IDENTIFICATION OF BIOMETRIC DEEPFAKES USING FEATURE LEARNING DEEP LEARNING

  • Anita Sindar Sinaga Department Information Technology, STMIK Pelita Nusantara Medan, Indonesia
  • Arjon Samuel Sitio Department Digital Business, STMIK Pelita Nusantara Medan, Indonesia
  • Sumitra Dewi Department Information Technology, STMIK Pelita Nusantara Medan, Indonesia
Keywords: Classification, CNN, Deep Learning, Fake, Identification

Abstract

Improved image quality on several frames extracted from video by manipulating image parameters by improving object edges and coloring segmentation to identify individual human biometric parts. Convolutional Neural Network (CNN) is designed to process two-dimensional data on images by classifying labeled data using the supervised learning method. The classification of fake or not fake images is done using the feature learning Deep Learning technique by forming a Machine Learning model. Video samples (testing and testing) are taken from YouTube randomly. Identifying the resemblance of one person's face to another's (real) face using deep learning. Identifying the resemblance of a person's face to another's face (real) on a genuine or fake label using CNN. Overall, the accuracy results models obtained the highest average accuracy on the face = 93.40%, mouth = 88.52%, eyes = 89.75 %. average accuracy = 90%.

Downloads

Download data is not yet available.

References

A. Ismail, M. Elpeltagy, M. S. Zaki, and K. Eldahshan, “A new deep learning-based methodology for video deepfake detection using xgboost,” Sensors, vol. 21, no. 16, pp. 1–15, 2021, doi: 10.3390/s21165413.

A. A. Kurniawan and M. Mustikasari, “Implementasi Deep Learning Menggunakan Metode CNN dan LSTM untuk Menentukan Berita Palsu dalam Bahasa Indonesia,” J. Inform. Univ. Pamulang, vol. 5, no. 4, p. 544, 2021, doi: 10.32493/informatika.v5i4.6760.

D. Wodajo and S. Atnafu, “Deepfake Video Detection Using Convolutional Vision Transformer,” 2021, [Online]. Available: http://arxiv.org/abs/2102.11126

N. Arif and F. S. Wahyuni, “Penggunaan Metode Machine Learning Untuk Pengenalan,” vol. 5, pp. 6–7, 2016.

T. T. Nguyen et al., “Deep Learning for Deepfakes Creation and Detection: A Survey,” SSRN Electron. J., no. September, 2022, doi: 10.2139/ssrn.4030341.

Y. Quiñonez, C. Lizarraga, J. Peraza, and O. Zatarain, “Image recognition in UAV videos using convolutional neural networks,” IET Softw., vol. 14, no. 2, pp. 176–181, 2020, doi: 10.1049/iet-sen.2019.0045.

D. Zhang, C. Li, F. Lin, D. Zeng, and S. Ge, “Detecting Deepfake Videos with Temporal Dropout 3DCNN,” IJCAI Int. Jt. Conf. Artif. Intell., pp. 1288–1294, 2021, doi: 10.24963/ijcai.2021/178.

S. T. Suganthi et al., “Deep learning model for deep fake face recognition and detection,” PeerJ Comput. Sci., vol. 8, pp. 1–20, 2022, doi: 10.7717/PEERJ-CS.881.

A. T. Putra, K. Usman, and S. Saidah, “WEBINAR STUDENT PRESENCE SYSTEM BASED ON REGIONAL CONVOLUTIONAL NEURAL NETWORK USING FACE RECOGNITION”, J. Tek. Inform. (JUTIF), vol. 2, no. 2, pp. 109-118, Mar. 2021.

Y. A. Hasma and W. Silfianti, “Implementasi Deep Learning Menggunakan Framework Tensorflow Dengan Metode Faster Regional Convolutional Neural Network Untuk Pendeteksian Jerawat,” J. Ilm. Teknol. dan Rekayasa, vol. 23, no. 2, pp. 89–102, 2018, doi: 10.35760/tr.2018.v23i2.2459.

H. S. Shad et al., “Comparative Analysis of Deepfake Image Detection Method Using Convolutional Neural Network,” Comput. Intell. Neurosci., vol. 2021, 2021, doi: 10.1155/2021/3111676.

C. Hu, H. Huang, M. Chen, S. Yang, and H. Chen, “Video object detection from one single image through opto-electronic neural network,” APL Photonics, vol. 6, no. 4, 2021, doi: 10.1063/5.0040424.

W. Wang and T. Li, “Fire Video Image Detection Based on a Convolutional Neural Network,” J. Phys. Conf. Ser., vol. 1453, no. 1, 2020, doi: 10.1088/1742-6596/1453/1/012161.

Z. A. Fikriya, M. I. Irawan, and S. Soetrisno., “Implementasi Extreme Learning Machine untuk Pengenalan Objek Citra Digital,” J. Sains dan Seni ITS, vol. 6, no. 1, 2017, doi: 10.12962/j23373520.v6i1.21754.

Intyanto, & Gramandha, W. (2021). Klasifikasi Citra Bunga dengan Menggunakan Deep Learning : CNN ( Convolution Neural Network ). Jurnal Arus Elektro Indonesia (JAEI), 7 (3), 80–83.

Published
2022-07-22
How to Cite
[1]
A. S. Sinaga, A. S. Sitio, and S. Dewi, “IDENTIFICATION OF BIOMETRIC DEEPFAKES USING FEATURE LEARNING DEEP LEARNING”, J. Tek. Inform. (JUTIF), vol. 3, no. 4, pp. 1125-1130, Jul. 2022.