CLASSIFICATION OF RICE QUALITY LEVELS BASED ON COLOR AND SHAPE FEATURES USING ARTIFICIAL NEURAL NETWORK BASED ON DIGITAL IMAGE PROCESSING

  • Asnidar Computer Engineering Study Program, Faculty of Engineering, Universitas Negeri Makassar, Indonesia
  • Am Akbar Mabrur Perdana Computer Engineering Study Program, Faculty of Engineering, Universitas Negeri Makassar, Indonesia
  • Muhammad Ryan Ilham Computer Engineering Study Program, Faculty of Engineering, Universitas Negeri Makassar, Indonesia
  • Andi Baso Kaswar Computer Engineering Study Program, Faculty of Engineering, Universitas Negeri Makassar, Indonesia
  • Dyah Darma Andayani Computer Engineering Study Program, Faculty of Engineering, Universitas Negeri Makassar, Indonesia
Keywords: Artificial Neural Network, Digital Image Processing, Rice

Abstract

Rice is the staple food of most Indonesians. In identifying the quality of rice, it can be seen from physical characteristics such as the color and shape of rice, because these characteristics can make an object can be identified properly and clearly. In general, what is done in determining the quality of rice by looking at its color and shape. But usually the human eye in identifying objects is sometimes less accurate which is influenced by several factors, such as age. So, several studies were conducted that tried to solve the problem by using digital image processing. However, the accuracy results obtained are still not accurate, because the datasets used in the previous study were relatively small, namely around 80 images, although the average level of accuracy obtained was quite high, but the number of datasets used was very small so that the level of accuracy was still inaccurate. Therefore, in this study, it is proposed that the title of classification of rice quality levels using JST based on digital image processing which divides rice into 3 classifications, namely, good, good enough, and not good where in this study using 330 digital images to produce a more accurate level of accuracy. In this study, there are several stages, namely, image retrieval, preprocessing, segmentation, morphological, feature extraction, and classification using artificial neural networks. Based on the research conducted, training accuracy was produced with an average accuracy of 98,75% while the test accuracy was produced with an average accuracy of 98,89%.

Downloads

Download data is not yet available.

References

Badan Pusat Statistik, “Produksi padi tahun 2021 naik 1,14 persen (Angka Sementara),” 2021. https://www.bps.go.id/pressrelease/2021/10/15/1850/produksi-padi-tahun-2021-naik-1-14-persen--angka-sementara-.html (accessed Oct. 05, 2022).

B. W. Purwoko, I. Sabarisman, S. B. Anoraga, and A. M. Rahmatika, “Optimasi pembuatan nasi liwet instan dengan menggunakan metode taguchi,” Seminar Nasional Teknik Kimia Soebardjo Brotohardjono XVIII, 2022, [Online]. Available: http://snsb.upnjatim.ac.id/;

D. Fitriyah, M. Ubaidillah, and F. Oktaviani, “Analisis kandungan gizi beras dari beberapa galur padi transgenik pac nagdong/Ir36,” Arteri : Jurnal Ilmu Kesehatan, vol. 1, no. 2, pp. 153–159, Feb. 2020, doi: 10.37148/arteri.v1i2.51.

F. Yumono, D. E. Yuliana, and R. N. Sarbini, “Histogram citra jenis beras dengan menyertakan kertas putih untuk identifikasi awal jenis beras dengan menggunakan jaringan syaraf tiruan,” Jurnal Informatika dan Rekayasa Perangkat Lunak (Jatika), vol. 3, no. 2, pp. 129–137, 2022, [Online]. Available: https://nasional.tempo.co/read/497297/beras-berpemutih-pakaian-marak-di-

A. Firlansyah, A. B. Kaswar, and A. A. Nur Risal, “Klasifikasi tingkat kematangan buah pepaya berdasarkan fitur warna menggunakan jaringan syaraf tiruan,” Techno Xplore : Jurnal Ilmu Komputer dan Teknologi Informasi, vol. 06, no. 01, 2021, doi: https://doi.org/10.36805/technoxplore.v6i2.1438.

E. Supriyadi, “Image cluster features shape and texture determinants of rice quality using the k-means algorithm,” Jurnal Ilmu Komputer An Nuur, vol. 2, no. 2, 2022, Accessed: Dec. 28, 2022. [Online]. Available: https://www.juliajournal.org/index.php/julia/article/view/8

E. Maria, W. E. Sari, and P. E. Damayanti, “Klasterisasi tingkat kematangan buah naga berdasarkan warna dengan metode segmentasi k-means clustering berbasis mobile,” Jurti, vol. 6, no. 1, 2022, doi: http://dx.doi.org/10.30872/jurti.v6i1.8364.

S. Saidah, M. B. Adinegara, R. Magdalena, and N. K. Caecar Pratiwi, “Identifikasi kualitas beras menggunakan metode k-nearest neighbor dan support vector machine,” Telka, vol. 5, no. 2, pp. 114–121, 2019, doi: https://doi.org/10.15575/telka.v5n2.114-121.

I. M. Sari, D. R. Wijaya, and W. Hidayat, “Aplikasi klasifikasi kualitas dan prediksi USI simpan beras berbasis dataset electronic nose menggunakan algoritma naive bayes classifier,” Proceeding of Applied Science, vol. 7, no. 6, p. 2589, 2021.

A. C. Khotimah and E. Utami, “Comparison naive bayes classifier, k-nearest neighbor and Support Vector Machine in the classification of individual on twitter account,” Jurnal Teknik Informatika (Jutif), vol. 3, no. 3, 2022, doi: 10.20884/1.jutif.2022.3.3.254.

G. Suwanto, R. I. Adam, and Garno, “Identifikasi citra digital jenis beras menggunakan metode anfis dan sobel,” Jip (Jurnal Informatika Polinema), vol. 7, 2021, doi: https://doi.org/10.33795/jip.v7i2.406.

N. H. Nataraharja, R. I. Adam, and Garno, “Deteksi dan identifikasi citra digital jenis beras menggunakan metode anfis dan Prewitt,” Infomatek, vol. 22, no. 2, 2020, doi: https://doi.org/10.23969/infomatek.v22i2.3250.

M. S. Ardi, Abdullah, and Usman, “Rancang bangun pendeteksi kualitas beras menggunakan metode k-nearest neighbor berbasis android,” Jurnal Informatika Upgris, vol. 07, no. 02, 2021, doi: https://doi.org/10.26877/jiu.v7i2.8467.

M. Z. Altim, Faisal, Salmiah, Kasman, A. Yudhistira, and R. A. Syamsul, “Pengklasifikasi beras menggunakan metode CNN (Convolutional Neural Network),” Jurnal Instek (Informatika Sains dan Teknologi), vol. 7, no. 1, 2022, doi: https://doi.org/10.24252/instek.v7i1.28922.

Jusrawati, A. Futri, and A. baso Kaswar, “Klasifikasi tingkat kematangan buah pisang dalam ruang warna RGB menggunakan jaringan syaraf tiruan (JST),” Jessi (Journal Of Embedded System, Security and Intelligent System), vol. 02, no. 01, 2021, doi: https://doi.org/10.26858/jessi.

Rifqi Muhammad and R. N. Whidhiasih, “Identifikasi butir beras utuh dan butir beras patah berdasarkan perimeter menggunakan jaringan syaraf tiruan,” Jsrcs, vol. 1, no. 1, pp. 35–44, 2020, doi: https://doi.org/10.31599/jsrcs.v1i1.77.

C. Imam, E. W. Hidayat, and N. I. Kurniati, “Classification of meat imagery using artificial neural network method and texture feature extraction by gray level co-occurence matrix method,” Jurnal Teknik Informatika (Jutif), vol. 2, no. 1, pp. 1–8, Jan. 2021, doi: 10.20884/1.jutif.2021.2.1.37.

Published
2023-12-23
How to Cite
[1]
A. Asnidar, A. A. M. Perdana, M. R. Ilham, A. B. Kaswar, and D. D. Andayani, “CLASSIFICATION OF RICE QUALITY LEVELS BASED ON COLOR AND SHAPE FEATURES USING ARTIFICIAL NEURAL NETWORK BASED ON DIGITAL IMAGE PROCESSING”, J. Tek. Inform. (JUTIF), vol. 4, no. 6, pp. 1457-1468, Dec. 2023.

Most read articles by the same author(s)