SCIENTIFIC ARTICLES RECOMMENDATION SYSTEM BASED ON USER’S RELATEDNESS USING ITEM-BASED COLLABORATIVE FILTERING METHOD
Abstract
Scientific article recommendation still remains one of the challenging issues in education, including learning process. Difficulties in finding related articles from research history and research interest have been experienced by students in collage affecting the duration of study and research time. This paper proposed a new solution by building a search engine to collect and to recommend articles related to student research topics. The system combined the web scraping method as an article data retrieval technique on google scholar and item-based collaborative filtering to recommend the article. Parameters result produced based on items of user’s history, including item-searched, clicked, and downloaded. The system was built on a web-based scientific article recommendation system using python programming language. This system recommends articles based on the preferences of users and other users who are affiliated and who have an interest in the same item. This research showed that the validation result from the system obtained a recommendation accuracy value over 0.516801. The percentage of the RMSE error value of the recommendation system is 8.62%, or in other words that the accuracy of the recommendation system is 91.28%.
Downloads
References
Ö. F. SÖNMEZ, “Bibliometric analysis of educational research articles published in the field of social study education based on Web of Science Database,” Particip. Educ. Res., vol. 7, no. 2, pp. 216–229, 2020, doi: 10.17275/per.20.30.7.2.
V. Chaitanya and P. K. Singh, “Research articles suggestion using topic modelling,” in 2017 IEEE 4th International Conference on Soft Computing & Machine Intelligence (ISCMI), 2017, pp. 178–182.
S. Malik, A. Rana, and M. Bansal, “A survey of recommendation systems,” Inf. Resour. Manag. J., vol. 33, no. 4, pp. 53–73, 2020, doi: 10.4018/IRMJ.2020100104.
N. Nassar, A. Jafar, and Y. Rahhal, “A novel deep multi-criteria collaborative filtering model for recommendation system,” Knowledge-Based Syst., vol. 187, p. 104811, 2020, doi: 10.1016/j.knosys.2019.06.019.
S. Gupta and V. Kant, “An aggregation approach to multi-criteria recommender system using genetic programming,” Evol. Syst., vol. 11, no. 1, pp. 29–44, 2020, doi: 10.1007/s12530-019-09296-3.
A. Rahmatulloh and R. Gunawan, “Web Scraping with HTML DOM Method for Data Collection of Scientific Articles from Google Scholar,” Indones. J. Inf. Syst., vol. 2, no. 2, p. 16, 2020, doi: 10.24002/ijis.v2i2.3029.
G. S. and S. P. S. Ibrahim, “A Survey on Collaborative Filtering Based Recommendation System,” Smart Innov. Syst. Technol., vol. 49, pp. v–vii, 2016, doi: 10.1007/978-3-319-30348-2.
Y. E. Christanti, “Perbandingan metode user-item based dan item-based collaborative filtering pada studi kasus sistem rekomendasi tempat wisata untuk wilayah Solo Dan Yogyakarta,” UNS, 2013.
A. N. Nikolakopoulos and G. Karypis, “Boosting Item-based collaborative filtering via nearly uncoupled random walks,” ACM Trans. Knowl. Discov. from Data, vol. 14, no. 6, pp. 1–26, 2020.
M. Fadelillah, “Sistem Rekomendasi Pencarian Artikel Jurnal Indonesia Menggunakan Metode Jaccard’s Coefficient,” Unissula, 2017.
X. Bai, M. Wang, I. Lee, Z. Yang, X. Kong, and F. Xia, “Scientific paper recommendation: A survey,” IEEE Access, vol. 7, pp. 9324–9339, 2019, doi: 10.1109/ACCESS.2018.2890388.
I. S. Wahyudi, “Mesin Rekomendasi Film Menggunakan Metode Kemiripan Genre Berbasis Collaborative Filtering,” Institut Teknologi Sepuluh Nopember Surabaya, 2017.
V. A. Flores, P. A. Permatasari, and L. Jasa, “Penerapan Web Scraping Sebagai Media Pencarian dan Menyimpan Artikel Ilmiah Secara Otomatis Berdasarkan Keyword,” Maj. Ilm. Teknol. Elektro, vol. 19, no. 2, p. 157, 2020, doi: 10.24843/mite.2020.v19i02.p06.
F. Maria Rosario B, Yovi Pratama, “Penerapan Web Scraping Pada Website Company Profile,” Kntia, vol. 4, no. 4, pp. 37–43, 2017.
C. Adamiak, “Current state and development of Airbnb accommodation offer in 167 countries,” Curr. Issues Tour., vol. 25, no. 19, pp. 3131–3149, 2022, doi: 10.1080/13683500.2019.1696758.
F. A. Prayoga, F. I. Komputer, and U. A. Yogyakarta, “Smartphone Recommendation System Using Model-Based Sistem Rekomendasi Smartphone Menggunakan Metode Model-Based Collaborative Filltering,” J. Tek. Inform., vol. 3, no. 6, pp. 1613–1622, 2022, doi: 10.20884/1.jutif.2022.3.6.413.
D. Parra and S. Sahebi, “Recommender systems: Sources of knowledge and evaluation metrics,” Stud. Comput. Intell., vol. 452, pp. 149–175, 2013, doi: 10.1007/978-3-642-33326-2_7.
A. E. Wijaya and D. Alfian, “Sistem Rekomendasi Laptop Menggunakan Collaborative Filtering Dan Content-Based Filtering,” J. Comput. Bisnis, vol. 12, no. 1, pp. 11–27, 2018.
Y. V. L. Jaja, B. Susanto, and L. R. Sasongko, “Penerapan Meode Item-Based Collaborative Filtering Umtuk Sistem Rekomendasi Data MovieLens,” J. Mat. dan Apl., 2020.
Y. Setiawan, A. Nurwanto, and A. Erlansari, “Implementasi Item Based Collaborative Filtering Dalam Pemberian Rekomendasi Agenda Wisata Berbasis Android,” Pseudocode, vol. 6, no. 1, pp. 13–20, 2019, doi: 10.33369/pseudocode.6.1.13-20.
W. Wang and Y. Lu, “Analysis of the mean absolute error (MAE) and the root mean square error (RMSE) in assessing rounding model,” in IOP conference series: materials science and engineering, 2018, vol. 324, no. 1, p. 12049.
M. Chen and P. Liu, “Performance evaluation of recommender systems,” Int. J. Performability Eng., vol. 13, no. 8, pp. 1246–1256, 2017, doi: 10.23940/ijpe.17.08.p7.12461256.
G. Bottegal and G. Pillonetto, “The generalized cross validation filter,” Automatica, vol. 90, pp. 130–137, 2018, doi: 10.1016/j.automatica.2017.12.054.
C. Panagiotakis, H. Papadakis, and P. Fragopoulou, “Unsupervised and supervised methods for the detection of hurriedly created profiles in recommender systems,” Int. J. Mach. Learn. Cybern., vol. 11, no. 9, pp. 2165–2179, 2020, doi: 10.1007/s13042-020-01108-4.
X. Hu, C. Zhang, M. Wu, and Y. Zeng, “Research on Long Tail Recommendation Algorithm,” IOP Conf. Ser. Mater. Sci. Eng., vol. 261, no. 1, 2017, doi: 10.1088/1757-899X/261/1/012019.
A. O. Ogunde et al., “The design of a hybrid model-based journal recommendation system,” Adv. Sci. Technol. Eng. Syst., vol. 5, no. 6, pp. 1153–1162, 2020, doi: 10.25046/aj0506139.
M. Zheng, B. Liu, and L. Sun, “LawRec: Automatic Recommendation of Legal Provisions Based on Legal Text Analysis,” Comput. Intell. Neurosci., vol. 2022, 2022, doi: 10.1155/2022/6313161.
M. Nagpal and J. A. Petersen, “Keyword selection strategies in search engine optimization: how relevant is relevance?,” J. Retail., 2020, doi: 10.1016/j.jretai.2020.12.002.
A. Setiawan, Z. Harahap, D. Syamsuar, and Y. N. Kunang, “The optimization of website visibility and traffic by implementing search engine optimization (SEO) in Palembang Polytechnic of tourism,” CommIT (Communication Inf. Technol. J., vol. 14, no. 1, pp. 31–44, 2020, doi: 10.21512/commit.v14i1.5953.
Copyright (c) 2023 Ferzha Putra Utama, Triska Mardiansyah, Ruvita Faurina, Arie Vatresia
This work is licensed under a Creative Commons Attribution 4.0 International License.