
Jurnal Teknik Informatika (JUTIF) DOI: https://doi.org/10.52436/1.jutif.2024.5.4.1962
Vol. 5, No. 4, August 2024, pp. 1009-1014 p-ISSN: 2723-3863
 e-ISSN: 2723-3871

1009

COMPARISON OF INDEX, PARTITION, AND MATERIALIZED VIEW METHODS ON

THE ORACLE DATABASE STUDY ON CENTRAL GOVERNMENT FINANCIAL

REPORTS (LKPP)

M. Harviandi Rachman*1, Samidi2, Eko Aprianto3

1,2,3Faculty of Information Technology, Master of Computer Science Study Program, Universitas Budi Luhur,

Indonesia

Email: 12311600874@student.budiluhur.ac.id, 2samidi@budiluhur.ac.id, 32311600882@student.budiluhur.ac.id

(Article received: March 30, 2024; Revision: May 03, 2024; published: July 29, 2024)

Abstract

The Indonesian Central Government Financial Report (LKPP) is a financial document prepared to increase

transparency and accountability in the implementation of the State Revenue and Expenditure Budget (APBN). It

is prepared within a tight schedule, hence changes made by each entity must be updated promptly. Therefore, this

research focuses on the optimal table design for presenting financial reports. Query optimization is a major

concern in database design, with the use of indexing concepts to increase data search speed. Table partitioning is

also a strategy to consider, namely dividing a table into parts that form separate data ranges. The use of a

Materialized View (MV) is another alternative, providing increased performance with the space-for-time trade-

off principle. Experiments were carried out by comparing the response time of applying index, partition, and

materialized views to produce financial report data. Experimental results indicate that materialized views can

provide significant advantages when faced with large volumetric data. The decision to choose a materialized view

can be considered contextually, depending on the specific needs and characteristics of the data encountered in a

database system.

Keywords: Indexing, Materialized View (MV), Performance optimization, Query optimization, Table partitioning.

1. INTRODUCTION

The Indonesian Central Government Financial

Report (LKPP) is a financial document prepared by

the Indonesian Central Government to increase

transparency and accountability in the

implementation of the State Revenue and

Expenditure Budget (APBN) [1]. The large number

of reporting entities creates a large growth in the

volume of financial data, in line with the developing

dynamics in public administration.

Large data sets can cause problems with the

Database Management System (DBMS) in the

performance of the database used [2]. Even with a

strong database, a mature table design for presenting

financial reports must be prepared carefully. The

main challenge in preparing LKPP is the process of

forming financial reports which depends on

transactions carried out by many reporting entities,

that must always reflect the current conditions. This

is a challenge in itself because the time to finalize the

final LKPP value is limited, so the value in the

financial statements must be able to be updated

following changes made by each entity.

When designing a financial report database, it is

necessary to optimize the queries used. The main goal

of database optimization is usually general, namely to

increase a numerical value, which characterizes

database performance well [3]. Current databases are

typically designed as general-purpose systems and

aren't customized on a case-by-case basis to suit the

specific workload and data characteristics of

individual users. [4]

Chopade [5] suggests that indexing is an

important concept for faster data retrieval. Index

tuning, as part of physical database design, is the task

of selecting, creating, deleting, and rebuilding index

structures to reduce workload processing time [6].

Apart from indexing, table partitioning is also

something you need to pay attention to. Table

partitioning is the division of a table into arbitrary

parts that form several separate data ranges [7]. This

division occurs within the database files, yet to the

developer, they appear as a unified entity [8]. The

combination of using Index and Partition will produce

better time records than not using them [9].

Another solution is to use a materialized view.

Materialized View (MV) represents a sophisticated

redundancy optimization technique tailored for

analytical workloads [10]. Materialized View is quite

important in DBMS which can significantly improve

query performance based on the space-for-time trade-

off principle [11]. Rewriting with materialized views

will improve the performance of SQL statements

[12]. The optimal solution would enable operations

on the database to remain as swift as they were during

its initial implementation, even with a growing

number of records in the tables [13].

https://doi.org/10.52436/1.jutif.2024.5.4.1962
mailto:2311600874@student.budiluhur.ac.id
mailto:samidi@budiluhur.ac.id
mailto:2311600882@student.budiluhur.ac.id

1010 Jurnal Teknik Informatika (JUTIF), Vol. 5, No. 4, August 2024, pp. 1009-1014

The ongoing process of database tuning, aimed

at enhancing the performance of applications

interacting with a database [14], is complemented by

the use of synonyms, which provide methods

enabling users to transparently display and utilize

other users' objects [15].

In this study, researchers tried to carry out

further tests comparing the response time of

implementing partition and materialized view to

produce central government financial report data. As

a comparison, the time needed to run a query is used

to determine which database optimization method is

better. The difference between this research and

previous research is the object, method, combination

of data, and research time.

2. RESEARCH METHODS

This research uses an experimental method

using a sample of general ledger tables for central

government financial reports for the period January -

February 2021. The general ledger table was chosen

because the data in the general ledger can represent

the latest financial report data. The data used was

10,002,137 raw data using Oracle as the database.

In this research, the trial balance table was

created using views and materialized views. The trial

balance table is used to shorten queries originating

from the general ledger. Testing was carried out on a

computer with the Debian Linux 11 operating system

which has 4 core processors, 16 GB RAM, with 100

GB SSD. The database used is Oracle 19c which is

accessed using SqlDeveloperTools.

Figure 1. Research Method

The steps taken in this research were to create a

table for research. Next, enter the research data little

by little into the table. Next is to refresh the

materialized view to update the data in the

materialized view. Then run a test query to get the

time needed to run the query.

2.1. Creating Table

In this stage, the researcher prepared the

essential tables needed. The main table created is the

general ledger which contains journals for validated

transactions that are used to produce reports. The

general ledger table is created using the indexing,

partitioning method, and materialized view.

Creating tables using the index method in the

Oracle database is done by creating a table and then

adding indexes for the selected columns. Creating

tables using the partition method in the Oracle

database is done when creating the table by selecting

the partition type. To summarize long queries in

generating reports and to make queries more efficient,

the general ledger table can be summarized by

creating a table view or materialized view.

2.2. Insert Data

After the tables have been created, the next step

is to enter the research data in stages. Data comes

from the original table which was taken in part to be

included in the research table. The experiment was

carried out in stages by increasing the amount of data

from 29,976 rows to 10,002,137 rows. At each query

execution, the time required to execute is recorded for

further analysis. This aims to gain a deep

understanding of query performance along with

significant data growth.

2.3. Refresh Materialized View

Each addition of data must be followed by

updating the materialized view table. The view table

does not require data refresh/update, because the data

will automatically become the newest data when data

is added to the GL table.

2.4. Run Query

In this stage, researchers choose three types of

reports that are used as a basis for testing queries. The

three types of reports are Financial Position Report

(LPE), Operational Report (LO), and Balance Sheet.

After running the query, the researcher recorded the

time needed to run the query for each case.

The LPE report contains a report on changes in

equity which contains a summary of equity and

additional profits/losses from operational reports. The

LO report contains operational reports containing

income and expenses. The balance sheet report

contains the composition of assets compared to the

debts owned plus the amount of capital available.

3. RESULTS

Figure 2. Table formation query with index

M. Harviandi Rachman, et al., COMPARISON OF INDEX, PARTITION … 1011

The research began by creating a general ledger

table. In this research, the query for creating a general

ledger table using the index method can be seen in

Figure 2.

In this research, the partition chosen is a list

partition with the kddept column as the partition

column. The query for creating a general ledger table

using the Parisi method can be seen in Figure 3.

Figure 3. Query to form a table with partitions

The basic query for creating a view table can be

seen in Figure 4. With this query, 2 table views are

formed, namely NRC_INDEX and NRC_PART for

the index and partition methods.

Figure 4. View formation query

Meanwhile, creating a Materialized View table

which is expected to improve query performance can

be seen in Figure 5.

Figure 5. Query to form a materialized view table

The annual data from LKPP comprises over 100

million records each year. Summarizing such

voluminous data poses a significant challenge due to

the extensive time required. To address this, research

was conducted by incrementally adding sample data

and observing the corresponding time consumption.

This approach enables the selection of the optimal

method for handling large datasets. The basic query

for retrieving and entering research data can be seen

in Figure 6.

Figure 6. Query to insert sample data

Based on the experiments that have been carried

out, to determine the speed performance or response

time of queries, it is necessary to compare the

experimental results using the index, partition and

Materialized Views methods by comparing the time

needed to run report generation queries on various

amounts of data. The first thing you need to know is

the time to refresh the materialized view.

Figure 7. Query to refresh materialized view table

The query to refresh/update data in the

materialized view is presented in Figure 7.

1012 Jurnal Teknik Informatika (JUTIF), Vol. 5, No. 4, August 2024, pp. 1009-1014

Table 1. Materialized view refresh time

Raw Data refresh Materialized View (seconds)

29.976 0,707

72.550 0,72

137.163 0,875
258.695 1,472

468.408 6,97

750.630 8,457
999.213 10,287

1.335.663 13,604

1.772.295 20,123
2.108.382 23,072

2.502.068 30,762

2.957.039 33,286
3.523.279 35,289

4.263.159 46,475

5.032.893 64,788

5.860.514 78,46

6.801.181 91,037

7.764.000 108,645
8.833.705 122,077

10.002.137 138,466

In updating the data in the materialized view

table, the time required experiences a significant

spike with each addition of data. The time required

for the amount of data 29,976 is 0.707 seconds, while

the time required to refresh the data for the amount of

data 10,002,137 is 138.466 seconds. Details of the

time spike in refreshing the materialized view can be

seen in Table 1.

Figure 8. A basic query for LO report formation

The basic query to be able to form an LO report

is presented in Figure 8.

Table 2. LO reports experimental results (seconds)

Raw Data Index Partition MV

29.976 0,079 0,069 0,022

72.550 0,99 0,112 0,018

137.163 0,183 0,175 0,022
258.695 0,299 0,333 0,021

468.408 0,454 0,47 0,046

750.630 0,658 0,594 0,052
999.213 0,916 0,822 0,069

1.335.663 1,236 1,084 0,078

1.772.295 1,725 1,435 0,118
2.108.382 2,042 1,87 0,13

2.502.068 2,537 1,996 0,163

2.957.039 2,976 2,337 0,153
3.523.279 3,407 3,002 0,183

4.263.159 5,255 3,526 0,238

5.032.893 5,982 4,094 0,262
5.860.514 7,337 4,964 0,278

6.801.181 7,81 5,831 0,349

7.764.000 8,396 6,143 0,49
8.833.705 12,021 7,796 0,514

10.002.137 15,199 7,807 0,572

The query execution time to form the LO report

using the table view with the indexing method takes

0.079 seconds, for the partitioning method, it takes

0.069 seconds while the materialized view table is

0.022. The execution time of this query increases

along with data growth, where the data amount is

10,002,137 table rows, with the indexing method the

time required is 15.199 seconds, the partitioning

method takes 7.807 seconds while the materialized

view table is 0.572. In Table 2, it can be seen that the

time required increases along with the growth in the

amount of data, especially in the index and partition

methods.

Figure 9. A basic query for generating LPE reports

The basic query to be able to form an LPE report

is presented in Figure 9.

Table 3. LPE reports experimental results (seconds)

Raw Data Index Partition MV

29.976 0,058 0,061 0,022

72.550 0,105 0,11 0,013
137.163 0,165 0,205 0,024

258.695 0,291 0,359 0,026

468.408 0,587 0,42 0,051
750.630 0,761 0,642 0,059

999.213 1,142 0,839 0,062

1.335.663 1,391 1,26 0,069
1.772.295 1,826 1,485 0,101

2.108.382 2,099 1,768 0,103

2.502.068 2,516 2,237 0,117
2.957.039 3,054 2,364 0,129

3.523.279 4,386 3,116 0,135

4.263.159 4,582 3,682 0,196
5.032.893 6,332 4,26 0,217

5.860.514 6,111 4,91 0,221
6.801.181 8,28 5,655 0,288

7.764.000 7,32 6,194 0,317

8.833.705 9,191 7,329 0,37
10.002.137 10,814 8,17 0,354

The query execution time to form an LPE report

using a table view with the indexing method takes

0.058 seconds, for the partitioning method, it takes

0.061 seconds while the materialized view table is

M. Harviandi Rachman, et al., COMPARISON OF INDEX, PARTITION … 1013

0.022. The execution time of this query increases

along with data growth, where the amount of data is

10,002,137 rows in the table view using the indexing

method. The time required is 10.814 seconds, the

partitioning method takes 8.17 seconds while the

materialized view table is 0.354. In Table 3, it can be

seen that the time required increases along with the

growth in the amount of data, especially in the index

and partition methods.

Figure 10. A basic query for forming the Balance Sheet report

The basic query to be able to form a Balance

Sheet report is presented in Figure 10.

Table 4. Results of the Balance Sheet Experiment (seconds)

Raw Data Index Partition MV

29.976 0,128 0,151 0,042
72.550 0,306 0,316 0,04

137.163 0,572 0,582 0,049

258.695 0,942 0,963 0,069
468.408 1,333 1,354 0,151

750.630 2,291 2,188 0,184

999.213 3,184 3,011 0,212
1.335.663 4,557 4,581 0,238

1.772.295 5,723 5,221 0,362

2.108.382 6,794 6,374 0,467
2.502.068 8,111 7,333 1,385

2.957.039 9,784 8,599 1,478

3.523.279 11,425 11,162 1,845
4.263.159 14,137 13,052 2,552

5.032.893 18,096 15,212 2,79

5.860.514 19,652 17,757 2,634
6.801.181 22,309 20,347 3,629

7.764.000 24,491 21,957 3,765

8.833.705 28,446 26,281 4,643
10.002.137 31,316 27,884 4,981

The query execution time to form the Balance

Sheet report using the table view with the indexing

method takes 0.128 seconds, for the partitioning

method, it takes 0.151 seconds while the materialized

view table is 0.042. The execution time of this query

increases along with data growth, where the amount

of data is 10,002,137 rows in the table view using the

indexing method. The time required is 31.316

seconds, the partitioning method takes 27.884

seconds while the materialized view table is 4.981. In

Table 5, it can be seen that the time required increases

along with the growth in the amount of data,

especially in the index and partition methods.

4. DISCUSSION

From the research that has been carried out, it

can be seen that the query execution time on a limited

amount of data results in a relatively short time.

However, as the amount of data increases, it can be

seen that the time required to run the query also

becomes longer.

Research conducted by Samidi [9] proves that

the performance of tables with partitions is better than

tables with indexes, this is in line with the results of

this study. Apart from that, research conducted by

Piotr Bednarczuk [7] also underlines the advantages

of using partitions on large-scale datasets.

However, the performance of tables with

materialized views is more optimal performance than

index and partition methods. This finding is

consistent with the results of previous studies, such as

those reported by Almeida [14] and Witono [16], who

each chose to use materialized views in certain

contexts.

In this research, the results of the query to form

the basic numbers for the balance sheet still took more

than 3 seconds for data of more than 6.8 million raw

data. This is less than ideal if you only use the

materialized view of the NRC_MV table. For this

reason, it is necessary to create a separate

materialized view for the balance sheet report so that

query report formation can be faster. This applies to

other reports that require long query times.

Forming a materialized view table requires quite

a significant amount of time if the amount of data

increases. One way to overcome the lag time when

the materialized view table is being created is to use

synonyms.

Figure 11. Use of synonyms

Synonyms can be used by creating 2

materialized view tables. In Figure 11, an example is

created by creating T1_NRC_MV which will be

refreshed at 06:00 and 18:00, as well as the

T2_NRC_MV table which will be refreshed at 12:00

and 24:00. After the refresh is complete, the T1 / T2

tables will be synonymized with the NRC_MV table

so that there are no data gaps due to the materialized

view refresh process.

1014 Jurnal Teknik Informatika (JUTIF), Vol. 5, No. 4, August 2024, pp. 1009-1014

5. CONCLUSION

Based on the results of experiments carried out,

there are findings that the query execution time on

materialized view tables shows faster performance

compared to tables that use indexing or partitioning

methods. These results indicate that materialized

views can provide significant advantages when faced

with large volumetric data. The decision to choose a

materialized view can be considered contextually,

depending on the specific needs and characteristics of

the data encountered in a database system.

As a suggestion for future development, you can

consider the application of cache technology in

preparing financial reports. Implementing a cache can

provide a solution to improve performance by storing

previous query results in memory, thereby reducing

query execution time on frequently accessed financial

reports. In addition, the use of cache can provide

flexibility in handling data changes in source tables,

by periodically synchronizing the cache according to

business needs.

REFERENCES

[1] Kementerian Keuangan. “Laporan Keuangan

Pemerintah Pusat Tahun 2020 Audited.”

Kementerian Keuangan, 2020.

[2] N. M. Khushairi, N. A. Emran, and M. M. M.

Yusof, "Database performance tuning

methods for manufacturing execution

system." World Applied Sciences Journal, 30

(30 A), 2014, doi:

10.5829/idosi.wasj.2014.30.icmrp.14.

[3] K. Mózsi, and A. Kiss, "A session-based

approach to autonomous database tuning."

Acta Polytechnica Hungarica, vol. 17, no. 1,

2020, doi: 10.12700/APH.17.1.2020.1.1.

[4] KARAGKOUNI, Dimitra, et al. "DIANA-

LncBase v3: indexing experimentally

supported miRNA targets on non-coding

transcripts." Nucleic acids research, 48.D1:

D101-D110, 2020.

[5] R. Chopade and V. Pachghare, "MongoDB

Indexing for Performance Improvement."

Advances in Intelligent Systems and

Computing, p. 1077, 2020, doi: 10.1007/978-

981-15-0936-0_56.

[6] A. D. Fuentes, A. C. Almeida, R. L. de C.

Costa, V. Braganholo, and S. Lifschitz,

"Database Tuning with Partial Indexes.",

2020, doi: 10.5753/sbbd.2018.22229.

[7] P. Bednarczuk, "OPTIMIZATION IN VERY

LARGE DATABASES BY

PARTITIONING TABLES." Informatyka,

Automatyka, Pomiary w Gospodarce i

Ochronie Srodowiska, vol. 10, no. 3, 2020,

doi: 10.35784/iapgos.2056.

[8] P. Bednarczuk and A. Borsuk,

"EFFICIENTLY PROCESSING DATA IN

TABLE WITH BILLIONS OF RECORDS."

Informatyka, Automatyka, Pomiary w

Gospodarce i Ochronie Srodowiska, vol. 12,

no. 4, 2020, doi: 10.35784/iapgos.3058.

[9] Samidi, Fadly, Y. Virmansyah, R. Y. Suladi,

and A. B. Lesmana, "Optimasi Database

dengan Metode Index dan Partisi Tabel

Database Postgresql pada Aplikasi E-

Commerce. Studi pada Aplikasi Tokopintar."

Jurnal Pendidikan Tambusai, vol. 6, no. 1,

2022.

[10] M. Kechar and L. Bellatreche, "Safeness:

Suffix Arrays Driven Materialized View

Selection Framework for Large-Scale

Workloads." Lecture Notes in Computer

Science (Including Subseries Lecture Notes

in Artificial Intelligence and Lecture Notes in

Bioinformatics), 13428 LNCS, 2022, doi:

10.1007/978-3-031-12670-3_7.

[11] G. Li, X. Zhou, J. Sun, X. Yu, Y. Han, L. Jin,

W. Li, T. Wang, and S. Li, "Opengauss: An

autonomous database system." Proceedings

of the VLDB Endowment, vol. 14, no. 12,

2021, doi: 10.14778/3476311.3476380.

[12] R. Ahmed, R. Bello, A. Witkowski, and P.

Kumar, "Automated Generation of

Materialized Views in Oracle." Proceedings

of the VLDB Endowment, vol. 13, no. 12,

2020 doi: 10.14778/3415478.3415533.

[13] M. Bandle, J. Giceva, and T. Neumann, "To

Partition, or Not to Partition, That is the Join

Question in a Real System." Proceedings of

the ACM SIGMOD International Conference

on Management of Data, 2021, doi:

10.1145/3448016.3452831.

[14] A. C. Almeida, F. Baião, S. Lifschitz, D.

Schwabe, and M. L. M. Campos, "Tun-OCM:

A model-driven approach to support database

tuning decision making." Decision Support

Systems, p. 145, 2021, doi:

10.1016/j.dss.2021.113538.

[15] M. Malcher and D. Kuhn, "Views,

Synonyms, and Sequences." In Pro Oracle

Database 18c Administration, 2019, doi:

10.1007/978-1-4842-4424-1_9.

[16] E. Witono and Parno. "Perbandingan

Response Time Penggunaan Index, Views,

dan Materialized Views Database Mysql."

Jurnal Sains Komputer & Informatika (J-

SAKTI, vol. 6, no. 1, 2022.

