APPLICATION OF ENSEMBLE METHOD FOR EMPLOYEE TURNOVER PREDICTIONS IN FINANCIAL SERVICES COMPANY

  • Muhamad Fadel Master of Computer Science, Information and Technology Faculty Universitas Budi Luhur, Indonesia
  • Kanasfi Master of Computer Science, Information and Technology Faculty Universitas Budi Luhur, Indonesia
  • Zainal Arifin Master of Computer Science, Information and Technology Faculty Universitas Budi Luhur, Indonesia
  • Gandung Triyono Master of Computer Science, Information and Technology Faculty Universitas Budi Luhur, Indonesia
Keywords: AdaBoost, Machine Learning, Random Forest, Stacking

Abstract

High employee turnover is a challenge for every company, considering that employees are a valuable asset for the company. A high employee turnover rate indicates the high frequency of employees leaving a company. This will harm the company in terms of time, costs, human resources, and reduce the company's reputation. Low employee turnover is an objective for every company in its efforts to achieve its vision and mission, the employee turnover rate is high at 78.97% at PT. HCI operating in the financial services sector can have a negative impact on the company's reputation. Therefore, there is a need to analyze and predict employee turnover so that company management can take preventive and persuasive actions so as to reduce employee turnover rates. Therefore, a tool is needed to predict whether an employee will leave the company. This paper aims to predict the possibility of employees out of the company using the ensemble method, which is a method that uses a combination of several algorithms consisting of base learners and individual learners, algorithms with the ensemble method used are stacking, random forest, and adaboost, then comparing the result to get the best accuracy. The test results prove that the Stacking algorithm technique is the best model with the highest score in terms of accuracy with a value of 86.84%, while the Random Forest and AdaBoost algorithm techniques have a value of 81.04% and 80.30%. With this high accuracy value, the Stacking model is proven to have better individual performance in analyzing employee turnover predictions in human resource applications in companies.

Downloads

Download data is not yet available.

References

E. Hardiyanto, “Kombinasi Metode Ensemble, Cfs Dan Pohon Keputusan Untuk Prediksi Kinerja Petugas Studi Kasus: Survey Podes Badan Pusat Statistik,” Joutica, vol. 5, no. 1, p. 337, 2020, doi: 10.30736/jti.v5i1.390.

W. Purba, W. Siawin, and . H., “Implementasi Data Mining Untuk Pengelompokkan Dan Prediksi Karyawan Yang Berpotensi Phk Dengan Algoritma K-Means Clustering,” J. Sist. Inf. dan Ilmu Komput. Prima(JUSIKOM PRIMA), vol. 2, no. 2, pp. 85–90, 2019, doi: 10.34012/jusikom.v2i2.429.

J. T. Samudra, B. H. Hayadi, and P. S. Ramadhan, “Komparasi 3 Metode Algoritma Klasifikasi Data Mining Pada Prediksi Kenaikan Jabatan,” J-SISKO TECH (Jurnal Teknol. Sist. Inf. dan Sist. Komput. TGD), vol. 5, no. 2, p. 127, 2022, doi: 10.53513/jsk.v5i2.5642.

A. S. Abiyyu, “Perbandingan Metode Seleksi Fitur untuk Mengoptimasi Model Support Vector Machine dalam Memprediksi Turnover Pegawai,” vol. 10, no. 2, p. 1921, 2023.

M. A. Al Fatih and K. M. Lhaksmana, “Prediksi Employee Attrition menggunakan Algoritma Support Vector Machine (SVM),” J. Prediksi Empl. Attrition, vol. 10, no. 2, p. 1930, 2023.

T. H. L. Tulus, A. Id Hadiana, and I. Santikarama, “Sistem Prediksi Awal Terhadap Atrisi Karyawan Menggunakan Algoritma C4.5,” Informatics Digit. Expert, vol. 4, no. 1, pp. 18–24, 2022, doi: 10.36423/index.v4i1.882.

L. S. Shubham Karande, “Prediction of Employee Turnover Using Ensemble Learning,” vol. 904, no. July, pp. 339–351, 2019, doi: 10.1007/978-981-13-5934-7.

D. B. S. Louis Madaerdo Sotarjua, “Perbandingan Algoritma Knn, Decision Tree,*Dan Random*Forest Pada Data Imbalanced Class Untuk Klasifikasi Promosi Karyawan,” J. INSTEK (Informatika Sains dan Teknol., vol. 7, no. 2, pp. 192–200, 2022, doi: 10.24252/instek.v7i2.31385.

M. A. Hossen, E. Hossain, A. K. Z. Ishwar, and F. Siddika, “Ensemble method based architecture using random forest importance to predict employee’s turn over,” J. Phys. Conf. Ser., vol. 1755, no. 1, 2021, doi: 10.1088/1742-6596/1755/1/012039.

D. Manurung, F. Sandi, F. Akinardipura, H. AShfahan, and D. Prasvirta, “Prediksi Pengunduran Diri Karyawan Perusahaan ‘Y’ Menggunakan,” Semin. Nas. Mhs. Imu Komput. dan Apl., vol. 2, no. 2, pp. 202–213, 2021.

M. Atef, D. S. Elzanfaly, and S. Ouf, “Early Prediction of Employee Turnover Using Machine Learning Algorithms,” Int. J. Electr. Comput. Eng. Syst., vol. 13, no. 2, pp. 135–144, 2022, doi: 10.32985/IJECES.13.2.6.

A. Nurmasani and Y. Pristyanto, “Algoritme Stacking Untuk Klasifikasi Penyakit Jantung Pada Dataset Imbalanced Class,” Pseudocode, vol. 8, no. 1, pp. 21–26, 2021, doi: 10.33369/pseudocode.8.1.21-26.

B. M. Karomah, “Penerapan Metode Stacking Dalam Mengklasifikasikan Penderita Penyakit Diabetes,” Jupikom, vol. 1, no. 3, 2022.

A. Ferdita Nugraha, R. F. A. Aziza, and Y. Pristyanto, “Penerapan metode Stacking dan Random Forest untuk Meningkatkan Kinerja Klasifikasi pada Proses Deteksi Web Phishing,” J. Infomedia, vol. 7, no. 1, p. 39, 2022, doi: 10.30811/jim.v7i1.2959.

N. O. Syamsiah and I. Purwandani, “Penerapan Ensemble Stacking untuk Peramalan Laba Bersih Bank Syariah Indonesia (BSI),” Build. Informatics, Technol. Sci., vol. 3, no. 3, pp. 295–301, 2021, doi: 10.47065/bits.v3i3.1017.

M. R. Akbar et al., “Prediksi Retweet Berdasarkan User-Based dan Content - Based Menggunakan Metode Ensemble Stacking,” vol. 10, no. 2, pp. 1950–1962, 2023.

V. I. Ivanoti, Megananda Hervita P., Gandung Triyono, and Dyah Puji Utami, “Decision Support System for Predicting Employee Leave Using the Light Gradient Boosting Machine (Lightgbm) and K-Means Algorithm,” J. Tek. Inform., vol. 4, no. 3, pp. 657–667, 2023, doi: 10.52436/1.jutif.2023.4.3.1084.

F. K. Alsheref, I. E. Fattoh, and W. Mead, “Automated Prediction of Employee Attrition Using Ensemble Model Based on Machine Learning Algorithms,” Comput. Intell. Neurosci., vol. 2022, 2022, doi: 10.1155/2022/7728668.

R. Ahsana, R. Rohmat Saedudin, and V. P. Widartha, “Perbandingan Akurasi Algoritma Adaboost Dan Algoritma Lightgbm Untuk Klasifikasi Penyakit Diabetes,” e-Proceeding Eng., vol. 8, no. 5, pp. 9738–9748, 2021.

F. I. Kurniadi and P. D. Larasati, “Light Gradient Boosting Machine untuk Deteksi Penyakit Stroke,” J. SISKOM-KB (Sistem Komput. dan Kecerdasan Buatan), vol. 6, no. 1, pp. 67–72, 2022, doi: 10.47970/siskom-kb.v6i1.328.

S. Diantika, “Penerapan Teknik Random Oversampling Untuk Mengatasi Imbalance Class Dalam Klasifikasi Website Phishing Menggunakan Algoritma Lightgbm,” JATI (Jurnal Mhs. Tek. Inform., vol. 7, no. 1, pp. 19–25, 2023, doi: 10.36040/jati.v7i1.6006.

Published
2024-05-28
How to Cite
[1]
M. Fadel, K. Kanasfi, Z. Arifin, and G. Triyono, “APPLICATION OF ENSEMBLE METHOD FOR EMPLOYEE TURNOVER PREDICTIONS IN FINANCIAL SERVICES COMPANY”, J. Tek. Inform. (JUTIF), vol. 5, no. 3, pp. 767-775, May 2024.