THE PERCEPTIONS OF SEMARANG FIVE STAR HOTEL TOURISTS WITH SUPPORT VECTOR MACHINE ON GOOGLE REVIEWS
Abstract
Travelers on the road sometimes need a hotel to rest. In choosing a hotel, they refer to the ratings or reviews written by users through reviews on Google. This is because not all star hotels provide facilities in accordance with user assessments. This study discusses the analysis of the opinions of tourists who have stayed in 5-star hotels in Semarang through a review of commentary data on Google. The 5-star hotels used as the research are Padma, Gumaya, Tentrem, Grand Candi, Ciputra, and PO. The dataset of the six hotels was obtained through a scraping process then followed by data pre-processing. The data was retrieved from Google Maps using the Chrome Instant Data Scrapper extension. Data preprocessing begins with case folding, tokenizing, filtering, and ends with stemming. Support Vector Machine (SVM) is implemented for sentimen classification process. The results from this study are the majority of 5-star hotel reviews in Semarang tend to have positive rather than negative sentimens. Our model was able to produce an accuracy of 0.87 to 0.98. The highest accuracy was achieved by Ciputra Hotel at 0.98 with 543 positive reviews.
Downloads
References
L. Sri Damayanti, “Peranan Keterampilan Berbahasa Inggris Dalam Industri Pariwisata,” Journey J. Tour. Culinary, Hosp. Conv. Event Manag., vol. 2, no. 1, pp. 71–82, Dec. 2019, doi: 10.46837/journey.v2i1.42.
E. K. Sugiyanto and F. Kurniasari, “DIMENSI KUALITAS PELAYANAN SEBAGAI UPAYA PENINGKATAN KEPUASAN PELANGGAN (Studi Pada Pelanggan Hotel X Semarang),” Bus. Manag. Anal. J., vol. 3, no. 2, pp. 112–125, 2020, doi: 10.24176/bmaj.v3i2.5372.
J. Adinegara et al., “Antecedents And Consequences Of Tourist Satisfaction: A Literature Review,” ASEAN Mark. J., vol. 9, no. 2, doi: 10.21002/amj.v9i2.5686.
J. A. Aryadi, Y. A. Aidil Basith, M. Munawir, and D. A. Rimadhani Agustini, “Analisis Data Review Hotel di Google Maps Melalui Text Mining (Studi Kasus : Kabupanten Bandung),” JIKO (Jurnal Inform. dan Komputer), vol. 7, no. 2, p. 312, 2023, doi: 10.26798/jiko.v7i2.938.
R. Alhamdi, “PENGARUH ONLINE REVIEW DAN HARGA TERHADAP KEPUTUSAN PEMESANAN KAMAR HOTEL DI ONLINE TRAVEL AGENT (STUDI KASUS KOTA BATAM),” J. Manaj. Perhotelan, vol. 9, no. 2, pp. 63–70, Sep. 2023, doi: 10.9744/jmp.9.2.63-70.
M. F. Hattah, M. Asdar, and I. Nursyamsi, “Analisis Pengaruh Bauran Pemasaran terhadap Daya Tarik Pelanggan pada Hotel Claro di Kota Makassar,” SEIKO J. Manag. Bus., vol. 6, no. 1, pp. 208–224, 2023, doi: 10.37531/sejaman.v6i1.3845.
R. Fatmasari, V. M. Ayu, H. Anto, W. Gata, and L. D. Yulianto, “Analisis Sentimen Dalam Pengkategorian Komentar Youtube Terhadap Layanan Akademik dan Non-Akademik Universitas Terbuka Untuk Prediksi Kepuasan,” Build. Informatics, Technol. Sci., vol. 4, no. 2, pp. 395–404, Sep. 2022, doi: 10.47065/bits.v4i2.1738.
Y. A. Singgalen, “Analisis Sentimen Top 10 Traveler Ranked Hotel di Kota Makassar Menggunakan Algoritma Decision Tree dan Support Vector Machine,” Media Online), vol. 4, no. 1, pp. 323–332, 2023, doi: 10.30865/klik.v4i1.1153.
M. A. Fauzi, “Word2Vec model for sentiment analysis of product reviews in Indonesian language,” Int. J. Electr. Comput. Eng., vol. 9, no. 1, p. 525, Feb. 2019, doi: 10.11591/ijece.v9i1.pp525-530.
N. Pratiwi, J. Syahfitri, and M. Andesta, “PENYULUHAN SISTEM PERTANIAN TERPADU DAN PEMANFAATAN LAHAN KOSONG DI PEKARANGAN RUMAH BAGI MASYARAKAT DI KABUPATEN BENGKULU TENGAH Nurul,” no. 2, pp. 69–73, 2021.
C. Prakoso and A. Hermawan, “Perbandingan Model Machine Learning dalam Analisis Sentimen Ulasan Pengunjung Keraton Yogyakarta pada Google Maps,” Kaji. Ilm. Inform. dan Komput., vol. 4, no. 3, pp. 1292–1302, 2023, doi: 10.30865/klik.v4i3.1419.
N. W. S. Saraswati and I. G. A. A. Diatri Indradewi, “Recognize The Polarity of Hotel Reviews using Support Vector Machine,” MATRIK J. Manajemen, Tek. Inform. dan Rekayasa Komput., vol. 22, no. 1, pp. 25–36, 2022, doi: 10.30812/matrik.v22i1.1848.
Y. A. Singgalen, “Analisis Performa Algoritma NBC, DT, SVM dalam Klasifikasi Data Ulasan Pengunjung Candi Borobudur Berbasis CRISP-DM,” Build. Informatics, Technol. Sci., vol. 4, no. 3, Dec. 2022, doi: 10.47065/bits.v4i3.2766.
Z. Zaenal and I. R. I. Astutik, “Sentiment Analysis of OYO App Reviews Using the Support Vector Machine Algorithm,” Procedia Eng. Life Sci., vol. 3, no. December, 2023, doi: 10.21070/pels.v3i0.1338.
C. Mei Serin Sitio, Y. Sibaroni, and S. Suryani Prasetiyowati, “Identifying Possible Rumor Spreaders on Twitter Using the Svm and Feature Level Extraction,” J. Tek. Inform., vol. 4, no. 3, pp. 611–618, 2023, doi: 10.52436/1.jutif.2023.4.3.868.
H. Mustofa and A. A. Mahfudh, “Klasifikasi Berita Hoax Dengan Menggunakan Metode Naive Bayes,” Walisongo J. Inf. Technol., vol. 1, no. 1, p. 1, 2019, doi: 10.21580/wjit.2019.1.1.3915.
K. Tri Putra, M. Amin Hariyadi, and C. Crysdian, “Perbandingan Feature Extraction Tf-Idf Dan Bow Untuk Analisis Sentimen Berbasis Svm,” J. Cahaya MAndalika, p. 1449, 2023.
Copyright (c) 2024 Muhammad Haikal Aufan, Maya Rini Handayani, Afifah Basmah Nurjanna, Nur Cahyo Hendro Wibowo, Khotibul Umam
This work is licensed under a Creative Commons Attribution 4.0 International License.