FINE-TUNING

TO PREVENT THEFT IN RESIDENTIAL

AREAS DURING THE COVID-19

PANDEMIC,” Science and Information

Technology, vol. Vol. 5, no. No 1, pp. 87–94,

2022, [Online]. Available:

https://doi.org/10.31598

[22] Q. Li, J. Zhang, and Z. Chen, “Detection on

difficult small objects using layer-wise

training strategy,” in Proceedings of 2020

IEEE 3rd International Conference of Safe

Production and Informatization, IICSPI

2020, Institute of Electrical and Electronics

Engineers Inc., Nov. 2020, pp. 282–286. doi:

10.1109/IICSPI51290.2020.9332370.

[23] T. Hong Chun et al., “Efficacy of the Image

Augmentation Method using CNN Transfer

Learning in Identification of Timber Defect,”

2022. [Online]. Available:

www.ijacsa.thesai.org.

