
Jurnal Teknik Informatika (JUTIF) DOI: https://doi.org/10.52436/1.jutif.2024.5.2.1338
Vol. 5, No. 2, April 2024, pp. 357-365 p-ISSN: 2723-3863
 e-ISSN: 2723-3871

357

DOCKER-BASED MONOLITHIC AND MICROSERVICES ARCHITECTURE

PERFORMANCE COMPARISON

Deni Panji Dirgantara*1, Dana Sulistyo Kusumo2, Rio Guntur Utomo3

1,3Information Technology Department, School of Computing, Telkom University, Indonesia
2Software Engineering Department, School of Computing, Telkom University, Indonesia

Email: 1denipanjid@student.telkomuniversity.ac.id, 2danakusumo@telkomuniversity.ac.id,
3riogunturutomo@telkomuniversity.ac.id

(Article received: August 19, 2023; Revision: September 14, 2023; published: April 04, 2024)

Abstract

Most developers still use the monolithic architecture, where all components of an application are combined into

one integrated system, so each part depends on other components. The monolithic architecture has weaknesses,

such as when a failure occurs in one component, all parts cannot be executed because each component relies on

one other component. Microservices can be a solution to this, considering that in the microservices architecture,

each element or service is created and put separately, so when a failure occurs in one component, other

components will not be affected and can still run normally. This research aims to determine the implementation

and performance comparison between monolithic architecture and microservices Architecture in the Agreeculture

Market web app. Agreeculture Market is a web application that aims to facilitate the transaction process of

agricultural commodities and make it easier for agricultural commodity producers to market their products. The

measurement method used to measure the performance of both architectures is load testing using JMeter and

performance tools from task manager and comparing the response time, throughput, disk usage, CPU usage, and

memory usage of both used architectures. With two measurement schemes with Docker and without Docker, the

result of this research is a performance comparison between the two architectures, where the backend application

Agreeculture Market, which uses microservices architecture with Docker and API gateway, performs better than

the monolithic architecture version. Conversely, the monolithic architecture performs better than the

microservices architecture in the scheme without Docker and API gateway.

Keywords: docker, microservices architecture, monolithic architecture, performance comparison.

1. INTRODUCTION

Monolithic Architecture is still popular among

developers, especially beginners, because of its easier

implementation [1], [2]. However, microservices

architecture is widely used today because it has

several advantages, such as easy service organisation,

the ability to use different technologies, and the

ability to make updates without the need to redeploy

all services. On the other hand, Microservice

Architecture also has disadvantages, such as

increasing complexity as services boost and requiring

advanced skills from developers [1], [3].

Microservices architecture is an application

architecture where each component or can be called

services is placed separately from other services [2].

It differs from a monolithic architecture combining all

services in one codebase. According to [6],

microservices architecture has advantages in terms of

scalability and also fast development cycles. The

scalability of microservices architecture can be said

to be better than monolithic architecture because it

does not need to change many components to develop

the entire application so that it can be easier and faster

[6], [7]. in addition, microservices architecture also

has easier maintenance compared to monolithic

architecture [8], [9].

Docker container is necessary for developing

and running microservices applications. Because,

with docker container, the authors can run all services

simultaneously [4]. In [5], the authors measured the

performance of microservices applications using

docker container and monolithic applications without

using docker container, so a further approach is

needed to measure microservices and monolithic

performance with better scenarios.

This research aims to compare the

implementation and performance between

microservice architecture and monolithic architecture

on the agreeculture market web app, hoping to show

the advantages of using microservice architecture in

terms of application efficiency and performance.

Agreeculture Market is a web application that aims to

facilitate the transaction process of agricultural

commodities and make it easier for agricultural

commodity producers to market their products.

This research is divided into five sections as

follows: section one is the introduction of this paper,

section two discusses related previous research,

section three discusses the development method and

https://doi.org/10.52436/1.jutif.2024.5.2.1338
mailto:denipanjid@student.telkomuniversity.ac.id
mailto:danakusumo@telkomuniversity.ac.id
mailto:riogunturutomo@telkomuniversity.ac.id

358 Jurnal Teknik Informatika (JUTIF), Vol. 5, No. 2, April 2024, pp. 357-365

structure of the application, section four discusses the

results of the performance comparison analysis

between microservices architecture and monolithic

architecture, and section five contains conclusions

and suggestions from the research conducted.

2. METHOD

The authors use a conceptual model to facilitate

the flow of development and performance testing of

the Agreeculture Market backend web application.

The flow of development and performance testing of

the Agreeculture Market backend web application

using Microservices Architecture technology is

shown in the following figure 1.

Figure 1. Research Methodology Diagram

1. The problem identification stage is the stage

where the authors identify existing problems.

2. At the literature study stage, the authors

conducted a literature study of previous research

to obtain a theoretical basis related to the

research being conducted.

3. The authors started developing the Agreeculture

Market backend web application at the

application development stage with the NodeJS

framework.

4. The performance analysis stage is where the

authors take measurements and compares the

measurement results between the applications

built with the two architectures used,

microservices and monolithic architectures.

5. After the performance analysis stage, the

authors documented the entire research and

conducted the documentation stage.

2.1. Structure of Agreeculture Market Web

Application with Microservices Architecture

Six services have different business objectives

in the Agreeculture Market web application with

Microservice Architecture shown in figure 2.

1. Wishlist Service aims to display and process

data on items buyers want. Wishlist Service is

run on port 8080 for API Gateway and port 9025

if without API Gateway.

2. Cart Service has the purpose of displaying and

processing shopping list data from unpaid

buyers. Cart Service is run on port 8080 for API

Gateway and port 9010 without API Gateway.

3. User Service has the purpose of processing user

data with an account on the Agreeculture

Market and is divided into two roles: buyers and

sellers. User Service is run on port 8080 for API

Gateway and port 9000 without API Gateway.

4. Offer Service aims to provide offer data related

to products in the Agreeculture Market web

application to buyers. Offer Service is run on

port 8080 for API Gateway and port 9015

without API Gateway.

5. Transaction Service aims to process data related

to buyer transactions, such as transaction status

and terms. Transaction Service is run on port

8080 for API Gateway and port 9005 without

API Gateway.

6. Product Service aims to display and process

product data in the Agreeculture Market Web

Application. Product Service is run on port 8080

for API Gateway and port 9020 without API

Gateway.

2.2. Structure of Agreeculture Market Web

Application with Monolithic Architecture

The web application Agreeculture Market

application structure with monolithic architecture has

the same service structure as the microservice

mrchitecture but is differentiated based on figure 3.

Agreeculture Market Web Application with

Monolithic Architecture runs on port 9001.

2.3. Performance Measurement

In this study, the authors measured performance

with the load testing method, and the tools used were

JMeter [16]. There are two measurement schemes, the

measurement scheme with the use of docker container

and without docker container. Both architectures will

be measured in each scheme, and the measurement

results using the two architectures will be compared.

Figure 2. Microservices Architecture-based Service Agreeculture

Market Structure Diagram

Deni Panji Dirgantara, et al., DOCKER-BASED MONOLITHIC AND … 359

Figure 3. Monolithic Architecture-based Service Agreeculture

Market Structure Diagram

Figure 4a. CPU usage on microservices application on schemes

with docker

Figure 4b. CPU usage on monolithic application on schemes with

docker

Figure 4c. CPU usage on microservices application on schemes

without docker

Figure 4d. CPU usage on monolithic application on schemes

without docker

Figure 4e. Disk usage on microservices application on schemes

with docker

Figure 4f. Disk usage on monolithic application on schemes with

docker

Figure 4g. Disk usage on microservices application on schemes

without docker

360 Jurnal Teknik Informatika (JUTIF), Vol. 5, No. 2, April 2024, pp. 357-365

Figure 4h. Disk usage on monolithic application on schemes

without docker

Figure 4i. Memory usage on microservices application on

schemes with docker

Figure 4j. Memory usage on monolithic application on schemes

with docker

Figure 4j. Memory usage on microservices application on

schemes without docker

Figure 4j. Memory usage on monolithic application on schemes

without docker

Figure 5a. User service response time on scheme with docker

Figure 5b. User service throughput on scheme with docker

Figure 5c. User service response time on scheme without docker

Figure 5d. User service throughput on scheme without docker

Deni Panji Dirgantara, et al., DOCKER-BASED MONOLITHIC AND … 361

Figure 6a. Product service response time on scheme with docker

Figure 6b. Product service throughput on scheme with docker

Figure 6c. Product service response time on scheme without

docker

Figure 6d. Product service throughput on scheme without docker

Figure 7a. Cart service response time on scheme with docker

Figure 7b. Cart service throughput on scheme with docker

Figure 7c. Cart service response time on scheme without docker

Figure 7d. Cart service throughput on scheme without docker

Figure 8a. Transaction service response time on scheme with

docker

Figure 8b. Transaction service throughput on scheme with docker

362 Jurnal Teknik Informatika (JUTIF), Vol. 5, No. 2, April 2024, pp. 357-365

Figure 8c. Transaction service response time on scheme without

docker

Figure 8d. Transaction service throughput on scheme without

docker

Figure 9a. Wishlist service response time on scheme with docker

Figure 9b. Wishlist service throughput on scheme with docker

Figure 9c. Wishlist service response time on scheme without

docker

Figure 9d. Wishlist service throughput on scheme without docker

Figure 10a. Offer service response time on scheme with docker

Figure 10b. Offer service throughput on scheme with docker

Figure 10c. Offer service response time on scheme without

docker

Figure 10d. Offer service throughput on scheme without docker

Deni Panji Dirgantara, et al., DOCKER-BASED MONOLITHIC AND … 363

3. RESULT

3.1. Test Result and Comparison

Evaluation of the Agreeculture Market web

application is carried out by measuring the

performance of the Agreeculture Market web

application using monolithic architecture and

microservices architecture. The parameters used

during measurement are response time and

throughput, which will be measured using JMeter,

and CPU usage, disk usage, and memory usage,

which will be measured using performance tools from

the task manager. These parameters are sufficient to

measure performance because the developed

application is run on localhost [16]. The measurement

schemes used is when the application is run using

Docker and API Gateway and when the application is

run without Docker and API Gateway. The

measurement was carried out using the load testing

method with the number of virtual users of 50, 100,

200, 300, 400, and 500. After the measurement, the

performance measurement results will be compared

to determine which architecture is better in each test

scheme. Tests were carried out on equipment with the

characteristics presented below :

1. CPU : Intel Core i7-9750H @ 2.6 GHz 4.5GHz

2. OS: Windows 10 1909 with WSL (Windows

Subsystem for Linux) Ubuntu 20.04.4 LTS

installed

3. 16 GB RAM

4. 128 GB SSD ROM.

3.2. Result

1. CPU, Disk, and Memory Usage

The comparative analysis of CPU, disk, and

memory usage shows differences in the results of the

two test schemes. In the docker usage scheme on

figures 4a – 4c, microservices applications’ average

memory and disk usage has lower results than

monolithic applications. This is due to API gateway

and load balancer in the microservices application run

on docker to connect each existing service. On the

other hand, in the scheme without the use of docker,

the average CPU and disk usage of monolithic

applications has lower results in most services in

figures 4d – 4f. The absence of API gateway and load

balancer is why this can happen. Because in the

scheme without docker, microservices applications

run on different ports.

2. User Service

User service based on figures 5a and 5b, the

microservice applications yield better performance

than monolithic applications on docker deployment

schemes. This is due to API gateway and load

balancer use in microservice applications that connect

each service. But on the other hand, based on figure

5b, monolithic applications perform better on most

services than microservice applications on schemes

without docker. In the scheme without docker,

microservice applications do not use API gateway

and load balancer and run on separate ports.

3. Product Service

Based on figures 6a and 6b, product service on

microservices architecture and docker performs

better than applications that use monolithic

architecture in response time and throughput. This is

due to the use of API Gateway and Load Balancer,

where both are used to connect each service in the

microservices application. But in the scheme without

Docker in figures 6c and 6d, monolithic applications

have better performance mostly on all services than

microservices applications. This can happen because

services in microservice applications run on separate

ports, and there is no use of API gateway and load

balancer in microservices applications.

4. Cart Service

Based on figure 7a and 7b, the performance of

applications that use microservices architecture with

Docker have better response time and throughput than

applications that use monolithic architecture. API

gateway and load balancer are why microservices

applications perform better than monolithic

applications in the Docker deployment scheme. On

the other hand, in the scheme without the use of

docker on figure 7c and 7d, the monolithic application

performs better in all services due to the non-use of

API gateway and load balancer. In the scheme

without ocker, microservices applications run on a

separate port for each service so that they perform

worse than monolithic applications.

5. Transaction Service

Based on figure 8a and 8b, microservice

applications yield better performance in transaction

service than monolithic applications on docker

deployment schemes. This is due to API gateway and

load balancer use in microservice applications that

connect each service. On the other hand, on figure 8c

and 8d, monolithic applications perform better on

most services than microservice applications on

schemes without docker. In the scheme without

Docker, microservice applications do not use API

gateway and load balancer and run on separate ports.

6. Wishlist Service

Based on figures 9a and 9b, wishlist service on

microservices architecture and Docker performs

better than applications that use monolithic

architecture in response time and throughput. This is

due to the use of API gateway and load balancer,

where both are used to connect each service in the

microservices application. But monolithic

applications perform better in almost all services than

the scheme’s microservices applications without

docker on figure 9c and 9d. This can happen because

services in microservice applications run on separate

ports, and there is no use of API gateway and load

Balancer in microservices applications.

7. Offer Service

Based on figure 10a and 10b, the offer service in

microservices applications performs better than

364 Jurnal Teknik Informatika (JUTIF), Vol. 5, No. 2, April 2024, pp. 357-365

monolithic applications. API gateway and load

balancer are why microservices application perform

better than monolithic application in the docker

deployment scheme. On the other hand, in the scheme

without Docker on figure 10c and 10d, the monolithic

application has better performance almost in all

services due to the non-use of API gateway and load

balancer. In the scheme without docker,

microservices application run on separate port for

each services so they perform worse than monolithic

application.

3.3. Discussion

Of the six services that have been measured and

compared, all applications that use microservices

architecture with docker perform better than those

that use monolithic architecture with docker’s help in

response time and throughput. CPU and disk usage of

microservices architecture has a lower average when

compared to monolithic architecture. However, the

memory usage of microservices architecture and

monolithic architecture applications have the same

average memory consumption due to docker, which

consumes more than when the application runs

without docker. Conversely, the performance of

monolithic architecture without the use of docker has

a higher value when compared to microservices

architecture, even though, in some test cases,

microservices architecture still performs better. This

is because when the microservices architecture

application is run without docker, each service is on a

different port. In contrast, in the use of docker, each

service is connected using API gateway and runs only

on one port and the application load balancer from the

API gateway used, namely NGINX, which also

affects the performance improvement of

microservices architecture. In this research, the

authors compare the performance between

microservices and monolithic architectures in

contrast to previous research. The study that is the

reference of this research [3], [5], [7]–[10], Some of

these studies use different development technologies

and performance measurement methods and tools. In

addition, some of the referenced studies only produce

applications without performance measurement. To

complement the research study that is the reference of

this research [11], [13]–[15], The authors of this

research complements previous research by

performing performance comparisons between

microservices and monolithic architectures running

in Docker Container and on-premises environments.

4. CONCLUSION

Based on the comparison of the results of

performance tests that have been carried out using the

load testing method, it can be concluded that the

Agreeculture Market web backend application that

uses microservices architecture has better

performance than applications that use monolithic

architecture in terms of response time and application

throughput in the docker usage scheme. However,

when the application is run without API gateway and

docker, monolithic architecture performs better in

almost every service, even though microservice

architecture performs better in some test cases. In

addition, the use of API gateway also affects the

performance improvement of microservices

architecture, where the API gateway already has a

load balancer. In this research [5], microservices

applications with docker container perform better

than monolithic applications that run on a local

environment. However, in research related to

Agreeculture Market, the two architectures have

different results between those run on docker

container and the local environment. With the docker

container, microservices applications produce better

performance than monolithic applications.

Conversely, monolithic applications performed better

than microservices applications when both

architectures were run on a local environment. The

impact of this research is to know the efficiency and

performance of microservices and monolithic

architectures when using docker dontainer or without

docker container. Remember that this research still

uses the Docker environment and NoSQL database.

This research can be expanded and developed by

deploying applications and combining NoSQL and

SQL databases in a cloud-based environment. Further

research and more sophisticated technology are

needed to get more valid results.

REFERENCES

[1] M. E. Gortney et al., “Visualizing

Microservice Architecture in the Dynamic

Perspective: A Systematic Mapping Study,”

IEEE Access, vol. 10. Institute of Electrical

and Electronics Engineers Inc., pp. 119999–

120012, 2022. doi:

10.1109/ACCESS.2022.3221130.

[2] C. V. Dave, “Microservices Software

Architecture: A Review,” Int J Res Appl Sci

Eng Technol, vol. 9, no. 11, pp. 1494–1496,

Nov. 2021, doi:

10.22214/ijraset.2021.39036.

[3] J. A. Rasheedh and S. Saradha, “Design and

Development of Resilient Microservices

Architecture for Cloud Based Applications

using Hybrid Design Patterns,” Indian

Journal of Computer Science and

Engineering, vol. 13, no. 2, pp. 365–378,

Mar. 2022, doi:

10.21817/indjcse/2022/v13i2/221302067.

[4] N. Singh et al., “Load balancing and service

discovery using Docker Swarm for

microservice based big data applications,”

Journal of Cloud Computing, vol. 12, no. 1,

Dec. 2023, doi: 10.1186/s13677-022-00358-

7.

Deni Panji Dirgantara, et al., DOCKER-BASED MONOLITHIC AND … 365

[5] K. Gos and W. Zabierowski, “The

Comparison of Microservice and Monolithic

Architecture,” in International Conference

on Perspective Technologies and Methods in

MEMS Design, 2020, pp. 150–153. doi:

10.1109/MEMSTECH49584.2020.9109514.

[6] A. Bucchiarone et al., “From Monolithic to

Microservices An Experience Report from

the Banking Domain,” 2018.

[7] J. Xiang, “Microservices-based Dating

Platform,” 2021. [Online]. Available:

https://martinfowler.com/articles/

[8] J. Ferdinand, A. Syahrina, and A.

Musnansyah, “PERANCANGAN

ARSITEKTUR PERANGKAT LUNAK

MICROSERVICES PADA APLIKASI

OPEN LIBRARY UNIVERSITAS

TELKOM MENGGUNAKAN gRPC,”

TELKATIKA, vol. 1, no. 2, 2022.

[9] G. Blinowski, A. Ojdowska, and A.

Przybylek, “Monolithic vs. Microservice

Architecture: A Performance and Scalability

Evaluation,” IEEE Access, vol. 10, pp.

20357–20374, 2022, doi:

10.1109/ACCESS.2022.3152803.

[10] F. Ponce Mella, G. Márquez, H. Astudillo,

and F. Ponce, “Migrating from monolithic

architecture to microservices: A Rapid

Review BaaS-SE Blockchain as a Service for

Stock Exchange View project TacPat4SS-

Empirical evaluation of tactics and patterns

for building secure systems View project

Migrating from monolithic architecture to

microservices: A Rapid Review,” 2019.

[Online]. Available:

https://www.researchgate.net/publication/33

5716451

[11] I. Braun, M. Hoffmann, and R. Mörseburg,

IMPLEMENTATION OF A WEB-BASED

AUDIENCE RESPONSE SYSTEM AS

MICROSERVICE APPLICATION VS.

MONOLITHIC APPLICATION. 2019.

[12] Óbudai Egyetem, IEEE Hungary Section, M.

IEEE Systems, Hungarian Fuzzy

Association, and Institute of Electrical and

Electronics Engineers, 18th IEEE

International Symposium on Computational

Intelligence and Informatics : proceedings :

2018 November 21-22, Budapest.

[13] S. Jhingran and N. Rakesh,

“PERFORMANCE ANALYSIS OF

MICROSERVICES BEHAVIOR IN

CLOUD VS CONTAINERIZED DOMAIN

BASED ON CPU UTILIZATION,” Journal

of Data Acquisition and Processing, vol. 38,

no. 2, p. 3221, doi: 10.5281/zenodo.777159.

[14] P. Sharad Salunkhe, “Microservices vs

Monolithic Architecture: Load Testing in

AWS on ReactJS Web Application for

Performance MSc Research Project

Programme Name.”

[15] N. Goncalves, D. Faustino, A. R. Silva, and

M. Portela, “Monolith Modularization

towards Microservices: Refactoring and

Performance Trade-offs,” in Proceedings -

2021 IEEE 18th International Conference on

Software Architecture Companion, ICSA-C

2021, Institute of Electrical and Electronics

Engineers Inc., Mar. 2021, pp. 54–61. doi:

10.1109/ICSA-C52384.2021.00015.

[16] D. Demashov, “Efficiency Evaluation of

Node.js Web-Server Frameworks,” 2019.

