
Jurnal Teknik Informatika (JUTIF) DOI: https://doi.org/10.52436/1.jutif.2024.5.4.1930
Vol. 5, No. 4, August 2024, pp. 1103-1114 p-ISSN: 2723-3863
 e-ISSN: 2723-3871

1103

IMPLEMENTATION OF STREAMLINE REALTIME STOCK USING AUTO-SCALING

THROUGH GOOGLE CLOUD PUB/SUB AT PT XYZ

Joseph Heykel Prabawa*1, Adi Nugroho2

1,2Department of Informatics Engineering, Faculty Of Information Technology, Universitas Kristen Satya

Wacana, Indonesia

Email: 1672020057@student.uksw.edu, 2adi.nugroho@uksw.edu

(Article received: March 14, 2024; Revision: March 25, 2024; published: July 29, 2024)

Abstract

Shortening the updating and inputting of accurate and real-time stock data is crucial for smooth retail business

operations at PT XYZ. The existing system had low availability, lacked scalability, and incurred high costs in

managing inventory in real time. Implementing real-time stock streamline with automatic scaling and Google

Cloud Pub/Sub can help achieve this goal. This system utilizes Google Cloud Pub/Sub as a message delivery

platform to distribute stock information from sender to receiver in real-time. Auto-scaling is used to automatically

increase or decrease the number of servers processing stock data based on demand. The system is designed using

Python and integrated through libraries with the Google Cloud Platform. The results of this research prove that

the system is capable of providing optimal performance and scalability with high availability, good security, and

cost savings.

Keywords: auto-scaling, Google Cloud Platform, pub/sub, real-time, stock.

1. INTRODUCTION

The research begins with understanding the

complexity of inventory management in today's

business context. Conventional systems often need

help with slow data updates, difficulty in handling

real-time information flow, and inability to respond

quickly to changes in market demand. In a rapidly

changing business environment, the need for

solutions that can overcome delays in data updates,

limitations in real-time information flow, and the

inability to adjust inventory stocks quickly has

become increasingly pressing. A real example from

PT XYZ is when the company encountered

difficulties in keeping up with rapidly changing sales

trends in their industry. The conventional

infrastructure they previously used couldn't provide

real-time stock information, leading to frequent

stockouts of popular products or excessive inventory

of less-demanded items. This resulted in decreased

customer satisfaction and financial losses for the

company. In this context, cloud-based technology

offers a robust platform for improving inventory

management with a more adaptive and efficient

approach.

Adopting cloud technology by PT XYZ for real-

time inventory management is a transformative step

in improving operational efficiency. Previously, the

company had experienced limitations from

conventional infrastructure that prevented it from

providing the fast response and scalability needed for

inventory management. This research is necessary

because it reflects the need for improved operational

efficiency and competitiveness. The adoption of

cloud technology, such as Google Cloud Platform,

offers the company the opportunity to have a

competitive advantage. By implementing streamline

real-time inventory using auto-scaling through

Google Cloud Pub/Sub, PT XYZ can improve

flexibility, scalability, and speed in real-time

inventory data processing.

2. LITERATURE REVIEW

In research titled "Design and Implementation

of Data Synchronization System Using Google Cloud

Pub/Sub and Flask at PT XYZ," the development of

a system capable of maintaining data synchronization

using the Publish-Subscribe technology provided by

Google Cloud Pub/Sub and Flask is discussed. By

utilizing Google Cloud Pub/Sub, data delivery will

occur once, and the system will replicate data to

multiple zones to ensure data/messages are delivered.

This research employs the Research and

Development method. Based on the research results,

the system is deemed capable of synchronizing

offline data to the cloud and maintaining data

integrity in CloudSQL. Additionally, the Dead Letter

Queue feature can assist the Backend Developers of

PT XYZ in viewing and rectifying data [1].

In the previous research titled "A Cloud

Pub/Sub Architecture to Integrate Google BigQuery

with Elasticsearch using Cloud Functions," the

discussion revolves around a cloud services

architecture that integrates BigQuery with

Elasticsearch through the utilization of Pub/Sub and

https://doi.org/10.52436/1.jutif.2024.5.4.1930
mailto:672020057@student.uksw.edu
mailto:adi.nugroho@uksw.edu

1104 Jurnal Teknik Informatika (JUTIF), Vol. 5, No. 4, August 2024, pp. 1103-1114

other cloud functions. By combining these platforms,

the researchers aimed to leverage the capacity and

ease of ingesting documents into Elasticsearch, its

search speed, and comprehensive catalog options to

create visualizations within a dashboard. This

approach results in a robust and scalable application

that handles large amounts of data stored in BigQuery

and transfers it into analytical and visualization

engines in Elasticsearch [2].

The previous research titled "A Dynamic

Scalable Auto-Scaling Models as a Load Balancer in

the Cloud Computing Environment" revolves around

a virtual cluster architecture that enables cloud

applications to scale dynamically in a cloud

computing virtualization environment. This allows

resources to be dynamically adjusted to meet various

customer demands using a load balancer. Based on

the research, it can be concluded that auto-scaling

features are available in size within the sequence

group, enabling users to add or automatically remove

instances from managed instance groups based on

load changes [3].

Based on previous research related to

streamlining real-time inventory, the retail industry in

the era of Retail 4.0, the use of Google Cloud

Pub/Sub, and auto-scaling, a study will be conducted

to discuss the implementation of real-time inventory

streamlining using auto-scaling via Google Cloud

Pub/Sub at PT XYZ. The expected outcome of the

implementation is to assist PT XYZ in designing and

optimizing infrastructure in the field of information

technology so that it can perform inventory releases

and updates quickly, efficiently, and with minimal

issues.

Instance Group is a collection of virtual machine

instances that can be managed as a single entity.

Within the Compute Engine service, two types of

virtual machine instance groups are managed and

unmanaged. Managed Instance Group (MIG) is

chosen because the software being developed

requires dynamic scaling, high availability, efficient

management, and cost optimization [4]-[5].

Pub/Sub is a publisher/subscriber service that

acts as a flexible "middleman," enabling different

applications or services to communicate with each

other. This fully managed and highly scalable service

runs within the Google Cloud Platform (GCP)

environment. The core principle of Pub/Sub is

asynchronous communication. This means that the

message sender (publisher) and receiver (subscriber)

do not need to be online or active at the same time for

the system to function (decoupling) [6].

Automatic scaling, or auto-scaling, is a dynamic

technology used in cloud computing to automatically

adjust the number of computing resources based on

real-time demand. Auto-scaling aims to ensure

service availability and optimal application

performance with effective and efficient resource

utilization. Auto-scaling is required when

applications experience fluctuating traffic spikes,

process large volumes of data periodically, analyze

data in real-time, mitigate service downtime, and save

costs for business needs. By using auto-scaling, the

streamline real-time stock system can automatically

handle spikes or decreases in traffic, enhance

resilience to failures, simplify management, and

optimize costs [5]-[8].

3. RESEARCH METHODOLOGY

In the implementation of streamline real-time

stock using auto-scaling through Google Cloud

Pub/Sub, several stages are carried out, including

problem identification, system design,

implementation, deployment, testing, and report

writing.

Figure 1. Research Methodology

Based on Figure 1, the research begins by

identifying the problems at PT XYZ and finding

solutions by implementing Streamline Real-time

Stock using auto-scaling through Google Cloud

Pub/Sub. In the problem identification stage, data

collection and analysis are conducted according to the

requests and issues brought by the users. Based on the

information and data obtained, the system is designed

to provide visualization of the built system. The

system is designed using UML (Unified Modeling

Language) as a use case diagram. It visualizes the

system processes working within the Google Cloud

Platform using Google Architecture Diagram. In the

next stage, the implementation of Streamline Real-

time Stock using Python programming language and

integration with Google Cloud Platform. After the

software has been developed, the system

implementation results are deployed to the production

environment, which is the Google Cloud Platform, by

configuring and integrating the services used in the

Google Cloud Platform. In the production

environment, end users can use the software

developed. The entire system that has been

successfully built is tested before being delivered to

end users. Several testing methods are used to

Joseph Heykel Prabawa, et al., IMPLEMENTATION OF STREAMLINE … 1105

determine the system's performance and the

functioning functionality.

4. RESULT AND DISCUSSION

The results and discussion are divided into four

subsections, starting with system design using UML

(Unified Modeling Language), implementation with

software development, deployment to the Google

Cloud Platform environment, and finally, system

testing with three methods (performance testing,

publish testing, and automatic scaling testing.

4.1. System Design

The system is designed to streamline real-time

stock using Unified Modeling Language (UML) and

Google Cloud Architecture Diagram to provide

visualization of the design, architecture, and layout of

the implemented service system. The use case

diagram is chosen to provide visualization of the

nature of the situation and explain the use case

scenarios for the implementation of the streamline

real-time stock system.

Figure 2. Use case diagram streamline real-time stock system

Figure 2 is a use-case diagram of the streamline

real-time stock system. The diagram explains the use

cases of the streamline real-time stock system

between the developer and several users. The

developer performs stock update operations and adds

stock to the built system. The system is designed to

accept receipt creation operations from multiple

users. After a user has created a receipt and entered it

into the system, the system will transform it into

detailed stock updates or additions of new stock. The

developer receives detailed stock updates and

performs stock updates or adds new stock.

Figure 3. Google Cloud architecture diagram streamline real-time stock system

Figure 3 is the Google Cloud Architecture

Diagram of the streamline real-time stock system

using auto-scaling through Google Cloud Pub/Sub.

The system is built within the scope of the Google

Cloud Platform architecture. Several features and

services of the Google Cloud Platform are utilized to

run the streamline real-time stock system. The

Google Cloud Architecture Diagram provides an

overview and documents the system's structure built

on the Google Cloud Platform infrastructure. During

the development phase, developers store the

implementation code of the streamline real-time stock

system in Cloud Source Repositories. This fully

managed Git repository management service

provides securely managed Git repositories within the

Google Cloud Platform environment. Users have the

role of publishers, who will send messages to the

system. Users interact with the application

programming interface, which sends requests with

data and receives responses.

The implementation code is executed within a

Compute Engine instance. The Managed Instance

Group ensures that the application automatically

scales up or down (auto-scaling) based on the number

of messages received. All configurations and

credentials related to database configuration and

others are stored and managed in Secret Manager, a

secret management service designed to store,

1106 Jurnal Teknik Informatika (JUTIF), Vol. 5, No. 4, August 2024, pp. 1103-1114

manage, and secure sensitive information. Secret

Manager provides database credential information to

the Managed Instance Group to establish connections

to the database. The application uses Cloud SQL as

its database backend. Cloud SQL is a managed

database service provided by the Google Cloud

Platform. Data is stored in the primary Cloud SQL

instance, with replicas ready for failover if needed,

ensuring high availability and protection against data

loss in case the primary instance fails. Pub/Sub

performs message handling. Google Cloud Pub/Sub

provides a communication layer separating various

application parts. User actions or events can trigger

messages (published to topics), which are then

received by the Managed Instance Group

(subscription) using a message pull scheme. The dead

letter provides a mechanism to handle messages that

fail to be processed after a number of retries.

4.2. Implementation Stage

From the system design results of the streamline

real-time stock using auto-scaling through Google

Cloud Pub/Sub, the implementation uses Python

scripts with the following software design patterns:

controller, service, model, interface, and

implementation. The controller acts as the entry point

to handle incoming requests, coordinates interactions

with other components, assigns tasks to the

appropriate services based on the nature of the

request, and invokes services to perform specific

business logic or data operations. The controller also

handles receiving, preparing, and sending responses

or replies.

Code Program 1. Initialization of subscriber and database

connection

Code Program 1 aims to create a client

subscriber to interact with Google Cloud Pub/Sub,

fetch authentication credentials and project identity,

construct the address of the subscription created

within the Google Cloud Platform using environment

variables, and set up control flow settings to handle

incoming messages.

Code Program 2 is a callback function designed

to process each message received by the subscription.

The callback function will extract attributes and

content from the incoming message and send stock

data to the database using a service. If the process

succeeds, the callback function will acknowledge the

message to Google Cloud Pub/Sub. If an error occurs,

the log will be sent with detailed traceback, indicating

the failure to acknowledge messages for potential

retry.

Code Program 2. Define message callback function

Code Program 3. Start subscription with the pull method

If the connection to the database has been

successfully established, Python will initiate a

subscription to Google Cloud Pub/Sub with a method

similar to that in Code Program 3. The controller will

handle potential timeout errors by canceling the

subscription and publishing an exception. The

controller will continuously attempt to connect to the

database by performing query testing and will retry

with a five-second delay if the connection fails,

printing an error message.

The service plays a crucial role as an

intermediary between the controller and the model

and interface. In the built system, the service is

responsible for encapsulating logic and business

functionality, serving as an abstraction layer that

hides the complexity of data access and manipulation

from the controller and orchestrating interactions

with various models and data sources based on

controller requests. The service can validate and

transform data received from the controller or

retrieved from the model before further utilization.

Code Program 4 Setting up the service with the interface

Code Program 4 is a constructor for configuring

the service with the Interface. With the method in

Code Program 4, the service is initialized by receiving

an interface instance and sending it to the attribute.

When adding stock data, the Interface acts as a bridge

subscriber = pubsub_v1.SubscriberClient()

credentials, project_id =

google.auth.default()

stock_path =

subscriber.subscription_path(project_id,

os.environ['STOCK_SUBSCRIBER'])

flow_control =

pubsub_v1.types.FlowControl(max_messages=

int(os.environ['MAX_MESSAGES']))

def callback(message:

pubsub_v1.subscriber.message.Message) ->

None:

 try:

 attributes =

dict(message.attributes)

 content =

json.loads(message.data.decode('utf-8'))

StockService(StockPostgresImplementation(

)).add_stock(content, attributes)

 message.ack()

 except Exception as e:

 exception =

traceback.format_exception(type(e), e,

e.__traceback__)

 stack = traceback.format_stack()

 exception[1:1] = stack[:-1]

 traceback_str =

''.join(exception)

 print(traceback_str, flush=True)

 message.nack()

stock_pull_future =

subscriber.subscribe(stock_path,

callback=callback,

flow_control=flow_control)

def __init__(self, repo: StockInterface):

 self.repo = repo

Joseph Heykel Prabawa, et al., IMPLEMENTATION OF STREAMLINE … 1107

to the database, allowing the service to access the

database.

Code Program 5 Add stock

Code Program 5 is a function to add stock.

When adding data, the function first establishes a

database connection. The function creates an object

filled with information from the data dictionary. This

object is then passed to the interface to be stored in

the database. The service will commit the changes

and return a confirmation message with the entered

data if successful. However, if an error occurs during

any step, the service ensures the database remains

consistent by rolling back any changes and closing

the connection.

In the software design pattern created, the model

has the role of representing and managing application

data. The model acts as the core data layer and

represents, stores, and manages application data with

minimal dependencies on other components. The

model interacts with the service layer through the

interface. The interface acts as a contract or blueprint

that defines methods to be implemented by a class

without specifying the actual implementation details.

A more flexible, maintainable, and testable

architecture is created with the interface.

In the software design pattern formed, the

implementation is the final stage that shapes and

makes the application functional and adaptive. The

implementation is the concrete code that realizes the

methods defined in the interface. The implementation

provides functionality to interact with the underlying

database or system and bridges business logic and the

built technology or system. The implementation

manages to add stock data to the database. With SQL

queries, the function will add a new row to the table

and handle if there are data records with the same

primary key.

4.3. Deployment Stage

Software deployment is the process of

delivering software applications from development to

production environments. In the production

environment, end users can utilize the created

software. Software deployment with the Google

Cloud Platform is chosen because it offers various

conveniences and flexibility to move and run

software from development to production. Google

Cloud Platform provides various services and tools

that can be tailored to specific needs. Auto-scaling

with Google Compute Engine and Google Cloud

Pub/Sub is selected because it meets production

requirements and offers scalability, reliability, easy

integration, and real-time transmission processes.

4.3.1. Managed Instance Group

Managed Instance Group (MIG) has flexible

and feature-rich characteristics. With high

availability, MIG will automatically repair virtual

machines experiencing errors, be preempted (spot

VMs), or be deleted by actions initiated by MIG. It

features auto-healing, periodically verifying that

programs respond as expected in each MIG. When the

program requires additional computing resources,

autoscaled MIG can automatically increase the

number of instances in the group to meet demand.

Managed Instance Group can securely deploy new

software versions to instances in MIG and support

various flexible launch scenarios. Support for stateful

workloads allows MIG to perform highly available

build deployments and automate software operations

with stateful data or configurations, such as

databases, DNS servers, and more. MIG also works

with load-balancing services to distribute traffic

across all instances in the group. The services and

features offered by Managed Instance Group make

the implementation process of the streamline real-

time stock easier and more beneficial.

Figure 4. Managed Instance Group build

Figure 5 illustrates the process of forming a

Managed Instance Group (MIG). Each virtual

machine within the MIG is based on an instance

template. An instance template is a container for

storing virtual machine (VM) configurations,

including machine type, boot disk image, labels,

startup scripts, and other instance properties. The

formed instance template is constructed using a

persistent disk booting image. Before an instance

template can be formed, an image or "snapshot" is

required, taken from a prepared virtual machine. The

def add_stock(self, data: dict,

attributes: dict):

 conn = self.repo.get_connection()

 try:

 stock = Stock()

 conn = self.repo.get_connection()

 self.repo.add_stock(conn, stock)

 self.repo.commit(conn)

 return {'message': 'Data inserted

successfully.', 'data': data}, 200

except Exception as e:

 self.repo.rollback(conn)

finally:

 self.repo.close_connection(conn)

1108 Jurnal Teknik Informatika (JUTIF), Vol. 5, No. 4, August 2024, pp. 1103-1114

image or "snapshot" is a persistent disk containing the

operating system, installed software or programs, and

various data necessary to build the system. Virtual

machines are prepared to form an image by taking a

disk from the virtual machine. Inside the virtual

machine's disk, a repository of system

implementations, data, and initialized software is

stored. All instances are built within one region. The

instance template is formed with the disk taken to

form the image. A startup script is stored inside the

instance template to facilitate continuous

development.

Code Program 6 The startup script within the instance template.

Code Program 6 is a startup script stored within

the instance template. The startup script is a

command-line interface for the Linux operating

system that will always run when the managed

instance group is running based on the instance

template. The startup script will be pulled from the

system implementation repository. If there are

updates to the system implementation script, the

clone repository in the boot disk will be updated.

However, if there are no updates to the system

implementation script, there will be no updates to the

clone repository. After pulling from the repository,

the service or application will be restarted and

continue running.

4.3.2. Pub/Sub

Pub/Sub consists of several service components

that make it operational, including:

 Topic: A topic is like a named channel or stream

to which messages will be sent.

 Publisher: A publisher is an application that

wants to send messages by publishing to a

specific topic.

 Subscription: An entity representing interest in

receiving messages about a specific topic.

 Subscriber: An application that wants to receive

messages makes a subscription to a specific

topic and receives messages in the specified

subscription.

 Message: Data that flows through the service.

The workflow of Pub/Sub is determined by the

method attached to the topic. In Google Cloud

Pub/Sub, two methods can occur: push or pull. The

method determines how messages are delivered to

subscribers. With the push method, messages are

actively pushed to the configured endpoint of the

subscriber (often a webhook) for immediate

processing. The pull method requires subscribers to

actively fetch or pull messages from the subscription

when they are ready to process them. The publishing

and subscribing patterns of Pub/Sub are determined

by several factors, including the type of data

published to the topic, the number of publishers and

subscribers that can communicate with the topic, the

availability of topics and messages, and the

application's business needs (use-case). The fan-in

(many-to-one) publishing subscription pattern is

selected because it aligns with the determining factors

for selecting the Pub/Sub publishing subscription

pattern. The fan-in (many-to-one) pattern allows

multiple publisher applications to publish messages

on one topic. One topic will be attached to one

subscription. This subscription is then connected to

one subscriber application that receives all messages

published from the topic.

Figure 5. Pub/Sub workflows streamline real-time stock system

Figure 5 depicts the workflow in Pub/Sub with

a fan-in (many-to-one) pattern and dead-lettering

built for the streamline real-time stock system. The

workflow in Pub/Sub follows the message processing

#/bin/bash

sudo git -C /opt/app/repository pull

origin master

sudo systemctl restart stock.service

Joseph Heykel Prabawa, et al., IMPLEMENTATION OF STREAMLINE … 1109

cycle, involving two fundamental entities: multiple

publishers and one subscriber, and several Google

Cloud Pub/Sub service components. In publishing,

multiple publishers independently create messages

and send them to the main Pub/Sub topic. Pub/Sub

receives and stores each message in the message

storage service. In the delivery process, Pub/Sub

forwards messages from the topic through

subscriptions to the subscriber. In the system built

within Google Cloud Platform, the subscriber is a

Managed Instance Group (MIG). The pull scheme is

the scheme or method involved in the message

delivery process to the subscriber. The Managed

Instance Group (MIG) will actively fetch or pull

messages from the subscription when the subscriber

is ready to process them. When the message is

delivered, the subscriber, in this case, the Managed

Instance Group (MIG), will attempt to process the

message.

If the message is successfully processed, the

subscriber sends an acknowledgment (ack) back to

Pub/Sub. Pub/Sub will then delete the successfully

processed message from the topic. If the subscriber

fails to process the message (due to errors, timeouts,

etc.), the subscriber sends a negative

acknowledgment (nack) to Pub/Sub. Pub/Sub will

attempt to resend the message based on the retry

settings. If the message exceeds the retry limit,

Pub/Sub forwards the failed message to the dead-

letter topic. The dead-letter topic is a repository for

messages that the primary subscriber cannot

successfully process. The dead-letter topic has a

subscription capable of managing potential

monitoring, analysis, or potential reprocessing

strategies for failed messages.

4.3.3. Automatic Scaling

There are several critical components required

to run auto-scaling for the streamline real-time stock

application, including:

 Managed Instance Group (MIG): A collection of

identical virtual machines (VMs) created from

an instance template. Auto-scaling works by

adding or removing VMs from the MIG.

 Auto-scaling policies: Rules that determine

when and how scaling is performed. These rules

are based on:

o Metric: Pub/Sub queue.

o Scaling thresholds:

 Scale out: If the number of messages per

virtual machine is greater than or equal

to (>=) five (5).

 Scale in: If the number of messages per

virtual machine decreases below (<) five

(5).

o Scaling decisions:

 Scale out: Adding one (1) virtual

machine.

 Scale in: Removing one (1) virtual

machine.

 Load balancing: A configurable period

after scaling actions to prevent rapid

fluctuations and give the application time

to stabilize.

Figure 6. Auto-scaling workflow

Figure 6 illustrates the workflow of scaling out

and scaling in in the auto-scaling system. In the task

generation phase, the application acting as a publisher

sends data generates tasks and publishes them as

messages to the Pub/Sub topic. These messages are

stored in the Pub/Sub subscription and are awaiting

processing. Virtual machines (VMs) within the

Managed Instance Group (MIG) process the

messages they receive, handling the tasks represented

by the messages. The load balancer manages

Incoming task workload distribution across all

available VMs in the MIG for processing. Auto-

scaling continuously monitors the average number of

unacknowledged messages per VM in the MIG,

representing the current workload on each instance. If

the average number of unacknowledged messages per

1110 Jurnal Teknik Informatika (JUTIF), Vol. 5, No. 4, August 2024, pp. 1103-1114

VM exceeds the previously specified target (i.e., five

messages), the VMs are overloaded. Auto-scaling

initiates a scale-out operation, adding more VMs to

the MIG to increase processing capacity. If the

average number of messages per VM consistently

drops below the target (i.e., five messages), it

indicates underutilized VMs. Auto-scaling may

trigger a scale-in operation, removing VMs from the

MIG to optimize costs

4.4. System Testing

System testing is conducted using three methods

and utilizes tools to demonstrate the performance and

functionality of the system. The methods used are

performance testing, publish testing and auto-scaling

testing.

4.4.1. Performance Testing

Performance testing systematically evaluates

and validates the stability, speed, and scalability of

software applications, systems, or components under

various predefined load, pressure, and resilience

conditions. The type of performance testing used is

load testing, aimed at determining the target load of a

system. Testing is conducted using the Apache

JMeter tool. Based on JMeter testing, a good system

or application category can handle user load well

without significantly affecting response time and

throughput.

The testing involves publishing a data value

with an HTTP (Hypertext Transfer Protocol) request

to an external IP (Internet Protocol) designated for

publishing. Factors analyzed in load testing on the

streamline real-time stock system include response

speed, error rate, response time, and server

configuration.

Table 1 Aggregate report result

Label # Samples Average Median Error % Throughput Received KB/sec Sent KB/sec

HTTP Request 1000 198 171 0% 499.50050 159.02 163.41

TOTAL 1000 198 171 0% 499.50050 159.02 163.41

Table 1 presents the aggregate report from the

load-testing conducted with JMeter. An aggregate

report is a collection of data from various sources that

provides a general overview and high-level analysis

of a specific topic. This report does not focus on

individual details but summarizes trends, patterns,

and key insights. The results of the aggregate report

indicate that the system's performance is satisfactory.

From 1000 users (threads), the aggregate report

shows that all user requests were successful, with an

average response time of 198 milliseconds and no

errors. The throughput value indicates a fairly high

number of 499.5 requests per second, indicating that

the server can handle many requests per second.

Figure 7. Delivery Metrics Pub/Sub graph

Figure 7 depicts a graph of delivery metrics

observed in Pub/Sub. The graph is obtained from

Cloud Monitoring, an integrated suite for monitoring,

logging, and tracking applications and systems

running on the Google Cloud Platform (GCP) and

other services. Delivery metrics refer to

measurements that track the effectiveness of message

delivery between publishers and subscribers. The

testing was conducted for approximately one (1) hour

by publishing 100 messages to the Pub/Sub topic.

Several detailed metrics describe the main deliveries

in Pub/Sub.

 The green line represents the publishing rate,

indicating the number of messages published to

the topic per unit of time. Publishing occurs

during the initial ± ten minutes starting from

when the publisher publishes the topic.

Publishing happens at a rate ranging from 0.917

or 91% messages per second, with a maximum

speed of one (1) or 100% messages per second.

 The blue line represents the pulling rate,

indicating the number of messages the

subscriber pulls from the topic per unit of time.

Subscribers begin pulling messages once they

enter the topic and continue until all messages

have been received. The subscriber can process

100 messages within a ± 40-minute period at an

average rate of 0.45 or 45% messages per

second from the maximum speed of one (1) or

100% messages per second.

 The red line represents the acknowledgment

rate, representing the number of messages

successfully acknowledged by the subscriber

per unit of time. Acknowledgment informs

Pub/Sub that the subscriber has received and

processed the message. The acknowledgment

action by the subscriber is performed ± 12

minutes after the message is successfully pulled

until all messages are acknowledged. The

acknowledgment process of 100 messages

occurs within a ± 30-minute period at an average

rate of 0.15 or 15% messages per second from

the maximum speed of one (1) or 100%

messages per second.

Joseph Heykel Prabawa, et al., IMPLEMENTATION OF STREAMLINE … 1111

4.4.2. Publish Testing

The testing was conducted by publishing

messages to the Pub/Sub topic so that the Pub/Sub

subscription could process the messages and forward

them to the subscriber. The subscriber, a virtual

machine inside the Managed Instance Group (MIG),

would then process the messages and insert them into

the database according to the data parameters and

commands received (update or insert). The testing

was performed using the Postman tool. Postman is a

software application that tests APIs (Application

programming interfaces). Postman sends API

requests to the Managed Instance Group (MIG) server

via the Pub/Sub intermediary and receives responses.

Figure 8. API with Postman

Figure 9. Server response

Figure 8 illustrates the process of sending

message data using an API in Postman. The HTTP

endpoint for publishing is included in Postman, along

with the route using the POST method for sending

messages via the API. The message from the

publisher is placed in the message body. If the process

is successful, the server will send a response

containing the message ID and success status, as

shown in Figure 9.

Figure 10. Database response

Figure 10 shows the response from the database,

indicating the message (data) that has been

successfully inserted into the database. If the message

(data) being inserted is new or the value of the

message is not already in the database, an insert

process will occur. However, if the value of the

message already exists in the database, an update

process will occur.

4.4.3. Auto-scaling Testing

Automatic scaling testing was conducted by

performing load testing on the Managed Instance

Group (MIG) for approximately one (1) hour. The

load testing aimed to determine the maximum and

minimum performance of the automatic scaling

system on the Managed Instance Group. The testing

involved publishing 100 messages to the Pub/Sub

topic. The Managed Instance Group, acting as the

subscriber, received and processed these messages

according to its configuration. Automatic scaling

would scale up based on the maximum number of

messages it can handle and scale down when the

messages have been successfully processed

(acknowledged).

Figure 11. Group Size graph

1112 Jurnal Teknik Informatika (JUTIF), Vol. 5, No. 4, August 2024, pp. 1103-1114

Figure 12. Auto-scaler utilisation graph

Figure 11 represents a graph obtained from

Cloud Monitoring when the Managed Instance Group

scales up and down. Figure 12 represents the auto-

scaler utilization graph obtained from Cloud

Monitoring. The graph shows the auto-scaler

utilization values with signals for auto-scaling, which

are Pub/Sub messages. The testing was conducted

with three batch configurations for the Managed

Instance Group,

 In the first batch, the Managed Instance Group

was configured with a maximum message count

of five (5), a maximum instance count of ten

(10), and a minimum instance count of one (1).

Gradual scaling up to the maximum instances

(ten instances) occurred in this batch, and the

auto-scaler utilization reached its peak value of

126 with a serving capacity of ten (10) instances

within a ± eight (8)-minute timeframe.

 In the second batch, the Managed Instance

Group was configured with a maximum

message count of ten (10), a maximum instance

count of 20, and a minimum instance count of 1.

Although the maximum message count was

increased to ten (10), the auto-scaler maintained

ten instances, and there was an increase to the

maximum instances (20 instances) within a ±

ten minute timeframe. In this batch, the auto-

scaler raised the serving capacity to 200,

resulting in a decrease in auto-scaler utilization

to 67.52 within a ± ten (10)-minute timeframe.

 In the third batch, the Managed Instance Group

was configured with a maximum message count

of 20, a maximum instance count of ten, and a

minimum instance count of one (1). In the third

batch, the instances gradually decreased to the

maximum instance count (ten instances) within

a ± eight (8)-minute timeframe. The graph

indicates that the performance of auto-scaler

utilization also decreased to 20.03 with a serving

capacity of 100 within a ± eight (8)-minute

timeframe.

 After all messages were successfully processed

(acknowledged) gradually, the instances scaled

down to the minimum instance count (one

instance) within a ± 17-minute timeframe. Auto-

scaler utilization also decreased to zero (0) with

a serving capacity of 20 within a ± 17-minute

timeframe.

The testing indicates that the automatic scaling

system in the Managed Instance Group functions

effectively and can handle changes in workload

effectively. The automatic scaling system has

demonstrated scalability and flexibility in handling

high workloads with efficient resource utilization.

The time taken to increase the instance count ranges

between 8-10 minutes, while the time taken to

decrease the instance count ranges between 8-17

minutes. In managing high workloads, auto-scaling

utilizes available resources to the maximum to

expedite the acknowledgment process. However,

auto-scaling remains flexible and performs optimally

even with minimal resources.

5. DISCUSSION

Implementing real-time stock streamlining

using auto-scaling via Google Cloud Pub/Sub has

been successful and has shown high performance.

The utilization of auto-scaling through Google Cloud

Pub/Sub is capable of handling a workload of 1000

users with an average response time of 198

milliseconds and a throughput of 499.5 requests per

second. In previous research, using auto-scaling

through CPU utilization to handle a simple web

server with the same workload yielded an average

response time of 90 milliseconds and a throughput of

1.7 requests per second [9]. This indicates that in

handling high workloads, auto-scaling can maximize

the utilization of available resources and execute

various forms of automatic scaling signals efficiently.

The utilization of Google Cloud Pub/Sub as a

scalable asynchronous messaging service, along with

its dead-letter feature, provides high satisfaction in

scalability [1]. With its features and reliability,

Google Cloud Pub/Sub ensures real-time message

delivery and that failed messages are not lost,

allowing them to be resent. This benefits the business

processes at PT XYZ. Real-time data aids in faster

and more accurate decision-making related to

inventory. The auto-scaling system through Google

Cloud Pub/Sub for real-time inventory streamlining

implementation ensures that services are always

available with automatic scalability and high

reliability while providing secure data.

6. CONCLUSION

Based on the results and discussion from the

conducted research, several conclusions can be drawn

as follows: 1) The streamline real-time stock system

is capable of handling high workloads, as evidenced

by load testing with 1000 users (threads). The system

can handle user requests with an average response

time of 198 milliseconds per thread, and no errors

occur. 2) The use of Google Cloud Pub/Sub as an

Joseph Heykel Prabawa, et al., IMPLEMENTATION OF STREAMLINE … 1113

asynchronous and scalable messaging service, along

with its good integration with the streamline real-

time- stock system built within the Managed Instance

Group, successfully handles message publishing with

a large volume. This results in metrics such as a

publish rate of 0.917 or 91% messages per second, a

pull rate with an average value of 0.45 or 45%

messages per second, and an ack rate with an average

value of 0.15 or 15% messages per second. 3) As

demonstrated during user testing, the system's

functionality has been running smoothly. It

successfully publishes messages to the Pub/Sub topic

and inserts them into the database. 4) The automatic

scaling system is capable of handling high workloads

and changes in workload with scalability and

flexibility. With the publishing of 100 messages, the

auto-scaler optimizes performance and increases

service availability. The time taken to increase the

instance count (scale-up) ranges between 8-10

minutes, while the time taken to decrease the instance

count (scale-down) ranges between 8-17 minutes.

The implementation of the streamline real-time stock

system with auto-scaling via Google Cloud Pub/Sub

can provide optimal performance and scalability with

high availability, good security, and cost savings.

Developing and adding features to the

streamline real-time stock system with auto-scaling

through Google Cloud Pub/Sub would be highly

beneficial. Implementing system monitoring and

logging capabilities would track system performance

and health and record events and important

information for debugging and troubleshooting

purposes. Other features would also be valuable, such

as developing a user interface (UI) to visualize real-

time stock data and gain insights into inventory

levels, trends, and potential issues.

REFERENCES

[1] G. Schumy and Y. A. Susetyo, “Rancang

Bangun Sistem Sinkronisasi Data

Menggunakan Google Cloud Pub/Sub Dan

Flask Di PT XYZ,” in Jurnal MNEMONIC,

2022, vol 5, no. 2, pp 85-92, 2022, doi:

10.36040/mnemonic.v5i2.4645.

[2] S. L. Gutiérrez and Y. P. Vera, “A Cloud

Pub/Sub Architecture to Integrate Google Big

Query with Elasticsearch using Cloud

Functions,” International Journal of

Computing, vol. 21, no. 3, pp. 369–376,

2022, doi: 10.47839/ijc.21.3.2694.

[3] S. K. Rout, J. V. R. Ravindra, A. Meda, S. N.

Mohanty, and V. Kavididevi, “A Dynamic

Scalable Auto-Scaling Model as a Load

Balancer in the Cloud Computing

Environment,” EAI Endorsed Transactions

on Scalable Information Systems, vol. 10, no.

5, pp. 1–7, 2023, doi: 10.4108/eetsis.3356.

[4] Google Cloud, "Instance Group", 2023.

https://cloud.google.com/compute/docs/insta

nce-groups?hl=id (accessed Nov. 1, 2023).

[5] S. P. T. Krishnan, Jose L. Ugia Gonzalez,

Building Your Next Big Thing with Google

Cloud Platform. Apress Berkeley, CA.

[6] Google Cloud, "Overview of the Pub/Sub

service", 2023.

https://cloud.google.com/pubsub/docs/pubsu

b-basics (accessed Nov. 1, 2023).

[7] Google Cloud, "Event-driven architecture

with Pub/Sub", 2023.

https://cloud.google.com/solutions/event-

driven-architecture-pubsub (accessed Nov. 1,

2023).

[8] Google Cloud, "Autoscaling groups of

instances", 2023.

https://cloud.google.com/compute/docs/auto

scaler (accessed Nov. 5, 2023).

[9] D. Gustian, Y. Fitrisia, S. Purwantoro ESGS,

W. Novayani, P. Caltex Riau, and J.

Umbansari No, “Implementasi Automation

Deployment pada Google Cloud Compute

VM menggunakan Terraform,” Jurnal

Inovtek Polbeng, vol. 8, no. 2, pp. 50–62,

2023.

[10] A. A. Wibowo Putri and Y. A. Susetyo,

“Implementation Of Flask For Stock

Checking In Distribution Center & Store On

Monitoring Stock Application In PT. XYZ,”

Jurnal Teknik Informatika (Jutif), vol. 3, no.

5, pp. 1265–1274, Oct. 2022, doi:

10.20884/1.jutif.2022.3.5.334.

[11] B. P. Putra and Y. A. Susetyo,

“IMPLEMENTASI API MASTER STORE

MENGGUNAKAN FLASK, REST DAN

ORM DI PT XYZ,” Jurnal Sistem Informasi

(SISTEMASI), vol. 9, no. 3, pp. 543-556,

2020, doi: 10.32520/stmsi.v9i3.89.

[12] R. Bayu, A. Pradana, and A. Bhawiyuga,

“Pengembangan Platform IoT Cloud berbasis

Layanan Komputasi Serverless Google

Cloud Platform (GCP),” Jurnal

Pengembangan Teknologi Informasi dan

Ilmu Komputer, vol. 6, no. 4, April. 2022.

 [13] A. A. Wibowo Putri and Y. A. Susetyo,

“Implementation Of Flask For Stock

Checking In Distribution Center & Store On

Monitoring Stock Application In PT. XYZ,”

Jurnal Teknik Informatika (Jutif), vol. 3, no.

5, pp. 1265–1274, Oct. 2022, doi:

10.20884/1.jutif.2022.3.5.334.

[14] M. C. Silva Filho, C. C. Monteiro, P. R. M.

Inácio, and M. M. Freire, “A Distributed

Virtual-Machine Placement and Migration

Approach Based on Modern Portfolio

Theory,” Journal of Network and Systems

Management, vol. 32, no. 1, Mar. 2024, doi:

10.1007/s10922-023-09775-8.

[15] S. L. Gutiérrez and Y. P. Vera, “A Cloud

1114 Jurnal Teknik Informatika (JUTIF), Vol. 5, No. 4, August 2024, pp. 1103-1114

Pub/Sub Architecture to Integrate Google Big

Query with Elasticsearch using Cloud

Functions,” International Journal of

Computing, vol. 21, no. 3, pp. 369–376,

2022, doi: 10.47839/ijc.21.3.2694.

[16] C. Mustafa Mohammed and S. R. M

Zeebaree, “Sufficient Comparison Among

Cloud Computing Services: IaaS, PaaS, and

SaaS: A Review,” International Journal of

Science and Business, vol. 5, no. 2, pp. 17–

30, 2021, doi: 10.5281/zenodo.4450129.

[17] A. J. Budianto, P. Ocsa, and N. Saian,

“Pengembangan Modul Inventory

Management pada Aplikasi Master

Distribution Centre System Menggunakan

Framework Flask di PT XYZ,” Jurnal

Teknologi Informasi dan Komunikasi), vol.

7, no. 2, pp. 201–207, 2023, doi: 10.35870/jti.

[18] J. Nam, Y. Jun, and M. Choi, “High

Performance IoT Cloud Computing

Framework Using Pub/Sub Techniques,”

Applied Sciences (Switzerland), vol. 12, no.

21, Nov. 2022, doi: 10.3390/app122111009.

[19] P. M. Tobing, M. Ariance, and I. Pakereng,

“Migrasi Aplikasi Stock Opname Platform

Desktop Ke Android Menggunakan Kivy

Framework (Studi Kasus Di PT Sumber

Alfaria Trijaya Tbk),” Indonesian Journal on

Computer and Information Technology,

2020, vol. 6, no. 2, pp. 151-159. Nov. 2021.

[20] F. V. L. Dewangga and P. O. Nugraha Saian,

“Automatic Git Repository Deployer In

Ubuntu Using Python, Jenkins And Cloud

Firestore At PT XYZ,” Jurnal Teknik

Informatika (Jutif), vol. 4, no. 6, pp. 1313–

1325, Dec. 2023, doi:

10.52436/1.jutif.2023.4.6.1062.

[21] A. R. Nasution, F. Dewanta, and B. Aditya,

“AUTO SCALING DATABASE SERVICE

WITH MICRO KUBERNETES

CLUSTER,” Jurnal Teknik Informatika

(Jutif), vol. 3, no. 4, pp. 923–927, Aug. 2022,

doi: 10.20884/1.jutif.2022.3.4.484.

