
Jurnal Teknik Informatika (JUTIF) DOI: https://doi.org/10.52436/1.jutif.2023.4.6.546
Vol. 4, No. 6, December 2023, pp. 1437-1446 p-ISSN: 2723-3863
 e-ISSN: 2723-3871

1437

DESIGNING A 3D ROGUELIKE GAME WITH PROCEDURAL CONTENT

GENERATION USING THE GRAPH GRAMMARS METHOD

Arie Vatresia*1, Ferzha Putra Utama2, Adi Yulianto3

1,3Informatics, Faculty of Engineering, Universitas Bengkulu, Indonesia
2Information Systems, Faculty of Engineering, Universitas Bengkulu, Indonesia

Email: 1arie.vatresia@unib.ac.id, 2fputama.edu@unib.ac.id, 3adiyulianto888@gmail.com

(Article received: August 11, 2022; Revision: September 16, 2022; published: December 23, 2023)

Abstract

Roguelike is a genre of role-playing video game in which the player explores dungeons through procedurally

generated levels. If they lose, the player loses progress, and the character starts over again. Procedural Content

Generation (PCG) is a computer program that can create game content automatically, randomly, and uniquely,

either by itself or with human assistance. In this study, the 3D roguelike game was designed with players playing

a character to explore dungeons. Players will enter at one point, explore the surrounding environment, defeat

the enemies encountered, avoid traps, collect treasure, and finally exit at another point. Each time the player

starts a new game session, the game will generate a dungeon with a mission structure that changes randomly to

create a variety of gameplay. This mission generation is implemented using the Graph Grammar method. The

game is built using the Unity game engine and is intended to run on Android devices. Based on the black box test

results, all the game's features are running well according to their functions. The built games will be evaluated

using the GUESS-18 to determine the level of player satisfaction. Based on the evaluation results, the game is

included in the "GOOD" category, with an overall score of 49.07 out of 63 maximum scores. The game that has

been built is superior in the aspect of personal gratification, while it is weak in the aspect of social connectivity.

Keywords: Game, Graph Grammars, GUESS-18, Procedural Content Generation, Roguelike.

1. INTRODUCTION

Roguelike is a genre of role-playing video

games in which players explore dungeons through

procedurally generated levels. If the player loses, he

will lose progress, and the character starts again

from the beginning. Players play a character by

exploring dungeons. He will enter at one point,

explore the surrounding environment, defeat

enemies, avoid traps, find ways to enter the locked

section, defeat boss enemies, collect treasures, and

finally exit at another point. Players usually explore

several dungeons with different views, themes, and

difficulties in a mission [1], [2].

Permadeath in roguelike games requires

players to repeat the level from the beginning if they

lose. Roguelike games rely on PCG to keep this

repetitive gameplay from giving players a bland

impression. Procedural Content Generation (PCG) is

a computer program that can create game content

automatically, randomly, and uniquely, either by

itself or with human assistance. The content here is

anything contained in the game. It can be levels,

maps, game rules, textures, stories, items, missions,

music, weapons, vehicles, or characters [3]–[6].

According to Dormans, Graph Grammars can be

used to generate game levels by dividing them into

mission generation and area generation [7].

However, in his study, Dormans still applies it as a

graph representation, and it has not yet become a

game that can be played. The author is interested in

building 3D games by applying the Graph Grammar

method for dungeon generation in a playable game

[7].

The main problem raised in this research is

how to create a dynamic game mission structure so

that the generated dungeon and game mission

structure continuously varies every time players start

a new game. The first problem will be given a

solution by applying the Graph Grammar method

during the dungeon generation process. The second

problem discussed in this final project is how to

design gameplay from a 3D roguelike game to a

ready-to-play game. The design will be done by

making Game Design, which includes game flow,

game mechanics and character control, visual and

audio display, and mission/objective structure. The

last problem that will be discussed in this research is

how to find out the satisfaction and playing

experience of the players in the games. Play

satisfaction will be measured by distributing

questionnaires to the game community “Team Kito”.

In this study, the author designs a 3D roguelike

game with the camera configuration on top facing

down (top-down). Players will go through many

dungeons to reach the main enemy [2], [8]. The

primary mission in the game will be defined first in

the form of a mission graph. Then, the game will

1438 Jurnal Teknik Informatika (JUTIF), Vol. 4, No. 6, December 2023, pp. 1437-1446

apply PCG with the Graph Grammars method to

change the basic mission graph to be more varied by

applying content generation rules. The rules that will

be designed include adding enemies in the middle of

the journey, placing items at several points in the

dungeon to help players, and adding or randomizing

the arrangement of dungeons. Other rules include

locked dungeons, so players must find specific keys

to access the next dungeon. After the new mission

structure is formed, 3D game assets such as the

environment, enemies, items, and characters will be

generated. So that after content generation, a game

arena will be formed, and each game will vary

starting from the beginning.

Game design is done by the Prototyping

method. The game is built using the Unity engine

and can be played on Android devices. The built

games will be tested with a black box to determine

whether the available features follow the expected

design. After the game design has been successfully

implemented, the game will be evaluated to

determine the level of satisfaction and playing

experience of players using the GUESS-18

framework. The evaluation was carried out on the

game community "Team Kito" using a questionnaire

for data collection.

2. METHODS

2.1. Types of research

The type of research used is applied research.

In this case, the research aims to apply Procedural

Content Generation using the Graph Grammars

method in a 3D roguelike game.

2.2. Research Objects and Subjects

The object of research is the state of an object

that is the target in a study [9], [10]. The object of

this research is the application of Procedural Content

Generation using the Graph Grammars method into

a 3D roguelike game, namely the game mission

structure. Research subjects are individuals who are

targeted in collecting research data. The research

subject in this study is the "Team Kito" game

community in Bengkulu City.

2.3. Data Collection Methods

Data collection methods for system

development using secondary data [9]. Secondary

data was obtained from a literature study by

reviewing several works of literature, reference

books, and scientific journals that discussed 3D

roguelike games and Procedural Content Generation.

For system evaluation, data collection was carried

out using a questionnaire [11]. The questionnaire

method was used to measure program indicators

related to the satisfaction of the playing experience.

The questionnaire is given after the game that has

been built has been completed. The research subject

will fill out the questionnaire.

2.4. Application Development Method

The system development method in this

research is the Prototype method[1]. The prototype

method is intended to get an initial representation of

the game to be made. After potential users evaluate

the prototype, the next stage is further development

to the production scale.

2.5. Graph Grammar Method

Graph Grammars is a method that can be

used to generate procedural content [7], [8].

Graphics are better suited than strings to represent

missions and spaces in a game, especially when

those missions and spaces must have a certain level

of need. For example, a completely linear mission

(which may be represented by a string) might be

suitable for simple and linear games. However, for

an exploratory adventure game such as a roguelike

or RPG, the game developer would want the mission

to contain puzzles and keys, bonus levels, and

perhaps multiple paths to complete. They are leading

to the final level. A graph can express this type of

structure more easily. For example, Figure 1

contains missions that can be completed in two

different ways.

Figure 1. Mission structure with two completion paths

A graph consists of several nodes and edges

as links [3]. Graphs are used to describe the missions

contained in the game and the routes that players can

take. Graph Grammars generate content by changing

the basic node structure with another node structure

defined as rules. These rules are separated by

position into two, namely the left side, or can be

called the left-hand side (LHS), and the right side or

can be called the right-hand side (RHS). LHS is a

node structure that will be searched in the whole

graph, which will then be changed, while RHS is a

node structure that will replace LHS [7].

The method with graph grammar is

constructive, in which the generator will produce

only one output, requires a short time, and there is

no evaluation of the results. The advantage of the

Graph Grammars approach is that the result is

controllable. It can convey the narrative and

maintain the gameplay. Since the primary mission

can be defined in advance, Graph Grammars only

increases the variety of the primary mission [7], [8].

Arie Vatresia, et all, Designing A 3D Roguelike Game … 1439

2.7. Testing Method

The testing will be done on applications built

using the black box. In this black box test, the author

will observe the execution results focusing on the

functional requirements of the game. This test

comprises a series of input conditions to ensure

program functionality and find errors that may occur

during the development process. The percentage of

each tested condition will be calculated by equation

(1) as follows [12], [13]:

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑓𝑢𝑙 𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑖𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦
𝑥100% (1)

2.8. Player Satisfaction Test Method

The player satisfaction test is carried out to

assess the player's satisfaction with the game that

has been made [14]. This evaluation uses the

GUESS-18 framework. GUESS-18 is a validated

game scale with 18 question items to assess 9 (nine)

aspects of video games for player satisfaction in

playing. The nine aspects are usability/playability,

play engrossment, narratives, enjoyment, audio

aesthetics, creative freedom, personal gratification,

visual aesthetics, and social connectivity [11].

The GUESS rating subscale will be assessed on

a 7-point Likert scale. The calculation of the GUESS

score consists of calculating the average of the items

in a subscale. The overall score is calculated by

adding up the scores of all subscales. For the overall

score, the minimum score is 9, and the maximum

score is 63 [11]. The scale used in this study is:

1) Strongly disagree. The weight for this scale is

1.

2) Don't agree. The weight for this scale is 2.

3) Simply disagree. The weight for this scale is

3.

4) Neutral. The weight for this scale is 4.

5) Quite agree. The weight for this scale is 5.

6) Agree. The weight for this scale is 6.

7) Strongly agree. The weight for this scale is 7.

The results of the calculation process are

presented in tabular form, so the value of the

feasibility test for the system is obtained. The

following equation (2) is for calculating the final

score using a Likert scale. Symbol i is class interval,

m is highest score, n is lowest score, and k is number

of classes [15]:

𝑖 =
𝑚−𝑛

𝑘
 (2)

3. RESULT

3.1. Generation Process with Graph Grammars

Graph grammars work very much like

language grammars; Graph grammars rules also

have a left section that shows a particular graph

construction that can be replaced by any of the

constructs on the right of the rule. However, to

perform the transformation, it is essential to identify

each node on the left individually and match it to

each node on each right. Figure 2 shows the rules of

graph grammars and the use of numbers to identify

each vertex.

Figure 2. Node Editor for creating a mission graph

Figure 3. The process of generating graph grammars

In graph grammars, the following five steps

are performed to apply rules (as illustrated in Figure

3):

1. Find the subgraph in the target graph that

matches the left side of the rule (LHS) and

mark the subgraph with a number to copy the

node index.

2. Delete all edges between marked nodes.

3. Transform the graph by converting the marked

nodes into corresponding nodes on the right-

hand side (RHS), adding a node for each node

on the right-hand side that does not match the

target graph, and removing nodes that do not

have a matching node on the right-hand side.

4. Copy the edge as defined by the right side of

the rule (RHS).

5. Remove all marks.

3.2. Mission Representation

To apply the graph grammar method, we can

start by building a mission representation in the form

of letter symbols. The mission representation, which

consists of nodes and edges, is as follows:

a. Start (node with symbol s): the starting node

where the graph grammar starts generating

missions and the player enters the game area.

b. Tasks (node with symbol T): nodes that can

be customized according to the needs of the

game challenge. This node can be replaced

with other nodes such as enemy, key-and-

lock, and trap nodes.

c. Enemy (node with symbol e): node with

enemies challenge that can attack the player.

d. Items (node with symbol i): nodes with

rewards for players to find or acquire.

1440 Jurnal Teknik Informatika (JUTIF), Vol. 4, No. 6, December 2023, pp. 1437-1446

e. Key (node with symbol k): node with a key to

unlock the locked node.

f. Lock (node with symbol l): node with a

locked door/obstacle that must be unlocked

using the appropriate item key.

g. Trap (node with symbol t): node with the

challenge of avoiding traps.

h. Crossroad (node with symbol c): node with

four possible paths.

i. Shop (node with the symbol p): the node in

which there is an option to purchase items by

the player.

j. Boss (node with symbol b): the node where

the player fights boss enemies.

k. Goal (node with symbol g): the final node

where the player is deemed to have

completed the mission.

3.3. Node Editor

Node Editor is a program created as a tool to

define the nodes and edges of Graph Grammar in the

Unity Editor, making it easier for designers to

compose missions in the game. To open the node

editor, inside Unity Editor, select Tools -> Node

Editor menu. In making Graph Grammar, each node

is given a unique ID. Node is divided into several

types, namely:

1. Start Graph Node: node with green color is

the node as the main graph where the

program will read the initial mission defined

by the designer.

2. Graph Node: is a node to represent a graph.

The implementation of the Graph Grammar

method consists of many graphs: the initial

mission graph, the reference graph or LHS,

and the new mission graph or RHS. LHS and

RHS graphs can be connected with red edges

to form a rule. This collection of rules will be

referred to as grammar.

3. Mission Node: a node represents the mission

defined at the design stage. A mission node

must have one parent graph and the same

mission symbol defined in the design. It can

be connected with the green edge to form a

series of missions.

After the designer has finished creating a

mission with the Node Editor, he can export it to an

XML file by selecting the File -> Export -> XML

Graph Grammar menu. The exported XML file must

be saved in the “Asset/Resources/” folder to include

it in the program code when the game is compiled

into an APK. A designer can create as many mission

files as needed.

3.4. Dungeon Generator

Dungeon Generator is a script program

implementing the Graph Grammar method.

Dungeon Generator is used in adventure scenes and

requires input in the form of an XML file exported

from the Node Editor in the previous discussion.

Dungeon Generator implementation consists of

several components, namely:

a. Building Instructions for settings the 3D

dungeon type. A 3D dungeon is pre-designed

to be prefab, so it is easy to reuse during

mission generation. Building Instructions is

responsible for storing information about the

type of mission (marked with the mission

symbol) and the corresponding 3D dungeon.

It can also store various layouts of a dungeon

to increase the variety of generation results.

b. Dungeon Clean Up is a script program in

charge after generation with the Graph

Grammar method complete to clean up

unused connecting points in 3D dungeons. So

that the series of dungeons is closed, and the

player character does not leave the game

arena.

c. NavMesh Baker is a script program in charge

of making the floor (ground) of a 3D

dungeon so that NPC-AI can move in the

game arena.

d. Lock and Key Connector is a script program

in charge of connecting locked mission

dungeons with the appropriate key so that the

key-and-lock function can function correctly.

Figure 5. Dungeon Generator configuration

Arie Vatresia, et all, Designing A 3D Roguelike Game … 1441

Figure 5 is a display for setting the dungeon

Generator in the Unity Editor. The components in

this setting view were described in the previous

section. Designers can set the dungeon generation

configuration by filling in the input fields.

3.5. Gameplay Implementation

This section results from implementing the

gameplay design into a ready-to-play application.

The game is divided into several scenes. Table 1

below is a list of scenes made in the 3D roguelike

game that has been built.

Table 1. List of in-game scenes

No. Scene Name Description

1 Scene 1 - Main Menu Scene for the game's main

menu

2 Scene 1 - Settings
Menu

Scene for game settings menu

3 Scene 2 - Village Area Scenes for gameplay in the

village area
4 Scene 2 - Pause Menu Scene for game pause menu

5 Scene 3 - Adventure Scenes for gameplay in the

adventure area

1) Scene 1 - Main Menu

Figure 6 is the Main menu interface. This main

menu will appear when the application is first

opened. In this scene, there are three options in the

game process, namely the play option, the setting

option, and the exit option.

Figure 6. Main menu interface

2) Scene 1 – Settings Menu

Figure 7. Settings menu interface

Figure 7 is a display of the settings menu

interface. In this settings menu, the player can set

several features such as audio consisting of music

and sound effects, mode or difficulty level, and other

settings.

3) Scene 2 – Village Area

Figure 8. Village area interface

Figure 8 is the interface of the village area in

the game. This village area page aims to prepare

each character before going on an adventure, such as

learning the character's control, learning new skills,

interacting with existing NPCs, and buying or

upgrading weapons.

4) Scene 2 – Pause Menu

Figure 9 is the interface of the pause menu,

which serves to pause the ongoing game. In addition

to this menu, there are options such as resuming the

game, repeating the current scene, setting options,

and exiting options to the main menu.

Figure 9. Pause menu interface

5) Scene 3 – Adventure Area

Figure 10. Adventure area interface

Figure 10 is the Adventure area interface where

in this area, the player character explores dungeons,

1442 Jurnal Teknik Informatika (JUTIF), Vol. 4, No. 6, December 2023, pp. 1437-1446

defeats enemies, completes an area's objectives,

looks for equipment, and survives until he can open

the next area.

3.6. Black box testing

Black box testing is carried out to test whether

the system developed follows what is stated in the

functional specifications of the system. The truth of

the software being tested is only seen based on the

output generated from the data or input conditions

given for the existing function without seeing how

the process is to get the output. The test was carried

out using the Redmi Note 10S Android device,

which has the Android 11 operating system, with an

Octa-core Helio G95 CPU, Mali-G76 GPU, and

6GB RAM.

Overall black box testing activities are 48

activities, with all activities successfully

implementing the expected design. Therefore, based

on equation (1), the results of the black box test can

be concluded that the activity test is successful with

a percentage value of:

48

48
 x 100% = 100%

3.7. Testing the Application of the Graph

Grammar Method

Testing the application of the Graph Grammar

method was carried out to determine the success of

applying the method to the dungeon generator

program that had been built. In this section, a

demonstration program will be explained with input

in the form of an initial mission graph and compared

with the results of the generation by the program.

Figure 11. Initial mission graph with 6 nodes

The first test creates an initial mission graph

with six nodes, as shown in Figure 11. The player

will enter the game arena with the symbol node S in

this mission. Then, the player will pass through the

area (dungeon) with node B. After that, he can

choose a path to the area with symbol e or the area

with symbol A. For the player to reach the final

destination, namely the node with the symbol G, the

mission requires passing through areas A and i. This

mission graph created by the game developer can

then be generated by the dungeon generator program

that applies the graph grammar method.

Figure 12. A generation rules

Game developers can create generation rules or

rules, as shown in Figure 12. This generation rule

consists of an LHS with two nodes and one RHS

with four nodes in a straight or linear shape.

Creating missions like this can increase the number

of challenges or the variety of gameplay. The

program will generate a graph using the Graph

Grammar method by searching for nodes according

to LHS and replacing them with nodes such as RHS.

In this test, only one generation rule is used. The

result of this generation is a new mission graph with

a node structure, as shown in Figure 13. The blue

line shows the route the player must take to

complete the mission, which is to reach the node

with the symbol G.

Figure 13. Graph of the new mission generated

The dungeon generator program that has been

built will generate the game arena according to the

mission structure generated by the graph grammar

method above. The game arena includes a 3D

dungeon environment, items, enemies, and main

characters. The results of this application produce a

game arena with variations in the mission structure,

as shown in Figure 14, Figure 15, and Figure 16.

The three images are screenshots of the scene

window in the Unity game engine that the author

uses to show the mission structure behind the final

result or game the player plays. The image's blue

line is used to indicate the path the player can take to

complete the mission.

Arie Vatresia, et all, Designing A 3D Roguelike Game … 1443

Figure 14. Variation of 1st generation results

Figure 15. Variation of 2nd generation results

Figure 16. Variation of 3rd generation results

3.8. Play Satisfaction Evaluation

Evaluation of player satisfaction is carried out

to get a direct assessment of player satisfaction with

the game that has been built. This evaluation uses

the GUESS-18 framework. GUESS-18 is a validated

game scale with 18 question items to assess 9 (nine)

subscale of video games for player satisfaction in

playing. The list of question items from GUESS-18

is presented in Table 2 below [11].

Table 2. Question items for GUESS-18

Subscale Symbol Question

Usability /

Playability

U Is this game easy to play?

Is the display of this game easy to

understand?
Narratives N Is the story at the beginning of this

game interesting?

Did you enjoy the story of this
game?

Play

Engrossment

PE Does this game make you feel like

entering a fantasy world?
Does playing this game make you

forget the time in the real world?

Enjoyment E Is this game fun to play?
Do you feel bored while playing

this game? (Inverted Point)

Creative

Freedom

CF Does this game increase your

imagination?

Does this game make you more

creative?
Audio

Aesthetics

AA Did you enjoy the sound effects of

this game?

Do the sound effects and music in
this game enhance your gaming

experience?

Personal
Gratification

PG Are you very focused on improving
the quality of your character while

playing this game?

Do you want to do your best while
playing this game?

Social

Connectivity

SC Does this game make it easier for

you to communicate with other
players in the game?

Do you like playing this game with

other players?
Visual

Aesthetics

VA Did you enjoy the graphics of this

game?

Is the graphic display of this game
attractive?

The evaluation was given through a

questionnaire distributed to 28 respondents from the

“Team Kito” game community after they played the

game on their Android devices. The summary of the

questionnaire results in Table 3 shows each GUESS-

18 subscale score and the overall GUESS score for

each respondent. The GUESS subscale scores are

calculated by averaging the scores in each subscale.

Subscale scores can range from 1 to 7. One item on

GUESS-18 has been coded as inverted points (i.e.,

“Do you feel bored while playing this game” in the

Enjoyment subscale). For example, if the

questionnaire gets 1 point, the score calculation will

be changed to 7 points, 2 points to 6 points, 3 points

to 5 points, 5 points to 3 points, 6 points to 2 points,

and 7 points to 1 point.

Table 3. Questionnaire Evaluation Results

No Subscale Mean Standard

Deviation

1 Usability / Playability 5.660714286 0.707807928

2 Narratives 5.446428571 0.89586794
3 Play Engrossment 5.464285714 1.05346493

4 Enjoyment 5.125 0.898816094

5 Creative Freedom 5.285714286 0.843587702
6 Audio Aesthetics 5.928571429 0.846717909

7 Personal Gratification 6.142857143 0.606403222

8 Social Connectivity 4.339285714 1.563789151

9 Visual Aesthetics 5.678571429 0.807537245

 Total 49.07142857 3.245265171

1444 Jurnal Teknik Informatika (JUTIF), Vol. 4, No. 6, December 2023, pp. 1437-1446

The final evaluation in Table 3 is the result of

all participants for each GUESS subscale score and

the overall GUESS score. This score is calculated

from the summation of the mean of the data entered

for all participants in each GUESS subscale and the

overall GUESS score. The overall evaluation score

of the game that has been built is 49.07 out of 63

maximum scores. After calculating the final score,

the assessment category interval will be searched

using equation (3.2). It is known that the highest

score (m) = 63; lowest score (n) = 9; and many

classes from the eligibility category (k) = 4. So with

equation (2), we can find the class interval (i), which

is 13.5. Then the lowest scale determination is 9.0.

Then the resulting assessment category can be seen

in Table 4.

Table 4. Rating Category

Interval Category

49,6 – 63,0 Very Good

36,1 – 49,5 Good

22,6 – 36,0 Fair

9,0 – 22,5 Poor

Based on the rating category, games built with

a score of 49.07 are included in the “GOOD”

category.

Figure 14. Average points of GUESS-18 evaluation results

Figure 14 is a graphical representation of the

average points from the evaluation results using the

GUESS-18 framework. The game has a high value

of playing experience satisfaction in the subscale of

personal satisfaction (personal gratification). The

personal satisfaction subscale refers to the

motivational aspects of the game (e.g., challenge)

that promote the player's sense of accomplishment

and desire to succeed and continue playing the

game. Meanwhile, the evaluation results have the

lowest value of playing experience satisfaction in the

aspect of social connectivity. The social connectivity

subscale refers to how games facilitate social

relationships between players through in-game

features and functions. The low score on this

subscale is because the games that have been built

do not facilitate social relationships like multiplayer

features.

4. DISCUSSION

Game developers want variations in the

gameplay so that player's paths are not straight or

too linear [16]–[18]. Using graph grammars method,

game developers make generation rules for mission

variatons. In this example, generation rules

consisting of 2 rules, as shown in Figure 15 and

Figure 16.

Figure 15. Rule 1

Figure 16. Rule 2

The RHS variation can be composed more

according to the requirement of the game developer.

In this case, variations are used to add variations to

the flow of the game if two nodes of type e (enemy)

are found close together, see Figure 15. The first

RHS variation of the Rule 1 is used to reward the

player with an item (node with the symbol i) after

completing the enemy. The second RHS variation

of the Rule 1 is used to increase the difficulty level

by increasing the number of enemies and providing

additional paths.

The second-generation rule, as shown in Figure

16, adds variety to the gameplay if a node with the

symbol T is found (task node for missions that

require action as described in the section on

establishing mission representation).Quite steps in

developing the rules in the game have been taken to

generate new missions.

Further research is needed to find a better

method in applying the method to create new

Arie Vatresia, et all, Designing A 3D Roguelike Game … 1445

missions that can improve the playing experience

[19]–[21] .

5. CONCLUSION

Based on the results of research,

implementation, and discussion, it can be concluded

that the 3D roguelike game has been successfully

built on Android devices with 100% black box

testing percentage results from 48 successful

activities. Procedural generation of missions using

the Graph Grammar method has been successfully

implemented, including creating mission graphs

using the Node Editor tools in the Unity Editor and

configuring generation rules in the dungeon

Generator. Procedural generation of missions is used

in Scene – Adventure Area, where the player goes

through many dungeons with various challenges to

complete specific missions. Based on the evaluation

of playing satisfaction with GUESS-18, the 3D

roguelike game that has been built is included in the

"GOOD" category with an overall score of 49.07 out

of 63 maximum scores. The game excels in the

subscale of personal gratification but is weak in

social connectivity.

REFERENCES

[1] T. Fullerton, Game Design Workshop: A

Playcentric Approach to Creating

Innovative Games Fourth Edition. Boca

Raton: CRC Press, 2019.

[2] M. Aresa, “Rancang Bangun Game

Dungeon Crawler Dengan Procedural

Content Generation Menggunakan

Algoritma Drunkard’s Walk,” Tangerang,

2021.

[3] J. Togelius, N. Shaker, and M. J. Nelson, J.

Togelius, N. Shaker and M. J. Nelson,

Procedural Content Generation in Games:

Springer, 2016. Gewerbestrasse: Springer,

2016.

[4] M. H. Menori, “Procedural Content

Generation Untuk Pembentukan Dungeon

Pada Permainan,” Bandung, 2020.

[5] G. Smith, “Procedural Content Generation:

An Overview,” in Game AI Pro 2, Natick,

MA: A K Peters/CRC Press, 2015, pp. 501–

518.

[6] R. van der Linden, R. Lopes, and R. Bidarra,

“Procedural Generation of Dungeons,” IEEE

Trans Comput Intell AI Games, vol. 6, no. 1,

pp. 78–89, 2014.

[7] J. Dormans and S. Bakkes, “Generating

Missions and Spaces for Adaptable Play

Experiences,” IEEE Trans Comput Intell AI

Games, vol. 3, no. 3, pp. 216–228, Sep.

2011, doi: 10.1109/TCIAIG.2011.2149523.

[8] B. Lavender, “The Zelda Dungeon

Generator: Adopting Generative Grammars

to Create Levels for Action-Adventure

Games,” Derby, 2015.

[9] U. Silalahi, Metode Penelitian Sosial.

Bandung: PT. Refika Aditama, 2012.

[10] S. Arikunto, Prosedur Penelitian Suatu

Pendekatan Praktik. Jakarta: Rineka Cipta,

2006.

[11] J. R. Keebler, W. J. Shelstad, D. C. Smith,

B. S. Chaparro, and M. H. Phan, “Validation

of the GUESS-18: A Short Version of the

Game User Experience Satisfaction Scale

(GUESS),” J Usability Stud, vol. 16, no. 1,

pp. 49–62, 2020.

[12] K. Yuliawan, G. Prayitno, S. Wijono, Y. J.

Prasetyo, and S. Trihandaru, “Android-

Based Educational Game: Recognition Of

Papua Endemic Animals,” Jurnal Teknik

Informatika (JUTIF), pp. 889–896, 2022,

doi: 10.20884/1.jutif.2022.3.4.319.

[13] K. R. E. Septiani and F. Y. al Irsyadi,

“Game Edukasi Tari Tradisional Indonesia

Untuk Siswa Tunarungu Kelas VI Sekolah

Dasar,” Jurnal Teknik Informatika (Jutif),

vol. 1, no. 1, pp. 7–12, Jul. 2020, doi:

10.20884/1.jutif.2020.1.1.11.

[14] M. H. Phan, J. R. Keebler, and B. S.

Chaparro, “The Development and Validation

of the Game User Experience Satisfaction

Scale (GUESS),” Hum Factors, vol. 58, no.

8, pp. 1217–1247, Dec. 2016, doi:

10.1177/0018720816669646.

[15] N. Apriyana, “Aplikasi Media Pembelajaran

Membaca dan Menulis Aksara Rejang

(Kaganga) Berbasis Android untuk Siswa

Sekolah Dasar,” Bengkulu, 2019.

[16] A. P. Utomo, “Rancang Bangun Modul

Procedural Content Generation Pada

Permainan Friend And Foe ,” Surabaya,

2015.

[17] I. N. Kiting, “Implementasi Procedural

Level Generation pada Aplikasi Game

Pyramid Exploration,” 2020.

[18] M. A. Muslim, E. M. A. Jonemaro, and M.

A. Akbar, “Penerapan Procedural Content

Generation untuk Perancangan Level pada

2D Endless Runner Game menggunakan

Genetic Algorithm,” Jurnal Pengembangan

Teknologi Informasi dan Ilmu Komputer,

vol. 3, no. 5, pp. 4406–4414, 2019, [Online].

Available: http://j-ptiik.ub.ac.id

[19] C. S. Putri, E. M. A. Jonemaro, and M. A.

Akbar, “Penerapan Procedural Content

Generation pada Pembangkit Level Gim

Maze Heksagonal,” Jurnal Pengembangan

Teknologi Informasi dan Ilmu Komputer,

vol. 3, no. 9, pp. 8563–8571, 2019, [Online].

Available: http://j-ptiik.ub.ac.id

1446 Jurnal Teknik Informatika (JUTIF), Vol. 4, No. 6, December 2023, pp. 1437-1446

[20] A. Setyamurti, W. Sukmo Wardhono, and T.

Afirianto, “Implementasi Procedural

Generation untuk Membangun Level

Tactical RPG dengan menggunakan Metode

Occupancy Regulated Extension,” Jurnal

Pengembangan Teknologi Informasi dan

Ilmu Komputer, vol. 2, no. 8, pp. 2416–

2420, 2018, [Online]. Available: http://j-

ptiik.ub.ac.id

[21] M. H. Naufal Azzmi, L. Husniah, and A.

Sofyan Kholimi, “Island Generator pada

Game Open World Menggunakan Algoritma

Perlin noise,” REPOSITOR, vol. 2, no. 7, pp.

965–976, 2020.

